JPS6318327A - Plastic liquid crystal display element - Google Patents

Plastic liquid crystal display element

Info

Publication number
JPS6318327A
JPS6318327A JP16332586A JP16332586A JPS6318327A JP S6318327 A JPS6318327 A JP S6318327A JP 16332586 A JP16332586 A JP 16332586A JP 16332586 A JP16332586 A JP 16332586A JP S6318327 A JPS6318327 A JP S6318327A
Authority
JP
Japan
Prior art keywords
liquid crystal
crystal display
film
display element
plastic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16332586A
Other languages
Japanese (ja)
Inventor
Yoshiyuki Nishida
善行 西田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daicel Corp
Original Assignee
Daicel Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daicel Chemical Industries Ltd filed Critical Daicel Chemical Industries Ltd
Priority to JP16332586A priority Critical patent/JPS6318327A/en
Publication of JPS6318327A publication Critical patent/JPS6318327A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • G02F1/133634Birefringent elements, e.g. for optical compensation the refractive index Nz perpendicular to the element surface being different from in-plane refractive indices Nx and Ny, e.g. biaxial or with normal optical axis

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

PURPOSE:To obtain a large-sized substrate having good uniformity of display by using a simultaneously biaxially stretched plastic film of same draw ratio. CONSTITUTION:The plastic film produced by subjecting said film to biaxial stretching simultaneously at approximately 1 vertical and horizontal draw ratios is used for the plastic film of a voltage impression type liquid crystal display element formed by sandwiching a liquid crystal material between a pair of the transparent conductive plastic films. The film formed by such method has the double refractive index in the transverse direction as shown by (a) of the figure, and permits drawing of the part having <=5X10<-4> double refractive index wider than (b) in the case of the film formed by an ordinary successive biaxial stretching method. The optically excellent liquid crystal display element is thus obtd. if the part having <=5X10<-4> double refractive index is drawn from the roll film in the longitudinal direction thereof and the liquid crystal display element is manufacture of such part.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は表面に透明導電性薄膜を設けてなる透明導電性
プラスチックスフィルムの一対の間に液晶物質を挾持す
る電圧印加型液晶表示素子の改良に関するものである。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to a voltage application type liquid crystal display device in which a liquid crystal substance is sandwiched between a pair of transparent conductive plastic films each having a transparent conductive thin film on the surface thereof. It is about improvement.

(従来技術および問題点) 従来より液晶表示素子電極板には、ガラス基板の表面に
透明導電層を設けたものが用いられている。しかるに液
晶表示素子は、益々軽量、薄型化される方向におり、ガ
ラス基板をプラスチックス基板特にフィルム基板に置き
かえる試みがなされている。置きかえるについての重要
な問題はプラスチックスの複屈折であって、その為例え
ば、二軸延伸ポリエステルフィルムでは消光角の差異が
5°以内の部分を用いそのまま、また−軸延伸ポリエス
テルフィルムを用いるものおよび無配向のポリサルホン
、ポリエーテルサルホンフィルム等を用いるものがある
(Prior Art and Problems) Conventionally, a liquid crystal display element electrode plate having a transparent conductive layer provided on the surface of a glass substrate has been used. However, liquid crystal display elements are becoming increasingly lighter and thinner, and attempts are being made to replace glass substrates with plastic substrates, particularly film substrates. An important issue for replacement is the birefringence of plastics, so for example, for biaxially oriented polyester films, parts with extinction angle differences within 5 degrees are used as is, and for axially oriented polyester films, and Some use non-oriented polysulfone, polyethersulfone films, etc.

