JPH02256003A - Optical film - Google Patents

Optical film

Info

Publication number
JPH02256003A
JPH02256003A JP1339329A JP33932989A JPH02256003A JP H02256003 A JPH02256003 A JP H02256003A JP 1339329 A JP1339329 A JP 1339329A JP 33932989 A JP33932989 A JP 33932989A JP H02256003 A JPH02256003 A JP H02256003A
Authority
JP
Japan
Prior art keywords
film
optical
optical film
thickness
liquid crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1339329A
Other languages
Japanese (ja)
Other versions
JP3184975B2 (en
Inventor
Kiminari Nakamura
中村 公成
Toyokazu Okada
岡田 豊和
Kazuaki Sakakura
坂倉 和明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=26573731&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH02256003(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP33932989A priority Critical patent/JP3184975B2/en
Publication of JPH02256003A publication Critical patent/JPH02256003A/en
Application granted granted Critical
Publication of JP3184975B2 publication Critical patent/JP3184975B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3083Birefringent or phase retarding elements

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
  • Polarising Elements (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

PURPOSE:To obtain the optical film having a uniform optical color by uniformizing the thickness of a thermoplastic polymer film or sheet with high precision. CONSTITUTION:The thermoplastic polymer film or sheet is free of the sinusoidal variations in thickness having >=0.5mum amplitude when the changes in the thickness are continuously measured in the extruding direction, and formed by monoaxially orienting a film or sheet at right angles to the extruding direction. The retardation value is controlled to <=1,200nm and the amplitude of retardation to <=10%. The optical nonuniformity is hardly observed in the optical film or composite polarizing plate thus obtained, and the film or sheet passes a durability accelerated test at 80 deg.C and 60 deg.CX90% RH.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、液晶表示装置等に適用しうる光学用フィルム
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an optical film that can be applied to liquid crystal display devices and the like.

〔従来技術〕[Prior art]

光学フィルムとして、現在実用に供されているものとし
て、(1)偏光板の保護フィルム等に用いられている、
1100n以下のレターデージ、ン値ルム等が知られて
いる。
Optical films currently in practical use include (1) those used as protective films for polarizing plates, etc.
Retardage and luminance of 1100n or less are known.

低複屈折性の光学フィルムとしては、偏光板のては、酢
酸セルロース系(二酢酸セルロース等)のフィルムを一
軸方向に延伸処理したフィルム等する光学フィルムは、
直線偏光板の光学軸に対1.・て45度傾けて貼り合わ
せると円偏光板となり、反射光をカットする防眩機能が
あるので、VDTフィルターをはじめとする各種の防眩
材料に使用厚さ(d)の積、すなわちR−Δnxdで表
わされる。
As an optical film with low birefringence, for the polarizing plate, an optical film such as a cellulose acetate-based film (cellulose diacetate, etc.) that is uniaxially stretched is used.
1 to the optical axis of the linear polarizer.・When laminated at a 45-degree angle, it becomes a circularly polarizing plate, which has an anti-glare function that cuts reflected light. It is expressed as Δnxd.

一方、特開昭61 186987号公報、特開昭60−
26822号公報に記載されているように、液晶分子の
ねじれ角が90度であり、液晶セルの上下に一対の偏光
板をその吸収軸が直交又は平行になるように配置された
液晶表示装置(−股上、すなわち、180〜270変に
した液晶表示装置が開発された(一般にSTN型液晶表
示装置といわれている)。しかし従来のTN型液晶表示
装置では可能であった白黒表示が、STN型液晶表示装
置では、液晶分子の複屈折に起因する着色が生じ白黒表
示が出来なくなる。−例を示せば背景色が黄緑色であり
%表示色が濃紺色である。表示装置がこのような色相を
有していると、マルチカラー フルカラーといったカラ
ー表示を行う際に制約をうけることが多い、この問題点
を解決するために、例えば日経マイクロデバイス198
7年10月号84頁に記載されているように、偏光板と
STN型液晶セルにもう1枚色消し用の液晶セルを光学
補償板として加え、着色を解決し、白黒表示を可能にす
る方法が示されCいる。しかし用し、表示品質を向上さ
せようという試みもなされている。
On the other hand, JP-A-61 186987, JP-A-60-
As described in Japanese Patent No. 26822, a liquid crystal display device in which the twist angle of liquid crystal molecules is 90 degrees and a pair of polarizing plates are arranged above and below a liquid crystal cell so that their absorption axes are perpendicular or parallel. - A liquid crystal display device with a rise of 180 to 270 degrees was developed (generally referred to as an STN type liquid crystal display device).However, the black and white display that was possible with the conventional TN type liquid crystal display device was In a liquid crystal display device, coloration occurs due to the birefringence of liquid crystal molecules, making it impossible to display black and white. - For example, the background color is yellow-green and the percentage display color is dark blue. In order to solve this problem, for example, the Nikkei Micro Device 198
As described on page 84 of the October 1977 issue, an additional achromatic liquid crystal cell was added as an optical compensation plate to the polarizing plate and STN type liquid crystal cell to solve the problem of coloring and make black and white display possible. A method is shown. However, attempts have been made to improve the display quality by using the same method.

さらに、近来、表示容量の増大、表示画面の拡大要請に
伴って、液晶分子のねじれ角を90度以ルムにて代替す
ることが検討されている。
Furthermore, in recent years, with the demand for increased display capacity and enlarged display screens, consideration has been given to replacing the twist angle of liquid crystal molecules with a twist angle of 90 degrees or less.

さらに、液晶表示装置の表示品位を向トさせるために、
各覆のレターデー・シ、ン値を有する一軸性光学フィル
ム等が各種液晶表示装置に検討されている。
Furthermore, in order to improve the display quality of liquid crystal display devices,
Uniaxial optical films and the like having different lettering values are being considered for use in various liquid crystal display devices.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来の光学用フィルムでは、これら液晶表示装置等の新
しい用途に対して、(1)光学的にレターデージが大き
く、むしろ液晶表示装置の表示品位をそこなう場合があ
る等の理由により%適用することが出来ない。
Conventional optical films cannot be used in new applications such as liquid crystal display devices due to (1) large optical retardage, which may actually impair the display quality of the liquid crystal display device. Can not.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は上記の課題を解決するために研究を重ねた結果
完成されたものである。
The present invention was completed as a result of repeated research to solve the above problems.

すなわち本発明は、押出方向に連続的に厚み変化を測定
したとき、50頭以下のピッチでかつ厚みの振幅がQ、
54m以上である正弦波状の厚み変動の存在しない熱可
塑性高分子フィルム又はシート、および該フィルム又は
シートを押出方向に対して直角に一軸に延伸して形成さ
れるフィルム又はシートからなり、レターデージ、ンの
値が1200nrn以下であり、レターデ・−シアンの
フレ幅が10%以下である光学用フィルムに関する。
That is, in the present invention, when the thickness change is continuously measured in the extrusion direction, the pitch is 50 or less and the thickness amplitude is Q,
It consists of a thermoplastic polymer film or sheet with a length of 54 m or more and no sinusoidal thickness variation, and a film or sheet formed by uniaxially stretching the film or sheet at right angles to the extrusion direction. The present invention relates to an optical film having a value of 1200 nrn or less and a retardation-cyan runout width of 10% or less.

本発明の光学用フィルムは直交5.:、コル下にその先
軸が45度になるように配置して光学的色ムラを観察し
たとき、周期的に濃淡の縞模様がないことを特徴とし、
この優れた光学的特性を生かして位相差板として偏光板
に積1−シて複合偏光板等に用いられるものである。
The optical film of the present invention is orthogonal 5. : When placed under the collar with its tip axis at 45 degrees and observed for optical color unevenness, it is characterized by the absence of periodic shading stripes,
Taking advantage of this excellent optical property, it is used as a retardation plate in a composite polarizing plate and the like by stacking it on a polarizing plate.

本発明の光学用フィルムのレターデージ、ン値は、用途
によって0〜1200nmの範囲から任意のものが選ば
れる。
The retardage and n value of the optical film of the present invention can be arbitrarily selected from the range of 0 to 1200 nm depending on the use.

例えば、STN肢晶表示装置の色補償用の光学フィルム
として用いる場合は概ね80〜1200nrn、好まし
くは200〜11000nの範囲、液晶セルのムラを補
償し表示品位を向上させるために用いる光学フィルムと
しては概ね0〜200nrr+の範囲、視角特性の向上
等に用いられる二軸配向性を有する光学フィルムとして
は概ね500nm以下の範囲、偏光板の保護フィルム等
の光学フィルムとして用いる場合は概ね1001m以下
の範囲でむしろ無配向であるものがよく、さらには、光
学フィルター等の用途に用いる光学フィルムとしては目
的に応じてθ〜1200nmの範囲のなかに適切なもの
が決定される。
For example, when used as an optical film for color compensation in an STN crystal display device, the range is approximately 80 to 1200nrn, preferably 200 to 11000nrn, and as an optical film used to compensate for unevenness in liquid crystal cells and improve display quality. Approximately in the range of 0 to 200nrr+, approximately in the range of 500 nm or less for an optical film with biaxial orientation used for improving viewing angle characteristics, etc., and approximately in the range of 1001 m or less when used as an optical film such as a protective film for a polarizing plate. Rather, it is preferable that the film is non-oriented, and furthermore, as an optical film used for applications such as optical filters, an appropriate film within the range of θ to 1200 nm is determined depending on the purpose.

