JPS63180848A - Air-fuel ratio measuring apparatus - Google Patents

Air-fuel ratio measuring apparatus

Info

Publication number
JPS63180848A
JPS63180848A JP62012426A JP1242687A JPS63180848A JP S63180848 A JPS63180848 A JP S63180848A JP 62012426 A JP62012426 A JP 62012426A JP 1242687 A JP1242687 A JP 1242687A JP S63180848 A JPS63180848 A JP S63180848A
Authority
JP
Japan
Prior art keywords
outer electrode
fuel ratio
detection element
air
side wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62012426A
Other languages
Japanese (ja)
Inventor
Norio Ichikawa
市川 範男
Shiro Ouchi
四郎 大内
Sadayasu Ueno
上野 定寧
Shinji Miyake
三宅 慎司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi Automotive Systems Engineering Co Ltd
Original Assignee
Hitachi Automotive Engineering Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Automotive Engineering Co Ltd, Hitachi Ltd filed Critical Hitachi Automotive Engineering Co Ltd
Priority to JP62012426A priority Critical patent/JPS63180848A/en
Publication of JPS63180848A publication Critical patent/JPS63180848A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Oxygen Concentration In Cells (AREA)

Abstract

PURPOSE:To obtain an optimum detection element protection hood suitable for a threshold current type air-fuel ratio measuring device having a diffusion resistor, by preventing positional overlap between an outer electrode of a detection element and an exhaust gas intake opening provided in the side wall of a protection hood. CONSTITUTION:A heating ceramic heater 2 is arranged inside a detection element 1 to be held in a housing 3. A heater flange 5 is fixed on the heater 2. The heater 2 is pressed securely with a spring 6 and a shroud 7 is cauked on the housing 3. A protection hood 4 is cauked on the housing 3 completely surrounding the detection element 1. An output electrode 1c exposed to an exhaust gas is formed in a ring with a proper width. On the other hand, an inner electrode 1b is formed simultaneously with the outer electrode 1c or the like by chemical platinum plating and a diffusion resistor 1d is formed by plasma spray coating. Then, the outer electrode 1c of the detection element 1 and an opening 4a provided in the side wall of the protection hood 4 are arranged at a deviated position to prevent an exhaust gas from directly hitting the outer electrode 1c.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、排ガス中に含まれる酸素濃度あるいは未燃ガ
ス濃度がら空燃比を検出するセンサに係従来の測定器に
おける遮蔽部材は、特公告53−3949に記載のよう
に先端に1個の開孔と、側壁に内側面に対して接続方向
に設けた複数個の開孔を具備するとなっていた。この公
知技術は、熱の均一拡散による熱ストレスの軽減と、排
気ガスに渦巻運動を与えて、排気ガス中の固体粒子(通
常硫黄、リン、鉛など)がジルコニア検出素子を直撃し
ないようにするもので、測定器の寿命を長くする効果が
ある。この効果は、酸素濃淡電池の起電力特性を利用す
る従来の02センサのみならず、外側電極表面に緻密で
厚いガス拡散抵抗体を有する限界電流測定式の空燃比セ
ンサにも適用されうるものであるが、該空燃比測定器は
前記拡散抵抗体の為に応答性を考慮しなければならない
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a sensor that detects an air-fuel ratio from the concentration of oxygen or unburned gas contained in exhaust gas. As described in No. 53-3949, there is one opening at the tip and a plurality of openings provided in the side wall in the connection direction with respect to the inner surface. This known technology reduces thermal stress by uniformly dispersing heat and imparts a swirling motion to the exhaust gas to prevent solid particles (usually sulfur, phosphorus, lead, etc.) in the exhaust gas from directly hitting the zirconia sensing element. This has the effect of extending the life of the measuring instrument. This effect can be applied not only to the conventional 02 sensor that utilizes the electromotive force characteristics of an oxygen concentration battery, but also to a limiting current measurement type air-fuel ratio sensor that has a dense and thick gas diffusion resistor on the outer electrode surface. However, the air-fuel ratio measuring device must take responsiveness into consideration because of the diffusion resistor.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来技術は、起電力タイプの02センサを対象とし
ている為、検出素子外側電極を保護するについて配慮が
されておらず、緻密で(平均細孔径約400人)厚い(
400〜500μ)拡散抵抗体を有する限界電流式空燃
比測定器にそのまま使用するには、応答性について問題
があった。
Since the above conventional technology targets the electromotive force type 02 sensor, no consideration is given to protecting the outer electrode of the detection element, which is dense (average pore diameter of about 400) and thick (
400 to 500 μ)) There was a problem with the response when using it directly in a limiting current type air-fuel ratio measuring device having a diffusion resistor.