しかしこれらはそれぞれ欠点を有し無配向のポリサルホ
ン、ポリエーテルサルホンフィルムは現在の所厚み均一
なフィルムを得ることが難しくまた着色しているし、致
命的な事は耐薬品性、耐液晶性がそれほど良くなく、限
られた溶剤、液晶のみが使用されるために、その使用条
件が限られており、二軸延伸ポリエステルフィルムは現
在大量に製造されており入手容易であるが基板の切りだ
しの位置決めが難しく、さもないとできあがった液晶表
示素子の表示の均一性が悪く、−軸延伸ポリエステルフ
ィルムでも二軸延伸ポリエステルフィルム程ではないに
しても同様の欠点を有する。
However, each of these has drawbacks, and it is currently difficult to obtain films with uniform thickness for unoriented polysulfone and polyethersulfone films, and they are colored, and the fatal problem is chemical resistance and liquid crystal resistance. However, since biaxially oriented polyester film is currently manufactured in large quantities and is easily available, it is difficult to cut out the substrate. It is difficult to position the film, otherwise the display uniformity of the resulting liquid crystal display device will be poor, and -axially oriented polyester films have the same drawbacks as biaxially oriented polyester films, although not as much.

その為これらに代るフィルムの開発が望まれていた。Therefore, it has been desired to develop a film to replace these.

(問題点を解決するための手段) 本発明はかかる欠点をもたないプラスチックスフィルム
の開発を検討の結果、縦横の延伸倍率比略々1で同時二
軸延伸して製造したフィルムがかかる欠点をもたない事
を見出した。
(Means for Solving the Problems) As a result of studying the development of a plastic film that does not have these drawbacks, the present invention found that a film produced by simultaneous biaxial stretching at a stretching ratio of approximately 1 in the longitudinal and lateral directions has such drawbacks. I found out that it does not have .

即ち本発明は表面に透明導電性薄膜を設けてなる透明導
電性プラスチックスフィルムの一対の間に液晶物質を挾
持する電圧印加型液晶表示素子に於て該プラスチックス
フィルムが縦横の延伸倍率比略々1で同時二軸延伸して
製造した物であることを特徴とするプラスチックス液晶
表示素子で必る。
That is, the present invention provides a voltage application type liquid crystal display element in which a liquid crystal material is sandwiched between a pair of transparent conductive plastic films each having a transparent conductive thin film on the surface thereof, and in which the plastic film has a vertical and horizontal stretching ratio. This is necessary for a plastic liquid crystal display element characterized in that it is manufactured by simultaneous biaxial stretching in both steps 1 and 1.

プラスチックスとしてはポリエチレンテレフタレートが
最も適した材料である。ポリエチレンテレフタレートは
現在大量に作られ品質も安定しており、この様な光学素
子にとって重要な厚みの均一なものが得やすく、最低限
必要な厚みのバラツキ5%以内のポリエチレンテレフタ
レートフィルムも容易に得ることができる利点がおる。
Polyethylene terephthalate is the most suitable plastic material. Polyethylene terephthalate is currently produced in large quantities and its quality is stable, making it easy to obtain polyethylene terephthalate films with uniform thickness, which is important for such optical elements, and it is also easy to obtain polyethylene terephthalate films with a minimum required thickness variation of less than 5%. There is an advantage in being able to do so.

本来複屈折率がOでおることが望ましいが一般的には望
むべくもなく、従来の無配向のポリエーテルサルホン、
ポリサルホンフィルムでも複屈折率Δμが5×10→以
下の有限値を有する。配向性でありながらこのよう光学
的にすぐれているポリエステルフィルムを得るためには
従来の遂次二軸延伸法ではなく、同時二軸延伸法を行な
い、しかも縦延伸倍率と横延伸倍率との比を1.0にす
る。このような方法で製膜したフィルムは幅方向に対す
る複屈折率を測定すると図1のaのようになり、通常の
遂次2軸延伸法で製膜したフィルムの場合のbより幅広
く複屈折率が5X10″4以下の部分を採取することが
できる。したがって、複屈折率が5×104以下の部分
をロールフィルムの長手方向(M D方向)に対して採
取し、その部分で液晶表示素子を製作すると、光学的に
すぐれたものができあがる。
Although it is originally desirable that the birefringence be O, this is generally undesirable, and conventional non-oriented polyether sulfone,
Even a polysulfone film has a finite value of birefringence Δμ of 5×10→ or less. In order to obtain such an optically excellent polyester film despite its orientation, simultaneous biaxial stretching was carried out instead of the conventional sequential biaxial stretching method, and the ratio of the longitudinal stretch ratio to the transverse stretch ratio was changed. Set to 1.0. When the birefringence of the film produced by this method is measured in the width direction, it is as shown in a in Figure 1, and the birefringence is wider than b of the film produced by the normal sequential biaxial stretching method. It is possible to sample a portion with a birefringence of 5×10″4 or less. Therefore, a portion with a birefringence of 5×104 or less can be sampled in the longitudinal direction (MD direction) of the roll film, and a liquid crystal display element can be formed in that portion. When manufactured, the result is something optically excellent.