また本発明にあっては光学フィルムのレターデージ、ン
の値の振れ幅(ΔR)は10%以下、好ましくは7%以
下、さらに好ましくは6X以下である。
Further, in the present invention, the retardage (ΔR) of the optical film is 10% or less, preferably 7% or less, and more preferably 6X or less.

前記した光学的な色ムラのない光学フィルムを得るため
には、熱可塑性高分子フィルムまたはシートの厚み精度
は高くかつ均一なものである必要がある。具体的には、
押出方向に連続的に厚みの変化を測定したとき50m以
下のピッチで、かつ、厚みの振幅が0.5Pm以上、好
ましくはo、aPm以上である正弦波状の厚み変動が存
在しない熱可塑性高分子フィルムまたはシートがそのま
ま、ゼロもしくは200nm以下の低複屈折性の光学フ
ィルムとして用いられる。さらには該フィルム又はシー
トを延伸することにより、直交ニコル下で性の光学フィ
ルムを得ることもできる。
In order to obtain an optical film without optical color unevenness as described above, the thickness accuracy of the thermoplastic polymer film or sheet needs to be high and uniform. in particular,
A thermoplastic polymer in which there is no sinusoidal thickness variation with a pitch of 50 m or less and a thickness amplitude of 0.5 Pm or more, preferably o, aPm or more when thickness changes are measured continuously in the extrusion direction. The film or sheet can be used as is as an optical film with low birefringence of zero or 200 nm or less. Furthermore, by stretching the film or sheet, an optical film having properties under crossed nicols can also be obtained.

第2図及び第8図に本発明の実施例及び比較例に対応す
る押出方向の厚み変化を図示した。第2図から理解され
るように、厚みの振れ巾が比較的に大きくてもそのピッ
チが大きければ延伸後の押出方向に対して直角方向に濃
淡の縞模様が観察されない。他方、第8図のように、比
較的の振幅は小さいがピッチの巾も狭い場合には該フィ
ルム又は延伸後のフィルムの濃淡の縞模様が観察されや
すい。
FIGS. 2 and 8 illustrate thickness changes in the extrusion direction corresponding to the examples and comparative examples of the present invention. As can be understood from FIG. 2, even if the thickness range is relatively large, if the pitch is large, no dark and light striped pattern is observed in the direction perpendicular to the extrusion direction after stretching. On the other hand, as shown in FIG. 8, when the amplitude is relatively small but the width of the pitch is also narrow, a striped pattern of light and shade in the film or the stretched film is likely to be observed.

本発明の光学用フィルムに用いられる熱可塑性樹脂を例
示するならば、ポリカーボネート系樹脂、ポリメチルメ
タクリレート、メタクリル酸メチルを主成分とし他のエ
チレン系コモノマーを共重合させて得られるメタクリル
酸メチル共重合体等のポリ(メタ)アクリレート系樹脂
、ポリスチレン、スチレン共重合体とし他のエチレン系
コモノマーを共重合させて得られるスチレン共重合体等
のポリスチレン系樹脂、ポリアクリロニトリル、アクリ
ロニトリル共重合体等のアクリロニトリル系樹脂、ポリ
エチレンテレフタレート、ポリエステル共重合体等のポ
リエステル系樹脂、ナイロン6、ナイロン66等のポリ
アミド系樹脂、ポリ塩化ビニル、塩化ビニル共重合体等
のポリ塩化ビニル系樹脂、ポリエチレン、ポリプロピレ
ン、エチレン共重合体、プロピレン共重合体等のポリオ
レフィン系樹脂、ポリサルフォン、ポリエーテルサルフ
ォン、フッ素系樹脂等およびこれらの変性物、およびこ
れらの樹脂に高分子液晶または低分子液晶等の透明な低
分子化合物または透明な無機化合物をブレンドしたもの
から選ばれる少なくとも181以上の樹脂材料があげら
れる。
Examples of thermoplastic resins used in the optical film of the present invention include polycarbonate resins, polymethyl methacrylate, and methyl methacrylate copolymer obtained by copolymerizing methyl methacrylate as a main component with other ethylene comonomers. Poly(meth)acrylate resins such as polymers, polystyrene, polystyrene resins such as styrene copolymers obtained by copolymerizing styrene copolymers with other ethylene comonomers, polyacrylonitrile, acrylonitrile such as acrylonitrile copolymers polyester resins such as polyethylene terephthalate and polyester copolymers, polyamide resins such as nylon 6 and nylon 66, polyvinyl chloride resins such as polyvinyl chloride and vinyl chloride copolymers, polyethylene, polypropylene, and ethylene copolymers. Polymers, polyolefin resins such as propylene copolymers, polysulfones, polyethersulfones, fluororesins, etc., and modified products thereof, and transparent low-molecular compounds such as polymer liquid crystals or low-molecular liquid crystals, or There are at least 181 resin materials selected from blends of transparent inorganic compounds.

なかでも、好ましい樹脂としてポリカーボネート系樹脂
、ポリスチレン、スチレン−アクリロニトリル共重合体
、スチレン−メチルメタクリレート共重合体、等のスチ
レン系樹脂、アクリロニトリル系樹脂、ポリエチレンテ
レフタレート、ポリエステル共重合体等のポリエステル
系樹脂、ポリサルフォン、ポリエーテルサルフオンを例
示することができる。
Among these, preferred resins include polycarbonate resins, styrene resins such as polystyrene, styrene-acrylonitrile copolymers, and styrene-methyl methacrylate copolymers, polyester resins such as acrylonitrile resins, polyethylene terephthalate, and polyester copolymers; Examples include polysulfone and polyethersulfone.

前記した熱可塑性樹脂から本発明の光学フィルムを連続
的に製造する方法としては、溶剤キャスト法、溶融押出
加工法、またはカレンダー加工法等があげられるが、な
かでも溶剤キャスト法が好ましいものである。具体的に
はポリカーボネート、スチレン系樹脂、アクリロニトリ
ル系樹脂等の樹脂を原料として溶剤キャスト法により製
造されるフィルムが最も好ましいものである。
Methods for continuously producing the optical film of the present invention from the above-described thermoplastic resin include solvent casting, melt extrusion, and calendering, among which solvent casting is preferred. . Specifically, a film manufactured by a solvent casting method using a resin such as polycarbonate, styrene resin, or acrylonitrile resin as a raw material is most preferable.

溶剤キャスト法が本発明の光学用フィルムを製造するの
に最も適した方法であるのは、厚みの均質性が優れてい
ることの他にゲル状物質やブッ等の欠点が生じにくい点
にもある。溶剤キャスト法においては溶液中のポリマー
濃度を適切に維持することが重要である。適切なポリマ
ー濃度はポリマーの種類やポリマーの分子量、溶剤によ
っても異なるが、10〜85重量%、好ましくは16〜
80重量%であり、分子量的60000のポリカーボネ
ート樹脂の場合、より好ましくは18〜25重量%であ
る。
The reason why the solvent casting method is the most suitable method for manufacturing the optical film of the present invention is that it has excellent thickness uniformity and is also less prone to defects such as gel-like substances and lumps. be. In the solvent casting method, it is important to maintain an appropriate concentration of polymer in the solution. Appropriate polymer concentration varies depending on the type of polymer, molecular weight of the polymer, and solvent, but is 10 to 85% by weight, preferably 16 to 85% by weight.
In the case of a polycarbonate resin having a molecular weight of 60,000, it is more preferably 18 to 25% by weight.

本発明において、正弦波状の同期的な厚みの変動とは、
例示すれば第8図に示されるような厚み変動を言う。第
8図に示されるように厚みの変動が比較的小さくてもそ
のピッチが小さく規則的であると延伸後の押出方向に対
して直角方向に濃淡の縞模様が顕著に見え好ましくない
。これに対し、第2図に示されるように厚みの変動(振
巾)が比較的大きくてもそのピッチが太き(また不規則
であれば縞模様が観察されず好ましい光学用フィルムと
なる。
In the present invention, sinusoidal synchronous thickness variation means:
An example of this is thickness variation as shown in FIG. As shown in FIG. 8, even if the variation in thickness is relatively small, if the pitch is small and regular, a striped pattern of light and shade will be noticeable in the direction perpendicular to the extrusion direction after stretching, which is undesirable. On the other hand, as shown in FIG. 2, even if the thickness variation (width) is relatively large, if the pitch is thick (or irregular), no striped pattern will be observed, resulting in a preferable optical film.

この正弦波状の厚み変動は溶剤キャスト法、押出加工法
、およびカレンダー加工法等で連続的に成形される(原
反)フィルムまたはシートに押出方向に対して直角方向
に現われるギン−・マークあるいは粘着マークと呼ばれ
る外観上の縞模様にほぼ一致するものである。
This sinusoidal thickness variation is caused by gin marks or adhesion that appear perpendicular to the extrusion direction on (original) films or sheets that are continuously formed by solvent casting, extrusion, calendering, etc. It almost matches the external striped pattern called a mark.

なお本発明でいう押出方向とは溶剤キャスト法、押出加
工法及びカレンダー加工法等で成形されるフィルム又は
シートの引取方向(長手方向)のことを指1゜ 上記の方法により製造されたフィルム又はシートは用途
に応じてそのままあるいはさらに延伸処理を施した後本
発明の光学用フィルムとして用いることができる。
In addition, the extrusion direction in the present invention refers to the take-up direction (longitudinal direction) of a film or sheet formed by a solvent casting method, an extrusion processing method, a calendar processing method, etc. The sheet can be used as the optical film of the present invention as it is or after further stretching treatment depending on the purpose.