本発明の目的は、応答性も含め拡散昆抵体を有する限界
電流式空燃比測定器に最適な、検出素子保護フードを提
供することにある。
An object of the present invention is to provide a detection element protection hood that is optimal for a limiting current type air-fuel ratio measuring device having a diffusion resistor including responsiveness.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は、検出素子外側電極と、保護フード側壁に設
ける排気ガス取入れ用開孔との位置を重ならないように
することと、前記開孔面積を1個当り0 、5 mTn
2以上1.1mmzmm上することにより達成される。
The above purpose is to prevent the positions of the detection element outer electrode and the exhaust gas intake hole provided on the side wall of the protective hood from overlapping, and to reduce the area of the hole to 0.5 mTn per hole.
This is achieved by increasing the height by 2 or more and 1.1 mmzmm.

〔作用〕[Effect]

保護フード側壁に設けた複数個の開孔より流入する 気
ガスは、外側電極部より離れた拡散抵抗層を直撃するた
め、電極へのダメージは渦巻状の流れで入って来る従来
技術の保護フードと同等である。しかし開孔面積を大き
くすると前記ダメ−゛)し、は急激に大、きくなるので
、応答性とのかねあし、′−1・〜0.。がは応答性2
、外側電極耐久性を両立させるものである。
The gas flowing in through the multiple holes in the side wall of the protective hood directly hits the diffusion resistance layer that is far away from the outer electrode, causing damage to the electrodes compared to the conventional protective hood where the gas flows in a spiral flow. is equivalent to However, if the aperture area is increased, the above-mentioned damage (()) will suddenly become larger and louder, so there will be a problem with the responsiveness. . Gaha responsiveness 2
, which achieves both outer electrode durability.