フィルムの厚みとしては、50〜500μ瓦の範囲が好
ましい。特に、電極間隔を一定に保ち、しかも薄型化可
能で且つ透明導電性フィルムの製造上の見地から75〜
200μmの範囲が好ましい。
The thickness of the film is preferably in the range of 50 to 500 μm. In particular, 75~
A range of 200 μm is preferred.

又、本発明で使用するフィルムは厚みのバラツキが5%
以内であることも好ましい条件である。厚みのバラツキ
は30m間隔でり略々1TrL四方の試料をとりその周
辺の中央部を結ぶ十字の部分について2.5cm置きに
厚みを測定した時に、それらの数値のバラツキが5%以
内に入ることを意味する。本発明で使用するフィルムの
材質は特に限定はされないが、ポリエチレンテレフタレ
ートが現状では良い。
In addition, the film used in the present invention has a thickness variation of 5%.
It is also a preferable condition that it is within the range. The variation in thickness is at 30m intervals, and when a sample of approximately 1 TrL square is taken and the thickness is measured every 2.5cm of the cross connecting the center of the sample, the variation in the values must be within 5%. means. The material of the film used in the present invention is not particularly limited, but polyethylene terephthalate is currently preferred.

該基板上に設ける透明電極は、酸化スズを少量ドープし
た酸化インジウム薄膜、金薄膜が好適でおり、特に酸化
スズを少量ドープした酸化インジウム薄膜が透明性の点
で好ましい。基板上にこれら導電性薄膜を設ける方法と
しては、真空蒸着法、スパッタリング法、イオンブレー
ティング法等があげられる。
The transparent electrode provided on the substrate is preferably an indium oxide thin film doped with a small amount of tin oxide or a gold thin film, and an indium oxide thin film doped with a small amount of tin oxide is particularly preferable from the viewpoint of transparency. Examples of methods for providing these conductive thin films on a substrate include a vacuum evaporation method, a sputtering method, and an ion blasting method.

本発明にあける透明導電性薄膜は、通常可視光(550
μm)の透過率が少くとも75%以上ありかつ表面抵抗
が16に07口以下のものである。
The transparent conductive thin film provided in the present invention is usually visible light (550
The transmittance (μm) is at least 75% or more, and the surface resistance is 16 to 07 or less.

好ましくは該透過率が80%以上あり、表面抵抗が10
0〜200Ω/口のものでおる。
Preferably, the transmittance is 80% or more and the surface resistance is 10.
0 to 200Ω/mouth.

(発明の効果) 同倍率同時二軸延伸フィルムはその中央部で複屈折率5
X10″′4以下の部分が巾広くあるため、(6真6行
〜8行)従来の遂次二軸延伸法では消光色の差異が5°
以内の部分を用いるとしても小さな部分しか得られない
ので大型の基板が得られないばかりか、小さな基板でも
中央部と端部とで明るさに差のある表示素子しか出来な
い場合があり、製品の小止りが悪いのに対して、本発明
では無歪の相当大きな素子が製造出来る。
(Effect of the invention) The biaxially stretched film with the same magnification has a birefringence of 5 at its center.
Since the area below X10'''4 is wide, the difference in extinction color is 5° in the conventional sequential biaxial stretching method (6 lines 6 to 8 lines).
Even if a part within the range is used, only a small part will be obtained, and a large board will not be obtained.Even if the board is small, only a display element with a difference in brightness between the center and the edges may be produced. On the other hand, the present invention can produce a considerably large element without distortion.