成形加工して得られ!=フィルム又はシートは成形条件
によってはグイライン等の欠陥が生じたり、微少な配向
が発生することがある。延伸によって複屈折性の光学フ
ィルムを得る場合、このような微少な配向を減らす方法
としては、延伸前に熱処理を行なうと効果がある。
Obtained by molding! =Depending on the molding conditions, defects such as gui lines may occur in the film or sheet, or slight orientation may occur. When obtaining a birefringent optical film by stretching, heat treatment before stretching is effective in reducing such minute orientation.

フィルム又はシートの加熱変形温度以上の温度で熱処理
を実施すると、フィルム又はシートの複屈折率は、実質
的にゼロとな秒、本発明の複屈折ゼロの光学フィルムが
得られる。該光学フィルムは偏光板の保護フィルム、レ
ーザーカード用保護フィルム等、複屈折ゼロを必要とさ
れる用途にて適用される。
When the heat treatment is performed at a temperature equal to or higher than the heat deformation temperature of the film or sheet, the birefringence of the film or sheet becomes substantially zero, and the optical film of the present invention having zero birefringence can be obtained. The optical film is used in applications requiring zero birefringence, such as a protective film for polarizing plates and a protective film for laser cards.

上記のようにして得られた光学フィルムを最適な複屈折
性を有するように延伸を実施することによって、本発明
の複屈折性を有する光学フィルムが得られる。
By stretching the optical film obtained as described above so as to have optimal birefringence, the optical film having birefringence of the present invention can be obtained.

一軸方向に延伸する方法として、テンター法による横一
軸延伸法、ロール間による縦−軸延伸法、ロール間圧縮
延伸性等公知の方法が採用されるが。
As a method for stretching in the uniaxial direction, known methods such as a transverse uniaxial stretching method using a tenter method, a longitudinal-axial stretching method using an inter-roll method, and an inter-roll compression stretch method are employed.

得られたフィルム又はシートの光学的色ムラが少なくな
る延伸法としてテンター法による横一軸延伸法が有用で
ある。
A transverse uniaxial stretching method using a tenter method is useful as a stretching method that reduces optical color unevenness of the obtained film or sheet.

横−軸延伸法において、均一な延伸をおこなうためには
、延伸温度を適切に選択することが大切である。延伸温
度は引張試験の応力−歪曲線で見掛上降伏点がなくなる
温度以上を必要とする。延伸温度が応力−歪曲線で降伏
点が現われる温度域あるいはそれ以下では不均一な延伸
となり、延伸品に厚みムラが生じレターデージ、ンの振
れ幅、変化率は大きくなる。
In the transverse-axial stretching method, it is important to appropriately select the stretching temperature in order to achieve uniform stretching. The stretching temperature needs to be higher than the temperature at which the apparent yield point disappears in the stress-strain curve of the tensile test. If the stretching temperature is in the temperature range where the yield point appears on the stress-strain curve or lower, the stretching will be non-uniform, resulting in uneven thickness of the stretched product, and the amplitude and rate of change in letterage will increase.

延伸倍率はとくに限定されず、又用いる熱可塑性樹脂の
種類によっても異なるがl。2〜6倍程度好ましくは1
.2〜4.0倍程度である。
The stretching ratio is not particularly limited and varies depending on the type of thermoplastic resin used. About 2 to 6 times, preferably 1
.. It is about 2 to 4.0 times.

延伸後の熱処理工程は得られた延伸フィルム又はシート
の寸法安定性の向上、およびレターデージ、ンの均一性
向とのためには、有用な工程となり、熱処理温度は延伸
温度以下から加熱変形温度付近までが好ましい。
The heat treatment step after stretching is a useful step for improving the dimensional stability and uniformity of retardage of the obtained stretched film or sheet, and the heat treatment temperature ranges from below the stretching temperature to around the heat distortion temperature. is preferred.

なお加熱変形温度とはJISK6785 18.6#f
/1 で測定した値をfう。
The heating deformation temperature is JISK6785 18.6#f
The value measured at /1 is f.

二軸方向に延伸する方法としては、−軸方向に前記の公
知の方法で延伸したあと、その直交方向に延伸する逐次
二軸延伸法、あるいは縦7.横同時に延伸する同時二軸
延伸法等あり、本発明の光学フィルムに必要とされる物
性値により、適宜選択される。
The biaxial stretching method includes a sequential biaxial stretching method in which the above-mentioned known method is used to stretch in the -axial direction and then in a direction perpendicular to the above-mentioned method, or a longitudinal 7. There are simultaneous biaxial stretching methods in which the optical film of the present invention is stretched at the same time, and is appropriately selected depending on the physical property values required for the optical film of the present invention.

本発明におけるレターデージ、ンは偏光顕微鏡、分光光
度計等により測定することができ、レターデージ、ンの
平均値(R)は延伸フィルム又はシートから803X8
03のサンプルを採取し、均等に86箇所を選んで測定
した86点の平均値で表わし、レターデージ、ンの振れ
幅(ΔR)は前記した36点の最大値と最小値の差を平
均値で除した値(百分率で表わす)%をいう。
The retardage, n, in the present invention can be measured using a polarizing microscope, a spectrophotometer, etc., and the average value (R) of the retardage, n is measured from a stretched film or sheet of 803×8
03 samples were taken, and 86 points were evenly selected and measured.The retardage amplitude (ΔR) is expressed as the average value of the difference between the maximum and minimum values of the 36 points mentioned above. % (expressed as a percentage).

また直交ニコル下で観察される押出方向と直角に現われ
る濃淡の縞模様は該位相差板(80cs x80aw)
を直交ニコル下にその先軸が約46°になるように配置
して透過光の色ムラを肉眼観察することで観察できる。
In addition, the striped pattern of shading that appears perpendicular to the extrusion direction observed under crossed nicols is due to the retardation plate (80cs x 80aw).
The color unevenness of the transmitted light can be observed with the naked eye by arranging it under orthogonal nicols so that its leading axis is at about 46°.

なお濃淡の横縞模様が著しい場合は該位相差板を押出方
向に連続的に厚みの変化を測定したとき原反フィルムま
たはシートと類似の正弦波状の厚み変動が存在すること
もある。
In addition, if the horizontal striped pattern of light and shade is significant, when the thickness change of the retardation plate is continuously measured in the extrusion direction, there may be a sinusoidal thickness variation similar to that of the original film or sheet.

レターデージ、ンの振れI!l(ΔR)が10%以上も
しくは直交ニコル下で観察される濃淡の縞模様が現われ
ると光学的ムラにより各種光学用途、とくに液晶表示装
置の用途に使用できない。
Letterage, swing I! If l(ΔR) is 10% or more or if a striped pattern of light and shade observed under crossed Nicols appears, it cannot be used for various optical applications, especially for liquid crystal display devices, due to optical unevenness.

本発明になる光学フィルムは、偏光板の片面に貼合して
複合偏光板とすることによっても液晶表示装置等に適用
することができる。
The optical film of the present invention can also be applied to liquid crystal display devices and the like by laminating it on one side of a polarizing plate to form a composite polarizing plate.

本発明の複合偏光板を構成する偏光板については、任意
の偏光板を用いることが出来る。−例を示せば、ポリビ
ニルアルコール、又はその誘導体からなるフィルムを一
軸に延伸配向させ、偏光素子としてよう素や二色性染料
を吸着させたのち、非旋光性の三酢酸セルロース等のセ
ルロース系フィルムをその両側に貼合したものである。
Any polarizing plate can be used as the polarizing plate constituting the composite polarizing plate of the present invention. - For example, a film made of polyvinyl alcohol or a derivative thereof is uniaxially stretched and oriented, iodine or dichroic dye is adsorbed as a polarizing element, and then a non-optically active cellulose film such as cellulose triacetate is formed. is pasted on both sides.

さらには、ポリ塩化ビニルフィルムの脱塩酸、又はポリ
ビニルアルコール系フィルムの脱水処理によ?) 1%
られたポリエン系の偏光板、ポリエチレンテレフタレー
ト等の疎水性樹脂に二色性染料をブレンドし、−軸に配
向させたタイプの偏光板等を用いることが出来る。なか
でも、ポリビニルアルコールフィルムに、よう素や二色
性染料を吸着し、−軸に配向した偏光子に三酢酸セルロ
ース等のセルロース系フィルムを保護フィルムとしてそ
の両側に貼合したものは、偏光特性、色相特性の上から
好ましい。
Furthermore, by dehydrochloric acid treatment of polyvinyl chloride film or dehydration treatment of polyvinyl alcohol film? ) 1%
A dichroic dye is blended with a hydrophobic resin such as polyethylene terephthalate, and a dichroic dye is oriented in the negative axis. In particular, a polyvinyl alcohol film that adsorbs iodine or dichroic dye and is laminated on both sides of a polarizer oriented along the -axis with a cellulose film such as cellulose triacetate as a protective film has polarizing properties. , preferred from the viewpoint of hue characteristics.

本発明の光学用フィルム、及び偏光板を用いて、本発明
の複合偏光板を形成するには、偏光板の光軸と本発明の
光学フィルムの光軸を液晶表示装置等に配置したときに
表示品位が最適になるように組み合わせて粘着剤あるい
は接着剤等を用いて貼り合わせることによって得られる
In order to form the composite polarizing plate of the present invention using the optical film of the present invention and the polarizing plate, when the optical axis of the polarizing plate and the optical axis of the optical film of the present invention are arranged in a liquid crystal display device, etc. It can be obtained by combining and bonding together using a pressure-sensitive adhesive or an adhesive so that the display quality is optimized.