〔実施例〕〔Example〕

以下、本発明の一実施例を説明する。第1図は本発明の
保護フードを備えた空燃比測定器の断面図を示すもので
、検出素子1は、内側に加熱用セラミックヒータ2を配
置しており、ネジ山を有するハウジング3に収納されて
いる。ヒータ2にはセラミック製のヒータフランジ5が
無機接着剤で固定されている。スプリング6はヒータを
加圧固定しており、ガイトウ7はハウジング3に加締ら
れでいる。保護フード4は検出素子1を完全に囲むよう
に、ハウジング3に加締られている。第2図は、検出素
子1の詳細外形図を示すもので、排気ガスにさらされる
外側電極1cは、ある適当な面積を有するように、適当
な巾を有するリング状に形成される。この外側電極に接
続してリード電極18が帯状に形成され、リード電極の
表面には、−一を行なっている。前記外側電極、リード
電極は、電極が不要なジルコニア固体電解質1aの表面
をマスキングし、化学白金メッキ等により同時に形成さ
れる。その後高融点ガラスペーストを、リード電極表面
に塗布、乾燥、焼付けを行なってガラス絶縁層1fが形
成される。一方第3図等に示す内側電極1bは、前記化
学白金メッキにより内側表面全面に、外側電極、リード
電極と同時に形成される。拡散抵抗体1dは、プラズマ
溶射により約450μの厚さに形成される。拡散抵抗体
の材料は、従来のOXセンサの電極保護膜に用いられて
いるマグネシアスピネル(MgOA Q xis)であ
るが、その粒子径は25μ以下で、従来の172以下の
を使用している。逆にプラズマ溶射の電力は約40KW
と従来の2倍であり、拡散抵抗体は従来の保護膜に比較
し緻密な膜となっている。ちなみに、水銀ポロシメータ
による平均細孔径の測定では、従来の保護膜が1000
人程度4のに対して、拡散抵抗体では約400人と17
2以下であった。この緻密さと、膜厚が従来より4〜1
0倍と厚いことが、保護フードの構造にも大きな影響を
与えることになった。
An embodiment of the present invention will be described below. FIG. 1 shows a cross-sectional view of an air-fuel ratio measuring instrument equipped with a protective hood according to the present invention. A detection element 1 has a ceramic heater 2 arranged inside and is housed in a housing 3 having a screw thread. has been done. A ceramic heater flange 5 is fixed to the heater 2 with an inorganic adhesive. The spring 6 pressurizes and fixes the heater, and the guide 7 is crimped to the housing 3. The protective hood 4 is crimped to the housing 3 so as to completely surround the detection element 1. FIG. 2 shows a detailed outline of the detection element 1. The outer electrode 1c exposed to exhaust gas is formed into a ring shape with a suitable width so as to have a certain suitable area. A lead electrode 18 is formed in a strip shape connected to this outer electrode, and a -1 is formed on the surface of the lead electrode. The outer electrode and the lead electrode are simultaneously formed by masking the surface of the zirconia solid electrolyte 1a where no electrode is required, and by chemical platinum plating or the like. Thereafter, a high melting point glass paste is applied to the surface of the lead electrode, dried, and baked to form a glass insulating layer 1f. On the other hand, the inner electrode 1b shown in FIG. 3 etc. is formed on the entire inner surface by the chemical platinum plating at the same time as the outer electrode and the lead electrode. The diffused resistor 1d is formed to a thickness of about 450μ by plasma spraying. The material of the diffused resistor is magnesia spinel (MgOA Q xis), which is used for the electrode protective film of the conventional OX sensor, and its particle diameter is 25 μm or less, and the conventional particle size of 172 μm or less is used. On the other hand, the power of plasma spraying is about 40KW.
This is twice that of the conventional protective film, and the diffused resistor is a denser film than the conventional protective film. By the way, when measuring the average pore diameter with a mercury porosimeter, the conventional protective film has a
Compared to the 400 people and 17 people in the diffused resistor.
It was 2 or less. This density and film thickness are 4 to 1 mm thicker than before.
Being as thick as 0 times had a major impact on the structure of the protective hood.

第3図は本発明の保護フード4と検出素子1との位置関
係を示す拡大図である。検出素子の外側電極1cの位置
と、保護フード4の側壁に設けられた開孔4aは、排気
ガスが前記外側電極ICを直撃しないようにずらした位
置に設けられている。
FIG. 3 is an enlarged view showing the positional relationship between the protective hood 4 and the detection element 1 of the present invention. The position of the outer electrode 1c of the detection element and the opening 4a provided in the side wall of the protective hood 4 are offset so that the exhaust gas does not directly hit the outer electrode IC.

又開孔4aは60″ピツチの等間隔で外側電極1cをは
さみ計12ケ設けられているセラミックヒータ2は、外
側電極部の検出素子を約20Ωになるよう700℃前後
に加熱するもので、図示していない温調回路によって制
御されるものである。
Furthermore, the ceramic heater 2, which is provided with a total of 12 openings 4a sandwiching the outer electrode 1c at equal intervals of 60'', heats the detection element of the outer electrode part to about 700°C to a resistance of about 20Ω. It is controlled by a temperature control circuit (not shown).

700℃一定態熱も従来の02.センサの使用とは異な
る条件であり、この加熱は排ガス中に含まれる鉛化合物
の検出素子表面への付着軽減に大きな効果があることが
、耐久試験で確認された。
700℃ constant heat is also the conventional 02. Although the conditions are different from those used for the sensor, durability tests have confirmed that this heating is highly effective in reducing the adhesion of lead compounds contained in exhaust gas to the detection element surface.