(実施例1) 複屈折率を5X10−5以下を有するポリエステルフィ
ルムに透明導電膜(酸化インジウム−酸化スズ合金)を
施したのち、8の字形状の電極パターンを形成した。こ
の電極パターンにポリアミド系の配向処理膜を施し、ラ
ビングすることにより配向処理した。この2枚のフィル
ムをエポキシ樹脂で張り合わせることにより表示素子を
形成した。
(Example 1) A transparent conductive film (indium oxide-tin oxide alloy) was applied to a polyester film having a birefringence of 5×10 −5 or less, and then a figure-8 electrode pattern was formed. A polyamide-based alignment treatment film was applied to this electrode pattern, and alignment treatment was performed by rubbing. A display element was formed by laminating these two films together with an epoxy resin.

この液晶表示素子の表示能力を観察したところ、500
時間経過後であっても充分な能力があることが判明した
When the display capacity of this liquid crystal display element was observed, it was found that 500
It turned out that it had sufficient ability even after the lapse of time.

しかも、通常の遂次延伸法での二軸延伸ポリエステルフ
ィルムの場合と比べて、10〜20倍(50cm)広い
幅で採取することが可能となった。
In addition, it became possible to sample a width 10 to 20 times (50 cm) wider than that of a biaxially stretched polyester film produced by the usual sequential stretching method.

さらに、複屈折率5X10−4以下を有するので、ロー
ルフィルムから切り出す際、任意の角度で切り落として
使用できるので、ロールフィルムを無駄なく利用できる
。その意味からして生産性が一段と向上させることがで
きる。また素子の厚さをガラス基板より薄くできるので
液晶表示素子として軽量、薄型化、更に曲面化という目
的を十分に満足することができる。
Furthermore, since it has a birefringence of 5×10 −4 or less, it can be cut off at any angle when cutting from a roll film, so the roll film can be used without wasting it. In this sense, productivity can be further improved. In addition, since the thickness of the element can be made thinner than that of a glass substrate, it is possible to fully satisfy the objectives of making the liquid crystal display element lighter, thinner, and curved.

【図面の簡単な説明】[Brief explanation of the drawing]

図1は本発明のフィルム(a)と従来の二軸延伸フィル
ム(b)の巾方向各部の複屈折率を示すグラフである。
FIG. 1 is a graph showing the birefringence of each part in the width direction of the film (a) of the present invention and the conventional biaxially stretched film (b).

Claims (5)

【特許請求の範囲】[Claims] (1)表面に透明導電性薄膜を設けてなる透明導電性プ
ラスチックスフィルムの一対の間に液晶物質を挾持する
電圧印加型液晶表示素子に於て該プラスチックスフィル
ムが縦横の延伸倍率比略々1で同時二軸延伸して製造し
た物であることを特徴とするプラスチックス液晶表示素
子。
(1) In a voltage application type liquid crystal display element in which a liquid crystal material is sandwiched between a pair of transparent conductive plastic films having a transparent conductive thin film on the surface, the plastic film has a stretching ratio of approximately 1. 1. A plastic liquid crystal display element manufactured by simultaneous biaxial stretching in step 1.
(2)プラスチックスがポリエチレンテレフタレートで
ある特許請求の範囲第1項記載のプラスチックス液晶表
示素子。
(2) A plastic liquid crystal display element according to claim 1, wherein the plastic is polyethylene terephthalate.
(3)プラスチックスフィルムが厚みのバラツキ5%以
内のポリエチレンテレフタレートフィルムであることを
特徴とする特許請求の範囲第1項記載のプラスチックス
液晶表示素子。
(3) The plastic liquid crystal display element according to claim 1, wherein the plastic film is a polyethylene terephthalate film with a thickness variation of within 5%.
(4)該透明導電性薄膜が酸化スズを含有する酸化イン
ジウム又は金の薄膜である特許請求の範囲第1項記載の
プラスチックス液晶表示素子。
(4) The plastic liquid crystal display element according to claim 1, wherein the transparent conductive thin film is a thin film of indium oxide or gold containing tin oxide.
(5)プラスチックスフィルムの複屈折率が5×10^
−^4以下である特許請求の範囲第1項記載のプラスチ
ックス液晶表示素子。
(5) Birefringence of plastic film is 5×10^
A plastic liquid crystal display element according to claim 1, wherein the plastic liquid crystal display element is -^4 or less.
JP16332586A 1986-07-11 1986-07-11 Plastic liquid crystal display element Pending JPS6318327A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16332586A JPS6318327A (en) 1986-07-11 1986-07-11 Plastic liquid crystal display element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16332586A JPS6318327A (en) 1986-07-11 1986-07-11 Plastic liquid crystal display element