例えば、位相差板1枚を偏光板に貼合する場合には、偏
光板の光学軸と位相差板の光学軸を16〜75度、好ま
しくは80〜60度、さらに好ましくは40〜50度の
範囲で貼り合わせることによって達成される。
For example, when laminating one retardation plate to a polarizing plate, the optical axis of the polarizing plate and the optical axis of the retardation plate are adjusted at 16 to 75 degrees, preferably 80 to 60 degrees, and more preferably 40 to 50 degrees. This can be achieved by bonding within the range of .

さらに直線偏光板の片側の保護フィルムを除去し、偏光
子に直接位相差板を接着剤、あるいは粘着剤等を用いて
貼り合わせた構成のもの、保護フィルムの無い、疎水性
高分子フィルムと二色性染料の組合せからなる直線偏光
板の片側に、位相差板を接着剤、あるいは粘着剤等を用
いて粘り合わせた構成のもの等も本発明の複合偏光板の
範囲に含まれるものである。
In addition, there are those in which the protective film on one side of the linear polarizing plate is removed and the retardation plate is bonded directly to the polarizer using an adhesive or adhesive, and those in which the protective film on one side of the linear polarizing plate is removed, and those with a hydrophobic polymer film without a protective film. Also included in the scope of the composite polarizing plate of the present invention is a linear polarizing plate made of a combination of color dyes, with a retardation plate adhered to one side using an adhesive or a pressure-sensitive adhesive. .

〔発明の効果〕〔Effect of the invention〕

このようにして得られた光学フィルム、あるいは複合偏
光板は、光学的ムラがほとんど観察されず、かつ80℃
および60℃X9Q%RHでの耐久性促進テストに合格
できるものであるから、光学フィルムの配向性およびレ
ターデージ、ン値等の光学特性値に応じて、目的とする
液晶表示装置等の新規用途に適用することが出来る。
The optical film or composite polarizing plate obtained in this way has almost no optical unevenness observed and is heated at 80°C.
Since it can pass the accelerated durability test at 60°C x 9Q%RH, it can be used for new applications such as liquid crystal display devices, depending on the orientation of the optical film and optical property values such as retardage and n value. It can be applied.

液晶表示体に適用する場合の一例を以下に示す。An example of application to a liquid crystal display is shown below.

(1)液晶分子のねじれ角が90度であるTN型液晶表
示装置の上偏光板の上側に、位相差板を配置すれば、偏
光サングラスを通してみたとき、どの方向からみても虹
模様等はなく、従来の楕円偏光板を用いた場合に比べて
表示品質は著しく向上する。
(1) If a retardation plate is placed above the upper polarizer of a TN type liquid crystal display in which the twist angle of the liquid crystal molecules is 90 degrees, there will be no rainbow pattern when viewed through polarized sunglasses from any direction. , the display quality is significantly improved compared to the case of using a conventional elliptically polarizing plate.

(2)液晶分子のねじれ角が90度であるTN型液晶表
示装置の上偏光板の下側に、位相差板を配置すれば、液
晶層の干渉色を大画面にわたって均一に無くすることが
でき、表示品質が著しく向上する。
(2) If a retardation plate is placed below the upper polarizing plate of a TN type liquid crystal display in which the twist angle of the liquid crystal molecules is 90 degrees, interference colors in the liquid crystal layer can be uniformly eliminated over a large screen. This significantly improves display quality.

(3)液晶分子のねじれ角が180〜270度であるS
TN型の液晶表示装置においては、液晶層の複屈折に起
因する着色が生じる。STN型液晶表示装置の上偏光板
又は下偏光板と液晶セルの間に、本発明の位相差板をそ
の光学軸が80〜60度、好ましくは40〜60度の範
囲(こなるように貼り合わせることによって、表示品質
が良好となる。一対の偏光板はその光学軸を直交もしく
は直交に近い状態、又は平行、もしくは平行に近い状態
1こ配置することによって白黒表示が可能となり、表示
品質が向上する。
(3) S in which the twist angle of liquid crystal molecules is 180 to 270 degrees
In a TN type liquid crystal display device, coloration occurs due to birefringence of the liquid crystal layer. The retardation plate of the present invention is pasted between the upper polarizing plate or the lower polarizing plate and the liquid crystal cell of an STN type liquid crystal display so that its optical axis is in the range of 80 to 60 degrees, preferably 40 to 60 degrees. By arranging the pair of polarizing plates so that their optical axes are perpendicular or nearly perpendicular, or parallel or nearly parallel, black-and-white display becomes possible, and the display quality improves. improves.

(4)液晶セルの複屈折を電場印加により制御する方式
(複屈折制御(ECB方式)といい、代表的な表示方式
に、液晶分子の長袖を垂直方向に制御したホメオトロピ
ック(DAP)H晶セルがある)においては、複屈折に
起因する着色が生じる。
(4) A method of controlling the birefringence of a liquid crystal cell by applying an electric field (called birefringence control (ECB method)), and a typical display method is a homeotropic (DAP) H crystal in which the long sleeves of liquid crystal molecules are controlled in the vertical direction. coloring occurs due to birefringence.

この着色を補償するために前記のSTN[晶表示装置と
同様に、複屈折性の光学フィルムを適用し、表示品位を
向上させることが出来る。
In order to compensate for this coloration, a birefringent optical film can be applied, similar to the STN crystal display device described above, to improve display quality.

〔実施例〕〔Example〕

以下、実施例により本発明を説明するが本発明はこれら
に限定されるものではない。なお実施例における位相差
板のレターデージ、ン値の測定は、偏光顧微鏡に備えつ
けたセナルモンコンペンセーター(546nrn)を使
用し、光源にはハロゲンランプを用いた。実施例におけ
る直線偏光板は、例えば特開昭61−2O008号公報
に記載されたような方法によって作成した、ポリビニル
アルコールに二色性色素としてよう素を一軸に吸着配向
させたものである。必要に応じて三酢酸セルロース等の
透明な非旋光性高分子フィルムを保護フィルムとして貼
合したものである。
The present invention will be explained below with reference to Examples, but the present invention is not limited thereto. The retardage and n values of the retardation plates in the examples were measured using a Senarmont compensator (546nrn) attached to a polarization mirror, and a halogen lamp was used as the light source. The linearly polarizing plate in the examples is one in which iodine as a dichroic dye is uniaxially adsorbed and oriented on polyvinyl alcohol, which is prepared by the method described in, for example, Japanese Patent Application Laid-Open No. 61-2O008. If necessary, a transparent non-optically active polymer film such as cellulose triacetate is laminated as a protective film.

実施例1 溶剤キャスト法により厚さl g Q pmで、第2図
に示したように押出方向の連続的な厚み変化に正弦波状
の厚み変動が現われない透明ポリカーボネートフィルム
(加熱変形温度185℃)を作成した。
Example 1 A transparent polycarbonate film made by the solvent casting method to a thickness of l g Q pm and without sinusoidal thickness fluctuations in the continuous thickness change in the extrusion direction as shown in Fig. 2 (heat deformation temperature 185°C) It was created.

実施例2 実施例1で得た光学フィルムを190℃で1゜分間熱処
理をおこないR<10nrr+の光学的にほぼ無配向で
ある光学フィルムを得た。
Example 2 The optical film obtained in Example 1 was heat-treated at 190°C for 1° to obtain an optical film with R<10nrr+ and almost no optical orientation.

実施例8 実施例1で得た光学フィルムからJI83号ダンベル(
5閣幅)のサンプル片を採取し加熱変形温度付近の温度
で引張試験を行ない応力−歪曲線で見掛上降伏点がなく
なる温度が約165℃であることを求めた。(応力−歪
曲線を第1図に示す)延伸は平野金属■製のテンター設
備(2m幅X9m長)を用い横一軸延伸で行なった。
Example 8 JI No. 83 dumbbell (
A sample piece of 5mm width) was taken and subjected to a tensile test at a temperature near the heating deformation temperature, and the temperature at which the apparent yield point disappeared in the stress-strain curve was determined to be approximately 165°C. (The stress-strain curve is shown in FIG. 1) Stretching was carried out by horizontal uniaxial stretching using tenter equipment (2 m wide x 9 m long) manufactured by Hirano Metals.

該フィルムを予熱工程で190℃に加熱し、該フィルム
の複屈折率を0゜4X10  ’とした後、延伸工程で
170℃で横一軸に1.8倍延伸を行ない140℃で熱
処理を行なって厚さ100μmの延伸フィルムを得た。
The film was heated to 190°C in a preheating step to give the film a birefringence of 0°4×10′, and then stretched 1.8 times horizontally uniaxially at 170°C in a stretching step and heat treated at 140°C. A stretched film with a thickness of 100 μm was obtained.

該延伸フィルムはR1が540nrn、ΔRが4.5%
であり、直交ニコル下にその光軸が46°になるように
配置して観察しても押出方向に対して直角方向に濃淡の
縞模様が見えず、光学的にムラの少ない均質な光学フィ
ルムであった。
The stretched film has R1 of 540nrn and ΔR of 4.5%.
Even when observed under crossed Nicols with its optical axis at 46°, no stripes of light and shade are visible in the direction perpendicular to the extrusion direction, making it a homogeneous optical film with little optical unevenness. Met.

この光学フィルムをアクリル系粘着剤を用いて偏光板の
片一方の面に光学軸が約46度になるように貼りつけて
、本発明の複合偏光板を得た。
This optical film was attached to one surface of a polarizing plate using an acrylic adhesive so that the optical axis was set at about 46 degrees to obtain a composite polarizing plate of the present invention.