第4図は1800ccのEGI仕様エンジンの排気管集
合部にセンサを取付け、回転数130Orpm t ト
ルク3kg−mで空燃比をA / F = 14#16
へとステップ的に変化(エアフローセンサの信号で実験
的に急変させた)させた時の出力変化を示す曲線である
。Ozセンサの保護フードは従来のルーバ状のもので縦
長のスリット状で、排気ガスは渦巻状に流入し、検出素
子を直撃しない構造のものである。空燃比センサの保護
フードは第3図に示す構造のもので、側壁開孔4aはφ
0.8、開孔断面積0 、5 mm!である。図3から
、従来構造のo2センサの応答時定数は、A/F14 
(リッチ)→16(リーン)で410m5.A/F16
→14で90 m sと大きな差異があり、1周期の平
均として250 m sであった。これに対して空燃比
センサの場合は、公知の如くセンサ駆動回路(図示なし
)により酸素イオンを空燃比に応じた量だけボンピング
するという作動上の相違により、リッチ→リーン、リー
ン→リッチへの空燃比のステップ変化に対してあまり差
がなかった。すなわちA/F14→16で270m5.
A/F16−+14で230 m s 1周期の平均で
は250 m sと02センサの場合と同等であった。
Figure 4 shows a sensor attached to the exhaust pipe assembly of a 1800cc EGI specification engine, and the air-fuel ratio measured at rotation speed 130 rpm and torque 3 kg-m: A/F = 14#16
This is a curve showing the output change when the output is changed stepwise (suddenly changed experimentally using the signal from the air flow sensor). The protective hood of the Oz sensor is a conventional louver-shaped hood with a vertically long slit shape, and has a structure in which exhaust gas flows in in a spiral shape and does not directly hit the detection element. The protective hood of the air-fuel ratio sensor has the structure shown in Fig. 3, and the side wall opening 4a is φ.
0.8, aperture cross-sectional area 0.5 mm! It is. From Figure 3, the response time constant of the O2 sensor with the conventional structure is A/F14
(Rich) → 16 (Lean) 410m5. A/F16
→14, there was a large difference of 90 ms, and the average for one period was 250 ms. On the other hand, in the case of an air-fuel ratio sensor, as is well known, the sensor drive circuit (not shown) pumps oxygen ions in an amount corresponding to the air-fuel ratio. There was not much difference with respect to step changes in air-fuel ratio. In other words, A/F 14→16 is 270m5.
With A/F16-+14, the average time for one cycle of 230 m s was 250 ms, which was equivalent to that of the 02 sensor.

この応答時定数と、保護フード側壁に設けた開孔の断面
積(開孔径)との実験結果を第5図に示す。この結果か
ら、応答性を損なわない為には1ヶ当りの開孔断面積を
0 、5 mm2以上(φ0.8以上)にする必要があ
ることがわかった。この応答時間は開孔断面積が0 、
8 mm2以上となると飽和し、保護フードなしく直径
ωの点)の場合と同じとなる。従って開孔断面積の上限
は耐久性能から決められることになる。我々の耐久試験
結果からは、開孔断面積を1 、1 mff12以上(
φ1.2以上)とすると、従来の02センサ保護フード
より悪くなることがわかった。以上の結果より、保護フ
ード側壁の開孔断面積は1個当り0.5m、z以上1 
、1 mm2以下が応答性と耐久性から適当であること
がわかった。
FIG. 5 shows the experimental results of this response time constant and the cross-sectional area (opening diameter) of the opening provided in the side wall of the protective hood. From this result, it was found that the cross-sectional area of each hole must be 0.5 mm2 or more (φ0.8 or more) in order not to impair responsiveness. This response time is calculated when the cross-sectional area of the opening is 0,
When it becomes 8 mm2 or more, it becomes saturated and becomes the same as the case without a protective hood (at the point of diameter ω). Therefore, the upper limit of the cross-sectional area of the opening is determined from the durability performance. From our durability test results, we found that the cross-sectional area of the opening was 1,1 mff12 or more (
φ1.2 or more), it was found to be worse than the conventional 02 sensor protection hood. From the above results, the cross-sectional area of the opening in the side wall of the protective hood is 0.5 m per piece, and z or more is 1.
, 1 mm2 or less was found to be appropriate in terms of responsiveness and durability.