Publications (1)

Publication Number Publication Date
JPS6318327A true JPS6318327A (en) 1988-01-26

Family

ID=15771701

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16332586A Pending JPS6318327A (en) 1986-07-11 1986-07-11 Plastic liquid crystal display element

Country Status (1)

Country Link
JP (1) JPS6318327A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5555240A (en) * 1993-05-21 1996-09-10 Semiconductor Energy Laboratory Co., Ltd. Process for fabricating a liquid crystal display with switching elements formed in a substrate
US11163182B2 (en) 2009-04-07 2021-11-02 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device and manufacturing method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5535325A (en) * 1978-09-04 1980-03-12 Teijin Ltd Liquid crystal display body

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5535325A (en) * 1978-09-04 1980-03-12 Teijin Ltd Liquid crystal display body

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5555240A (en) * 1993-05-21 1996-09-10 Semiconductor Energy Laboratory Co., Ltd. Process for fabricating a liquid crystal display with switching elements formed in a substrate
US11163182B2 (en) 2009-04-07 2021-11-02 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device and manufacturing method thereof
US11243420B2 (en) 2009-04-07 2022-02-08 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device and manufacturing method thereof
US11906826B2 (en) 2009-04-07 2024-02-20 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device and manufacturing method thereof

Similar Documents

Publication Publication Date Title
EP0168423B1 (en) Liquid crystal display
CN108027535A (en) Liquid crystal display device
KR970705769A (en) AND METHOD OF MANUFACTURING THE SAME AND POLARIZER AND LIQUID CRYSTAL DISPLAY UNIT UTILIZING THE SAME &lt;br&gt; &lt;br&gt; &lt;br&gt; Patents - stay tuned to the technology FILM CONTAINING ORIENTED DYE
US4620772A (en) Liquid crystal display plastic cell structure
JPH07191313A (en) Liquid crystal display device
JP2002341320A (en) Liquid crystal display device and optical laminate
WO1998052095A1 (en) Liquid crystal display
JPH02256003A (en) Optical film
JP2003015134A (en) Liquid crystal display device
JPS6318327A (en) Plastic liquid crystal display element
JPH04162018A (en) Liquid crystal display device
JPS56140320A (en) Two-layer type liquid crystal color display device
US4492433A (en) In-fem liquid crystal display panel with a film of cellophane tape
US4514041A (en) Polarizer with electrode thereon in a liquid crystal display
JPS6432229A (en) Liquid crystal display element having plastic substrate
DE3711417A1 (en) Liquid-crystal display device and method for producing the same
JPH0267518A (en) Liquid crystal display body
WO1986004157A1 (en) Color liquid crystal display device
JPH09304621A (en) Production of phase difference film
JPS60128418A (en) Liquid crystal display element
JPS59189325A (en) Liquid crystal display device
JPH063653A (en) Manufacture of double refraction film and liquid crystal display device using the film
JPS59195623A (en) Liquid crystal display cell
JPS6415717A (en) Cell for liquid crystal display
JP2726283B2 (en) Liquid crystal display