さらにこの光学フィルムを液晶分子のねじれ角が200
度である液晶表示装置の液晶セルと上偏光板の間に粘合
して使用したところ、W景色が白、表示部が黒のほぼ白
黒表示が可能となり、虹模様等色ムラは無く、良好な表
示品質の液晶表示装置が得られた。
Furthermore, this optical film has a twist angle of 200
When used in a liquid crystal display device with adhesive between the liquid crystal cell and the upper polarizing plate, it was possible to display almost black and white with the W scenery being white and the display area being black, and there was no uneven color such as a rainbow pattern, and the display was good. A quality liquid crystal display device was obtained.

実施例4 実施例1の光学フィルム、テンター設備を用い横一軸延
伸を行なった。該フィルムを予熱工程で195℃に加熱
し、該フィルムの複屈折率を0624×10 とした後
、延伸工程で175℃で横一軸に1.5倍延伸を行ない
、140℃で熱処理を行なって厚さ120μmの延伸フ
ィルムを得た。
Example 4 The optical film of Example 1 was subjected to transverse uniaxial stretching using tenter equipment. The film was heated to 195°C in a preheating step to make the film's birefringence index 0624×10 2 , and then stretched 1.5 times horizontally at 175°C in a stretching step, followed by heat treatment at 140°C. A stretched film with a thickness of 120 μm was obtained.

該延伸フィルムはRが280 nm、八Rが8.5%で
あり、直交ニコル下にその光軸が45°になるように配
置して観察しても押出方向に対して直角方向に濃淡の縞
模様が見えず、光学的にムラの少ない均質な光学フィル
ムであった。
The stretched film has an R of 280 nm and an 8R of 8.5%, and even when observed under crossed nicols with its optical axis at 45°, there is no difference in density in the direction perpendicular to the extrusion direction. No stripes were visible, and the film was optically homogeneous with little unevenness.

この光学フィルムをアクリル系粘着剤を用いて偏光板の
片一方の面に光軸が45度になるように貼りつけて、本
発明の複合偏光板を得た。
This optical film was attached to one surface of a polarizing plate using an acrylic adhesive so that the optical axis was set at 45 degrees to obtain a composite polarizing plate of the present invention.

さらにこの光学フィルムを液晶分子のねじれ角が200
度である液晶表示装置の液晶セルと上偏光板の間に粘着
剤を介して貼合して使用したところ、背景色が白、表示
部が黒のほぼ白黒表示が可能となり、虹模様等色ムラは
無く、良好な表示品質の液晶表示装置が得られた。
Furthermore, this optical film has a twist angle of 200
When used by bonding the liquid crystal cell and the upper polarizing plate of a liquid crystal display device using an adhesive via an adhesive, it was possible to display a nearly black and white display with a white background and a black display area, and the rainbow-like color unevenness was eliminated. A liquid crystal display device with good display quality was obtained.

実施例6 実施例1の光学フィルム、テンター設備を用い横一軸延
伸を行なった。該フィルムを予熱工程で198℃に加熱
し、該フィルムの複屈折率を0.85×10  とした
後、延伸工程で168℃で横一軸に2.2倍延伸を行な
い、140℃で熱処理を行なって厚さ82Pmの延伸フ
ィルムを得た。該延伸フィルムはRが880nm、八R
が6.6Xであり、直交ニコル下にその光軸が46°に
なるように配置して観察しても押出方向に対して直角方
向に濃淡の縞模様が見えず、光学的にムラの少ない均質
な光学フィルムであった。
Example 6 The optical film of Example 1 was subjected to transverse uniaxial stretching using tenter equipment. The film was heated to 198°C in a preheating step to make the film's birefringence index 0.85×10 2 , and then stretched 2.2 times horizontally uniaxially at 168°C in a stretching step, followed by heat treatment at 140°C. A stretched film having a thickness of 82 Pm was obtained. The stretched film has an R of 880 nm and an R of 880 nm.
is 6.6X, and even when observed under crossed nicols with its optical axis at 46°, no stripes of light and shade can be seen in the direction perpendicular to the extrusion direction, and there is little optical unevenness. It was a homogeneous optical film.

該位相差板を液晶分子のねじれ角が200度である液晶
表示装置の液晶セルと上偏光板の間に粘着剤を介して貼
合して使用したところ、背景色が白、表示部が黒のほぼ
白黒表示が可能となり、虹模様等色ムラは無く、良好な
表示品質の液晶表示装置が得られた。
When the retardation plate was attached via an adhesive between the liquid crystal cell and the upper polarizing plate of a liquid crystal display device in which the twist angle of the liquid crystal molecules is 200 degrees, the background color was white and the display area was almost black. A liquid crystal display device with good display quality was obtained, with black-and-white display possible and no rainbow-like color unevenness.

比較例1 溶融押出法で、厚さ180μmで、第8図に示したよう
に押出方向の連続的な厚み変化に正弦波状の厚み変動(
ピッチ28麿、振幅1.1)am、ギヤ状マークと総称
される縞模様)が存在する透明ポリカーボネートフィル
ム(加熱変形温度185℃)を作成した。該フィルムは
、Rが3Qnm。
Comparative Example 1 Melt extrusion method was used to obtain a thickness of 180 μm, and as shown in FIG. 8, there was a sinusoidal thickness variation (
A transparent polycarbonate film (heat deformation temperature: 185° C.) having a pitch of 28 mm, an amplitude of 1.1 am, and a striped pattern (generally referred to as a gear-like mark) was prepared. The film has an R of 3Q nm.

ΔRが21.ONの光学フィルムであった。ΔR is 21. It was an ON optical film.

比較例2 比較例1で得た光学フィルムを190℃で10分間熱処
理をおこない、R<10nmの光学的にほぼ無配向であ
る光学フィルムを得た。ただし該フィルムは、ギア状マ
ークの存在するものであった。
Comparative Example 2 The optical film obtained in Comparative Example 1 was heat-treated at 190° C. for 10 minutes to obtain an optical film with R<10 nm and almost no optical orientation. However, the film had gear-like marks.

比較例8 比較例1で得た光学フィルムを用いる以外は実施例8と
全く同様に実施し、厚さ100−mの延伸フィルムを得
た。該延伸フィルムは、Rが586Hm 、ΔRは11
.4%、で直交ニコル下にその光軸が46°になるよう
に配置して色ムラを観察したところ押出方向に対して直
角方向に濃淡の縞模様が観察され、実施例8と比較して
均質性に劣る光学フィルムしか得られなかった。
Comparative Example 8 The same procedure as in Example 8 was carried out except that the optical film obtained in Comparative Example 1 was used to obtain a stretched film with a thickness of 100 m. The stretched film has an R of 586 Hm and a ΔR of 11
.. When the color unevenness was observed under crossed nicols at 4%, with the optical axis at 46°, a striped pattern of light and shade was observed in the direction perpendicular to the extrusion direction, and compared with Example 8. Only an optical film with poor homogeneity was obtained.

さらにξの光学フィルムを実施例8と同様に液晶表示装
置に適用したとξろ背景色が白、表示部が黒のほぼ白黒
表示が可能となったが、濃淡の縞模様が明瞭に見え、良
好な表示品質の液晶表示装置が得られなかった。
Furthermore, when the optical film of ξ was applied to a liquid crystal display device in the same manner as in Example 8, it became possible to display almost black and white with a white background and a black display area, but a striped pattern of light and shade was clearly visible. A liquid crystal display device with good display quality could not be obtained.

比較例4 比較例1の光学フィルムを用いる以外は実施例4と全く
同様に延伸加工を行ない厚さ120μmの延伸フィルム
を得た。該延伸フィルムは、Rが280 nm、ΔRが
10%であったが直交ニコル下にその光軸が46°にな
るように配置して色ムラを観察したところ押出方向に対
して直角方向に濃淡の横縞模様が観察され、実施例4と
比較して均質性の劣る光学フィルムしか得られなかった
Comparative Example 4 Stretching was carried out in exactly the same manner as in Example 4 except that the optical film of Comparative Example 1 was used to obtain a stretched film with a thickness of 120 μm. The stretched film had an R of 280 nm and a ΔR of 10%, and when it was placed under crossed nicols with its optical axis at 46° and observed for color unevenness, it was found that there was a difference in shading in the direction perpendicular to the extrusion direction. A horizontal striped pattern was observed, and an optical film with inferior homogeneity compared to Example 4 was obtained.

さらにこの光学フィルムを実施例4と同様に液晶表示装
置に適用したところ、背景色が白、表示部が黒のほぼ白
黒表示が可能となったが濃淡の縞模様が明瞭に見え良好
な表示品質の液晶表示装置が得られなかった。
Furthermore, when this optical film was applied to a liquid crystal display device in the same manner as in Example 4, almost monochrome display with a white background and a black display area was possible, but striped patterns of light and shade were clearly visible and good display quality was achieved. No liquid crystal display device could be obtained.

実施例6 溶融押出法により、厚さ400μmで第4図に示すよう
に押出方向の連続的な厚み変化に正弦波状の厚み変動が
現われないポリエステル共重合体フィルム(PET  
G6768、イーストマンケミカル社、加熱変形温度8
1℃)を作成した。該フィルムはRが70nm%ΔRが
9.2%で光学的に物質な光学フィルムを得た。
Example 6 A polyester copolymer film (PET) with a thickness of 400 μm and no sinusoidal thickness variation in the continuous thickness change in the extrusion direction as shown in FIG. 4 was produced by the melt extrusion method.
G6768, Eastman Chemical Company, heat distortion temperature 8
1°C) was prepared. The film had an R of 70 nm% and a ΔR of 9.2%, resulting in an optically material optical film.