第6図は本発明の他の実施例であり、ジルコニア素子閉
塞端部に対向する位置の保護フードに、底面開孔を1個
追加して設けたものである。第6図の構造での、応答性
、耐久性に関する実験結果は、すでに述べた第3図の構
造のものと変りなかった。
FIG. 6 shows another embodiment of the present invention, in which one bottom opening is additionally provided in the protective hood at a position opposite to the closed end of the zirconia element. The experimental results regarding the response and durability of the structure shown in FIG. 6 were the same as those of the structure shown in FIG. 3 already described.

[発明の効果〕 本発明によれば、限界電流方式空燃比センサ用の保護フ
ードを、簡単な構造で提供出来、更に信頼性と応答性を
両立出来る効果がある。
[Effects of the Invention] According to the present invention, a protective hood for a limiting current type air-fuel ratio sensor can be provided with a simple structure, and furthermore, there is an effect that reliability and responsiveness can be achieved at the same time.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は限界電流式空燃比センサ断面図、第2図は検出
素子外形図、第3図は本発明の一実施例を示す断面図、
第4図はセンサ出力の時間に対する変化を示す出力特性
図、第5図は保護フード側壁開孔の断面積と応答時間の
関係を示す実験データ図、第6図は本発明の他の実施例
を示す断面図である。 1・・・検出素子、1c・・・外側電極、1a・・・拡
散抵抗体、2・・・ヒータ、3・・・ハウジング、4・
・・保護フード、4a・・・側壁開孔。
FIG. 1 is a sectional view of a limiting current type air-fuel ratio sensor, FIG. 2 is an external view of a detection element, and FIG. 3 is a sectional view showing an embodiment of the present invention.
Fig. 4 is an output characteristic diagram showing changes in sensor output over time, Fig. 5 is an experimental data chart showing the relationship between the cross-sectional area of the protective hood side wall opening and response time, and Fig. 6 is another embodiment of the present invention. FIG. DESCRIPTION OF SYMBOLS 1... Detection element, 1c... Outer electrode, 1a... Diffusion resistor, 2... Heater, 3... Housing, 4...
...Protective hood, 4a...side wall opening.

Claims (1)