実施例7 実施例8と同様の方法で、見掛上降伏点がなくなる温度
が約106℃であることを求めた。該フィルムを185
℃の温度であらかじめ予熱したあと、122℃の温度で
テンター法による横一軸延伸をおこない厚さ約240 
Pmの延伸フィルムを得た。該延伸フィルムはRが48
5 nm%ΔRが5.8にで、直交ニコル下にその光軸
が45°になるように配置して色ムラを観察しても押出
方向に対して直角方向に濃淡の縞模様が見えず、光学的
にムラの少ない均質な光学フィルムであった。
Example 7 Using the same method as in Example 8, it was determined that the temperature at which the apparent yield point disappeared was about 106°C. The film was heated to 185
After preheating at a temperature of 122°C, transverse uniaxial stretching was performed using a tenter method at a temperature of 122°C to a thickness of approximately 240°C.
A stretched film of Pm was obtained. The stretched film has an R of 48
5 nm% ΔR is 5.8, and even when observing color unevenness by arranging it under crossed nicols with its optical axis at 45°, no striped pattern of light and shade can be seen in the direction perpendicular to the extrusion direction. It was a homogeneous optical film with little optical unevenness.

この光学フィルムをアクリル系粘着剤を用いて偏光板の
片一方の面に光学軸が約46度になるように貼りつけて
本発明の複合偏光板を得た。さらにこの位相差板を実施
例1と同様に液晶表示装置に適用したところ、はぼ白黒
表示の良好な品質の液晶表示装置が得られた。
This optical film was attached to one surface of a polarizing plate using an acrylic adhesive so that the optical axis was set at about 46 degrees to obtain a composite polarizing plate of the present invention. Furthermore, when this retardation plate was applied to a liquid crystal display device in the same manner as in Example 1, a liquid crystal display device of good quality with almost monochrome display was obtained.

比較例6 溶融押出法により、厚さ400μmで第6図に示したよ
うに、押出方向の連続的な厚みに化に、正弦波状の厚み
変動(ピッチ80rttxis振幅2.5 pm 。
Comparative Example 6 By melt extrusion, the thickness was 400 μm, and as shown in FIG. 6, the thickness was made continuous in the extrusion direction, with a sinusoidal thickness variation (pitch 80 rttxis amplitude 2.5 pm).

ギヤ状マークと総称される横縞模様)が存在するポリエ
ステル共重合体フィルム(P E T G6768、イ
ーストマンケミカル社、加熱変形温度81℃)を作成し
た。該フィルムはRが65nm%ΔRが20.4Nの光
学フィルムであった。
A polyester copolymer film (PET G6768, Eastman Chemical Co., heat deformation temperature 81°C) in which a horizontal striped pattern (generally referred to as a gear mark) was present was prepared. The film was an optical film with R of 65 nm% and ΔR of 20.4N.

比較例6 比較例5のフィルムを用いる以外は、実施例7と全く同
様に実施し、延伸フィルムを得た。該延伸フィルムは、
Rが525nm、ΔRが10.8Xで、直交ニコル下に
その先軸が45°になるように配置して色ムラを観察し
たところ、押出方向に対して直角方向に濃淡の縞模様が
観察され、実施例7と比較して、均質性の劣る光学フィ
ルムしか得られなかった。
Comparative Example 6 A stretched film was obtained in the same manner as in Example 7 except that the film of Comparative Example 5 was used. The stretched film is
When R was 525 nm and ΔR was 10.8X, and color unevenness was observed by placing it under crossed Nicols so that its tip axis was at 45°, a striped pattern of light and shade was observed in the direction perpendicular to the extrusion direction. , compared to Example 7, only an optical film with inferior homogeneity was obtained.

さらにこの光学フィルムを実施例8と同様に液晶表示装
置に適用したところ、はぼ白黒表示が可能となったが、
濃淡の縞模様が明瞭に見え、良好な表示品質の液晶表示
装置が得られなかった。
Furthermore, when this optical film was applied to a liquid crystal display device in the same manner as in Example 8, a nearly black and white display was possible.
A striped pattern of light and shade was clearly visible, and a liquid crystal display device with good display quality could not be obtained.

実施例8 溶融押出法により、厚さ200 urnで第6図に示す
ように押出方向の連続的な厚み変化に正弦波状の厚み変
動が存在しないポリサルホンフィルム(加熱変形温度1
74℃)を作成した。該フィルムはR=55nrn、Δ
Rが7゜6%の光学フィルムであった。
Example 8 A polysulfone film (heat deformation temperature 1
74°C). The film has R=55nrn, Δ
The optical film had an R of 7°6%.

実施例9 実施例8と同様の方法で見掛は上降伏点がなくなる温度
が約200℃であることを求めた。該フィルムを280
℃の温度であらかじめ予熱したあと、210℃の温度で
テンター法による横一軸延伸を実施し、厚さ約IQ、5
smの延伸フィルムを得た。該延伸フィルムはRが78
0nm%△Rが7゜5%で、直交ニコル下にその先軸が
45°になるように配置して色ムラを観察しても押出方
向に対して直角方向に濃淡の縞模様が見えない光学的に
ムラの少ない均質な光学フィルムであ−>た。
Example 9 Using the same method as in Example 8, it was determined that the temperature at which the upper yield point disappeared was about 200°C. The film was heated to 280
After preheating at a temperature of 210°C, transverse uniaxial stretching was carried out by a tenter method at a temperature of 210°C to a thickness of about IQ, 5.
A stretched film of sm was obtained. The stretched film has an R of 78
0nm%△R is 7°5%, and even if you place it under orthogonal nicols so that its tip axis is at 45° and observe color unevenness, you will not see a striped pattern of light and shade in the direction perpendicular to the extrusion direction. It was a homogeneous optical film with little optical unevenness.

この光学フィルムをアクリル系粘着剤を用いて偏光板の
片一方の面に光軸が約45度になるように貼りつけて本
発明の複合偏光板を得た。さらにこの光学フィルムを、
実施例5と同様に液晶表示装置に適用したところ、はぼ
白黒表示の良好な品質の液晶表示装置が得られた。
This optical film was attached to one surface of a polarizing plate using an acrylic adhesive so that the optical axis was set at about 45 degrees to obtain a composite polarizing plate of the present invention. Furthermore, this optical film
When applied to a liquid crystal display device in the same manner as in Example 5, a liquid crystal display device with almost black and white display and good quality was obtained.

比較例7 溶融押出法により、厚さ200 #mで、第7図に示す
ように、押出方向の連続的な厚み変化に、正弦波状の厚
み変動(ビフテ26關、振幅2prn。
Comparative Example 7 A thickness of 200 #m was obtained by the melt extrusion method, and as shown in FIG. 7, there was a continuous thickness change in the extrusion direction with a sinusoidal thickness variation (26 mm, amplitude 2 prn).

ギヤ状マークと総称される横縞模様)が存在するポリサ
ルホンフィルム(加熱変形温度、174℃)を作成した
。該フィルムは、R−59nm、ΔRが19゜OXの光
学フィルムであった。
A polysulfone film (heating deformation temperature: 174° C.) having a horizontal striped pattern (generally referred to as a gear-like mark) was prepared. The film was an optical film with R-59 nm and ΔR of 19°OX.

比較例8 比較例7のフィルムを用いる以外は、外ケ実施例9と全
く同様に実施し、延伸フィルムを得た。
Comparative Example 8 A stretched film was obtained in the same manner as in Example 9 except that the film of Comparative Example 7 was used.

該延伸フィルムはRが790nm、ΔRが10.0%で
、直交ニコル下にその光軸が45°になるように配置し
て色ムラを観察したところ押出方向に対して直角方向に
濃淡のli4模様が観察され、実施例9と比較して、均
質性の劣る光学フィルムしか得られなかった。
The stretched film has an R of 790 nm and a ΔR of 10.0%, and was placed under crossed nicols with its optical axis at 45° to observe color unevenness. A pattern was observed, and compared to Example 9, an optical film with inferior homogeneity was obtained.

さらにこの光学フィルムを実施例5と同様に液晶表示装
置に適用したところ、はぼ白黒表示が可能となったが、
濃淡の縞模様が明瞭に見え、良好な表示品質の液晶表示
装置が得られなかった。
Furthermore, when this optical film was applied to a liquid crystal display device in the same manner as in Example 5, it became possible to display almost black and white, but
A striped pattern of light and shade was clearly visible, and a liquid crystal display device with good display quality could not be obtained.

実施例10 実施例1で得た光学フィルムを、175℃で1゜5倍の
縦横同時の二軸延伸をおこない二軸延伸フィルムを得た
Example 10 The optical film obtained in Example 1 was subjected to simultaneous biaxial stretching of 1.5 times in length and width at 175° C. to obtain a biaxially stretched film.

該延伸フィルムは、面内はぼ無配向であり、厚み方向に
屈折率異方性を有する光学フィルムであった。該フィル
ムは、直交ニコル下に配置して観察しても、濃淡の縞模
様が見えず、光学的にムラの少ないものであった。
The stretched film was an optical film that had virtually no orientation in the plane and had refractive index anisotropy in the thickness direction. Even when the film was placed under crossed nicols and observed, no striped pattern of light and shade was visible and there was little optical unevenness.

比較例9 比較例1で得た光学フィルムを実施例10と同様に延伸
をおこない二軸延伸フィルムを得た。該延伸フィルムは
面内はぼ無配向であり厚み方向に屈折率異方性を有する
光学フィルムであったが、実施例10と比較して直交ニ
コル下における濃淡の縞模様が明瞭に見え、光学的にム
ラの多いものであった。
Comparative Example 9 The optical film obtained in Comparative Example 1 was stretched in the same manner as in Example 10 to obtain a biaxially stretched film. The stretched film was an optical film that had virtually no orientation in the plane and had refractive index anisotropy in the thickness direction, but compared to Example 10, the striped pattern of shading under crossed Nicols was clearly visible, and the optical There was a lot of unevenness.

実施例11 ポリスチレンとアセトン/シクロヘキサン混合溶媒を用
いてポリマー濃度20%のドープ液を調製した。このド
ープ液を用いて、溶剤キャスト法により厚さ800μm
で第8図に示したように、機械方向の連続的な厚み変化
をみたとき、正弦波状の周期的な厚み変動があられれな
い透明ポリスチレンフィルム(加熱変形温度98℃)を
作成した。
Example 11 A dope solution having a polymer concentration of 20% was prepared using polystyrene and a mixed solvent of acetone/cyclohexane. Using this dope solution, a thickness of 800 μm was cast using the solvent casting method.
As shown in FIG. 8, a transparent polystyrene film (heat deformation temperature: 98° C.) was created that does not exhibit a sinusoidal periodic thickness change when looking at continuous thickness changes in the machine direction.

このフィルムはR値が35nm、ΔR値が8.8%lf
f1メヂI、Nt#であり、光学的に均質な光学用フィ
ルムであった。
This film has an R value of 35 nm and a ΔR value of 8.8%lf
f1mediI, Nt#, and was an optically homogeneous optical film.

実施例12 実施例11で得られたフィルムを140’Cの温度で予
熱したあと、110’Cの温度でテンター法による横一
軸延伸をおこない、厚さ約150.mの延伸フィルムを
得た。該延伸フィルムはR値が515nm、ΔR値が6
.8Nlf1g−iffオに〆ヂで、直交ニコル下にそ
の先軸が、46度になるように配置して色ムラを観察し
ても濃淡の縞模様が見えず、光学的にムラの少ない均質
な光学フィルムであった。
Example 12 The film obtained in Example 11 was preheated at a temperature of 140'C, and then transversely uniaxially stretched by a tenter method at a temperature of 110'C to a thickness of about 150. A stretched film of m was obtained. The stretched film has an R value of 515 nm and a ΔR value of 6.
.. 8Nlf1g-iff is placed under the orthogonal nicol so that its tip axis is at 46 degrees, and when observing color unevenness, no striped pattern of light and shade is visible, and it is optically homogeneous with little unevenness. It was an optical film.

この光学フィルムをアクリル系粘着剤を用いて、偏光板
の片一方の面に光軸が45度になるように貼り′つけて
、本発明の複合偏光板を得た。さらにこの光学フィルム
を実施例8と同様に液晶表示装置に適用したところ、は
ぼ白黒表示の良好な表示品質の液晶表示装置が得られた
This optical film was attached to one surface of a polarizing plate using an acrylic adhesive so that the optical axis was at 45 degrees, to obtain a composite polarizing plate of the present invention. Furthermore, when this optical film was applied to a liquid crystal display device in the same manner as in Example 8, a liquid crystal display device with almost black and white display and good display quality was obtained.

実施例18 実施例11で得られフィルムを110℃で2倍の縦横同
時の二軸延伸をおこない二軸延伸フィルムを得た。
Example 18 The film obtained in Example 11 was simultaneously biaxially stretched twice in the longitudinal and transverse directions at 110° C. to obtain a biaxially stretched film.

該延伸フィルムは面内はぼ無配向であり、厚み方向に屈
折率異方性を有する光学フィルムであった。該フィルム
は直交ニコル下に配置して観察しても、濃淡の縞模様が
見えず、光学的にムラの少ないものであった。
The stretched film was an optical film that had virtually no orientation in the plane and had refractive index anisotropy in the thickness direction. Even when the film was placed under crossed nicols and observed, no shading stripes were visible and there was little optical unevenness.

実施例14 スチレン/アクリロニトリル共重合体(組成比78/2
7)とアセトン/メチルエチルケトン混合溶媒を用いて
ポリマー濃度18%のドープ液を作成した。
Example 14 Styrene/acrylonitrile copolymer (composition ratio 78/2
7) and an acetone/methyl ethyl ketone mixed solvent to prepare a dope solution with a polymer concentration of 18%.

このドープ液を用いて溶剤キャスト法により厚さaoo
、pmで第9図に示したように、機械方向の連続的な厚
み変化をみたとき、正弦波状の厚み変動があられれない
透明ポリスチレンフィルム(加熱変形温度102℃)を
作成した。
Using this dope solution, the thickness is aoo by solvent casting method.
, pm, as shown in FIG. 9, a transparent polystyrene film (heat deformation temperature 102° C.) was prepared that did not exhibit sinusoidal thickness variations when looking at continuous thickness changes in the machine direction.

このフィルはR値が49nm、ΔR値が6.6%1g!
メelf%ノーであり、光学的に均質なフィルムであっ
た。
This fill has an R value of 49 nm and a ΔR value of 6.6% 1g!
The film was optically homogeneous.

実施例15 実施例14で得られたフィルム160℃の温度で予熱し
たあと、120℃の温度でテンター法による横−軸延伸
をおこない、厚さ約1451bmの延伸フィルムを得た
。該延伸フィルムはR値が560nm、ΔR値が5.9
 x/l:!flllrHt;/4で直交ニコル下にそ
の先軸が45度になるように配置して色ムラを観察して
も濃淡の縞模様が見えず、光学的にムラの少ない物質な
光学フィルムをアクリル系粘着剤を用いて、偏光板の片
一方の面に光軸が45度になるように貼りつけて本発明
の複合偏光板を得た。さらにこの光学フィルムを実施例
8を同様に液晶表示装置に適用したところ、はぼ白黒表
示の良好な表示品質の液晶表示装置が得られた。
Example 15 The film obtained in Example 14 was preheated at a temperature of 160°C, and then transversely and axially stretched by a tenter method at a temperature of 120°C to obtain a stretched film with a thickness of about 1451 bm. The stretched film has an R value of 560 nm and a ΔR value of 5.9.
x/l:! Even when observing color unevenness by placing it under orthogonal nicols with the tip axis at 45 degrees at flllrHt;/4, no stripes of light and shade can be seen. A composite polarizing plate of the present invention was obtained by attaching the polarizing plate to one side of the polarizing plate using an adhesive so that the optical axis was set at 45 degrees. Furthermore, when this optical film was applied to a liquid crystal display device in the same manner as in Example 8, a liquid crystal display device with almost black and white display and good display quality was obtained.

実施例16 実施例14で得られたフィルムを120℃の温度で、1
.7倍の縦横同時の二輪延伸をおこない、二軸延伸フィ
ルムを得た。
Example 16 The film obtained in Example 14 was heated to 120°C for 1
.. A biaxially stretched film was obtained by simultaneous two-wheel stretching of 7 times in the longitudinal and transverse directions.

該延伸フィルムは、面内はぼ無配向であり、厚み方向に
屈折率異方性を有する光学フィルムであった。該フィル
ムは直交ニコル下に配置して観察しても濃淡の縞模様が
見えず光学的にムラの少ないものであった。
The stretched film was an optical film that had virtually no orientation in the plane and had refractive index anisotropy in the thickness direction. Even when the film was placed under crossed nicols and observed, no striped pattern of light and shade was visible and there was little optical unevenness.

比較例10 実施例14と同じ樹脂を用いて、溶融押出法により厚さ
800%mで第10図に示したように機械方向の連続的
な厚み変化をみたとき、正弦波状の周期的な厚み変動(
ピッチ258%厚み変動1.6#m、ギア状マークと総
称される縞模様)が存在するフィルムを作成した。該フ
ィルムはR値が55nm、 へR値がx4.sgfが9
1815の光学フィルムであった。
Comparative Example 10 Using the same resin as in Example 14, the thickness was 800% m by melt extrusion, and when looking at the continuous thickness change in the machine direction as shown in Figure 10, a sinusoidal periodic thickness was observed. Fluctuation(
A film was prepared with a pitch of 258%, a thickness variation of 1.6 #m, and a striped pattern (generally referred to as gear-like marks). The film has an R value of 55 nm and an R value of x4. sgf is 9
1815 optical film.

比較例11 比較例9のフィルムを用いる以外は、実施例15と全く
同様に実施し、延伸フィルムを得た。該延伸フィルムは
、R値が550nm、へR値が11.8%Iqがtzi
gi嬢で、直交ニコル下にその光軸が45度になるよう
に配置して色ムラを観察したところ濃淡の縞模様等が観
察され実施例15と比較して均質性の劣る光学フィルム
しか得られなかった。
Comparative Example 11 A stretched film was obtained in the same manner as in Example 15 except that the film of Comparative Example 9 was used. The stretched film has an R value of 550 nm, an R value of 11.8%, an Iq of tzi
When observing the color unevenness by placing the optical axis at 45 degrees under crossed nicols, a striped pattern of light and shade was observed, and compared to Example 15, only an optical film with inferior homogeneity was obtained. I couldn't.