【特許請求の範囲】 1、有底円筒管形のジルコニア固体電解質の対向する表
面に、触媒性の導電性金属電極が被覆され、かつ外側の
被測定ガスにさらされる電極表面上にガス拡散抵抗体を
有する検出素子と、前記ジルコニア固体電解質管の内側
に位置するヒータと、該検出素子を保護する保護フード
を備えた限界電流式空燃比測定器において、前記保護フ
ードは、前記ジルコニア素子の外側表面を完全に囲むと
共に、外側電極部を直撃しない側壁の位置に該外側電極
をはさんで複数個の開孔を具備したことを特徴とする空
燃比測定器。 2、請求の範囲第1項において、側壁開孔の大きさが、
0.5mm^2以上1.1mm^2以下であることを特
徴とする空燃比測定器。 3、請求の範囲第1項において、前記遮蔽部材は、前記
ジルコニア素子の外側表面を完全に囲むと共に前記ジル
コニア素子閉塞端部に対向する位置に1個の開孔と、外
側電極部を直撃しない側壁の位置に該外側電極をはさん
で複数個の開孔を具備したことを特徴とする空燃比測定
器。 4、請求の範囲第3項において、側壁開孔の大きさが、
0.5mm^2以上1.0mm^2以下であることを特
徴とする空燃比測定器。
[Claims] 1. The opposing surfaces of a zirconia solid electrolyte in the shape of a cylindrical tube with a bottom are coated with catalytic conductive metal electrodes, and a gas diffusion resistor is provided on the outer electrode surface exposed to the gas to be measured. In the limiting current air-fuel ratio measuring device, the limiting current air-fuel ratio measuring device includes a detection element having a body, a heater located inside the zirconia solid electrolyte tube, and a protective hood that protects the detection element, the protective hood being located outside the zirconia element. An air-fuel ratio measuring device characterized by having a plurality of openings sandwiching the outer electrode at positions in the side wall that completely surround the surface and do not directly hit the outer electrode. 2. In claim 1, the size of the side wall opening is
An air-fuel ratio measuring device characterized in that the ratio is 0.5 mm^2 or more and 1.1 mm^2 or less. 3. In claim 1, the shielding member completely surrounds the outer surface of the zirconia element, has one opening at a position opposite to the closed end of the zirconia element, and does not directly hit the outer electrode part. An air-fuel ratio measuring device characterized in that a plurality of openings are provided in a side wall position with the outer electrode sandwiched therebetween. 4. In claim 3, the size of the side wall opening is
An air-fuel ratio measuring device characterized in that the ratio is 0.5 mm^2 or more and 1.0 mm^2 or less.
JP62012426A 1987-01-23 1987-01-23 Air-fuel ratio measuring apparatus Pending JPS63180848A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62012426A JPS63180848A (en) 1987-01-23 1987-01-23 Air-fuel ratio measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62012426A JPS63180848A (en) 1987-01-23 1987-01-23 Air-fuel ratio measuring apparatus

Publications (1)

Publication Number Publication Date
JPS63180848A true JPS63180848A (en) 1988-07-25

Family

ID=11804956

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62012426A Pending JPS63180848A (en) 1987-01-23 1987-01-23 Air-fuel ratio measuring apparatus

Country Status (1)

Country Link
JP (1) JPS63180848A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6432289B1 (en) 1995-02-01 2002-08-13 Denso Corporation Oxygen concentration detector
JP2008281584A (en) * 2008-08-25 2008-11-20 Denso Corp Oxygen sensor element
JP2008286810A (en) * 2008-08-25 2008-11-27 Denso Corp Oxygen sensor element

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6432289B1 (en) 1995-02-01 2002-08-13 Denso Corporation Oxygen concentration detector
JP2008281584A (en) * 2008-08-25 2008-11-20 Denso Corp Oxygen sensor element
JP2008286810A (en) * 2008-08-25 2008-11-27 Denso Corp Oxygen sensor element

Similar Documents

Publication Publication Date Title
JPH0430536Y2 (en)
JPH0216467B2 (en)
US4121988A (en) Oxygen sensor
JPH0312255B2 (en)
JP2000171430A (en) Gas sensor
JPS6118854A (en) Oxygen concentration detecting element
JPH029713B2 (en)
KR890000080B1 (en) Method for detecting an air-fuel ratio
US4478067A (en) Gas composition sensor
JPS63180848A (en) Air-fuel ratio measuring apparatus
JPH0262955A (en) Air to fuel ratio detecting element
JPS6133132B2 (en)
JP2001108648A (en) Gas sensor
RU192938U1 (en) GAS SENSOR
JPS58100746A (en) Detector of oxygen concentration
JPS5876757A (en) Oxygen concentration detector
JP6702342B2 (en) Gas sensor
JPH0234608Y2 (en)
JPS62190461A (en) Activation detecting device for air fuel ratio sensor
JPH0752615Y2 (en) Device for mounting oxygen sensor for internal combustion engine
JPS5819554A (en) Oxygen concentration detector
JPS5817251Y2 (en) Gas component detection device
JPH035902Y2 (en)
JPH0110590Y2 (en)
WO2018194034A1 (en) Gas sensor