さらにこの光学フィルムを実施例15と同様に液晶表示
装置に適用したところ、はぼ白黒表示が可能となったが
、濃淡の縞模様が明瞭に見え、良好な表示品質の液晶表
示装置が得られなかった。
Furthermore, when this optical film was applied to a liquid crystal display device in the same manner as in Example 15, it was possible to display a fairly black and white display, but the striped pattern of shading was clearly visible and a liquid crystal display device with good display quality was obtained. There wasn't.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、実施例1〜5.10および比較例】。 〜4.9.11で用いたポリカーボネートフィルムの応
力〜歪曲線を示す。 第2図は実施例1〜2、第8図は比較例!〜2、第4図
は実施例6、第6図は比較例5、第6図は実施例8、第
7図は比較例7、第8図は実施例11、第9図は実施例
14、第10図は比較例10の各光学フィルムについて
押出方向に連続的に厚み測定を行なった厚み変動曲線を
示す。 第2図 第1図 第3図 第 図 第 図 →押出方向 第 図 第 図
FIG. 1 shows Examples 1 to 5.10 and Comparative Examples]. - Shows the stress-strain curve of the polycarbonate film used in 4.9.11. Figure 2 shows Examples 1 and 2, and Figure 8 shows a comparative example! ~2, Figure 4 shows Example 6, Figure 6 shows Comparative Example 5, Figure 6 shows Example 8, Figure 7 shows Comparative Example 7, Figure 8 shows Example 11, and Figure 9 shows Example 14. 10 shows thickness variation curves obtained by continuously measuring the thickness of each optical film of Comparative Example 10 in the extrusion direction. Figure 2 Figure 1 Figure 3 Figure → Extrusion direction Figure Figure

Claims (4)

【特許請求の範囲】[Claims] (1)押出方向に連続的に厚みの変化を測定したとき、
50mm以下のピッチで、かつ、厚みの振幅が0.6μ
m以上である正弦波状の厚み変動の存在しない熱可塑性
高分子フィルム又はシート、および該フィルム又はシー
トを押出方向に対して直角方向に一軸に、又は二軸に延
伸して形成されるフィルム又はシートから成り、そのレ
ターデーションの値が1200nm以下であり、かつ、
レターデーションのフレ幅が10%以下である光学用フ
ィルム。
(1) When measuring the change in thickness continuously in the extrusion direction,
The pitch is 50mm or less, and the thickness amplitude is 0.6μ
A thermoplastic polymer film or sheet with no sinusoidal thickness variation of m or more, and a film or sheet formed by stretching the film or sheet uniaxially or biaxially in a direction perpendicular to the extrusion direction. , whose retardation value is 1200 nm or less, and
An optical film with a retardation deflection width of 10% or less.
(2)前記熱可塑性高分子フィルム又はシートが溶剤キ
ャスト法で連続的に製造された熱可塑性高分子フィルム
又はシートである請求項1記載の光学用フィルム。
(2) The optical film according to claim 1, wherein the thermoplastic polymer film or sheet is a thermoplastic polymer film or sheet continuously manufactured by a solvent casting method.
(3)請求項1又は2記載の光学用フィルムから成る位
相差板。
(3) A retardation plate comprising the optical film according to claim 1 or 2.
(4)請求項1又は2記載の光学用フィルムを偏光板に
積層してなる複合偏光板。
(4) A composite polarizing plate obtained by laminating the optical film according to claim 1 or 2 on a polarizing plate.
JP33932989A 1988-12-27 1989-12-26 Optical film Expired - Lifetime JP3184975B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33932989A JP3184975B2 (en) 1988-12-27 1989-12-26 Optical film

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP33107788 1988-12-27
JP63-331077 1988-12-27
JP33932989A JP3184975B2 (en) 1988-12-27 1989-12-26 Optical film

Publications (2)

Publication Number Publication Date
JPH02256003A true JPH02256003A (en) 1990-10-16
JP3184975B2 JP3184975B2 (en) 2001-07-09

Family

ID=26573731

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33932989A Expired - Lifetime JP3184975B2 (en) 1988-12-27 1989-12-26 Optical film

Country Status (1)

Country Link
JP (1) JP3184975B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04365002A (en) * 1991-06-12 1992-12-17 Sekisui Chem Co Ltd Phase difference compensating plate
JPH05107413A (en) * 1991-10-16 1993-04-30 Sekisui Chem Co Ltd Phase difference compensating plate and manufacture thereof
WO1998022839A1 (en) * 1996-11-22 1998-05-28 Sekisui Chemical Co., Ltd. Phase difference film and its manufacturing method
JPH11227026A (en) * 1997-11-07 1999-08-24 Rohm & Haas Co Method and apparatus for producing plastic sheet
JPH11254521A (en) * 1998-03-13 1999-09-21 Teijin Ltd Manufacture of film
WO2007108562A1 (en) * 2006-03-23 2007-09-27 Sumitomo Chemical Company, Limited Retardation film and method for production thereof
JP2007286615A (en) * 2006-03-23 2007-11-01 Sumitomo Chemical Co Ltd Retardation film and method for production thereof
JP2008115314A (en) * 2006-11-07 2008-05-22 Mitsubishi Gas Chem Co Inc Oriented film
JP2010139735A (en) * 2008-12-11 2010-06-24 Sumitomo Chemical Co Ltd Method of manufacturing retardation film
JP2010139756A (en) * 2008-12-11 2010-06-24 Sumitomo Chemical Co Ltd Method of manufacturing retardation film
JP2010139736A (en) * 2008-12-11 2010-06-24 Sumitomo Chemical Co Ltd Method of manufacturing retardation film
JP2011123288A (en) * 2009-12-10 2011-06-23 Sumitomo Chemical Co Ltd Method for manufacturing retardation film

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04365002A (en) * 1991-06-12 1992-12-17 Sekisui Chem Co Ltd Phase difference compensating plate
JPH05107413A (en) * 1991-10-16 1993-04-30 Sekisui Chem Co Ltd Phase difference compensating plate and manufacture thereof
WO1998022839A1 (en) * 1996-11-22 1998-05-28 Sekisui Chemical Co., Ltd. Phase difference film and its manufacturing method
JPH11227026A (en) * 1997-11-07 1999-08-24 Rohm & Haas Co Method and apparatus for producing plastic sheet
JP4519211B2 (en) * 1997-11-07 2010-08-04 ローム アンド ハース カンパニー Plastic sheet manufacturing method and apparatus
JPH11254521A (en) * 1998-03-13 1999-09-21 Teijin Ltd Manufacture of film
JP2007286615A (en) * 2006-03-23 2007-11-01 Sumitomo Chemical Co Ltd Retardation film and method for production thereof
US7744969B2 (en) 2006-03-23 2010-06-29 Sumitomo Chemical Company, Limited Retardation film and method for production thereof
WO2007108562A1 (en) * 2006-03-23 2007-09-27 Sumitomo Chemical Company, Limited Retardation film and method for production thereof
TWI410322B (en) * 2006-03-23 2013-10-01 Sumitomo Chemical Co Phase difference film and its manufacturing method
JP2008115314A (en) * 2006-11-07 2008-05-22 Mitsubishi Gas Chem Co Inc Oriented film
JP2010139735A (en) * 2008-12-11 2010-06-24 Sumitomo Chemical Co Ltd Method of manufacturing retardation film
JP2010139756A (en) * 2008-12-11 2010-06-24 Sumitomo Chemical Co Ltd Method of manufacturing retardation film
JP2010139736A (en) * 2008-12-11 2010-06-24 Sumitomo Chemical Co Ltd Method of manufacturing retardation film
JP2011123288A (en) * 2009-12-10 2011-06-23 Sumitomo Chemical Co Ltd Method for manufacturing retardation film

Also Published As

Publication number Publication date
JP3184975B2 (en) 2001-07-09

Similar Documents

Publication Publication Date Title
JP4938632B2 (en) Liquid crystal panel and liquid crystal display device
US5061042A (en) Phase retarder and liquid crystal display using the same
US5244713A (en) Optical film
US9740060B2 (en) Liquid crystal display device
KR20160117176A (en) Liquid crystal panel and liquid crystal display device
JPH07333597A (en) Liquid crystal display device
CN100495087C (en) Optical film and image display
KR20020070856A (en) Optically compensatory polarizer and liquid-crystal display device
JPH02256003A (en) Optical film
KR0135519B1 (en) Optical film
US20040252264A1 (en) Polarizer having retarder and liquid crystal display apparatus comprising the same
JPH0242406A (en) Phase difference plate and composite polarizing plate formed by using this plate and liquid crystal display device
CA2204809A1 (en) Optically anisotropic film and liquid crystal display apparatus
KR20120070339A (en) Liquid crystal display and method for manufacturing polarizing plate
JP2003015134A (en) Liquid crystal display device
US11686977B2 (en) Retardation film for IPS mode, polarizing plate comprising same, and liquid crystal display device comprising same
JPH0196623A (en) Optical anisotropic body
JP2841377B2 (en) Phase difference plate
JP2841376B2 (en) Phase difference plate
JP2007286331A (en) Optical compensation sheet, polarizing plate using the same and liquid crystal display
JPH01225916A (en) Phase difference plate and composite polarizing plate and liquid crystal display device using phase difference plate
JPH04173844A (en) Production of polyvinyl alcohol phase-difference film having improved property
JPH07218724A (en) Polarizing plate and elliptical polarizing plate as well as liquid crystal display device using the same
JP2000111732A (en) Production of three-dimensional double refractive film
JP2887388B2 (en) Retardation plate, composite polarizing plate and liquid crystal display device using the same