JPS63178848A - Catalyst for purifying exhaust gas - Google Patents

Catalyst for purifying exhaust gas

Info

Publication number
JPS63178848A
JPS63178848A JP62009110A JP911087A JPS63178848A JP S63178848 A JPS63178848 A JP S63178848A JP 62009110 A JP62009110 A JP 62009110A JP 911087 A JP911087 A JP 911087A JP S63178848 A JPS63178848 A JP S63178848A
Authority
JP
Japan
Prior art keywords
catalyst
zirconia
exhaust gas
weight
average particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62009110A
Other languages
Japanese (ja)
Other versions
JPH0578379B2 (en
Inventor
Tomohisa Ohata
知久 大幡
Kazuo Tsuchiya
一雄 土谷
Shinya Kitaguchi
真也 北口
Eiichi Shiraishi
英市 白石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP62009110A priority Critical patent/JPS63178848A/en
Priority to US07/134,363 priority patent/US4904633A/en
Priority to EP19930201246 priority patent/EP0558159A3/en
Priority to KR1019870014488A priority patent/KR930000917B1/en
Priority to EP87311178A priority patent/EP0272136B1/en
Priority to DE3751403T priority patent/DE3751403T2/en
Priority to AU10648/88A priority patent/AU604083B2/en
Priority to CN91102032A priority patent/CN1055302A/en
Priority to CN88100589A priority patent/CN1013245B/en
Publication of JPS63178848A publication Critical patent/JPS63178848A/en
Priority to KR1019920016764A priority patent/KR930000918B1/en
Publication of JPH0578379B2 publication Critical patent/JPH0578379B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE:To improve the durability of the title catalyst and to enhance the activity at low temp. by depositing the catalyst composition consisting of the fine particles of zirconia carrying Pt and/or Pd and Rh on a honeycomb carrier to form the catalyst. CONSTITUTION:Granular zirconia is immersed in an aq. soln. of the salts of Pt and/or Pd and Rh, and then dried and baked to obtain the zirconia carrying 5-30wt.% Pt and/or Pd and 1-20wt.% Rh. The obtained zirconia is crushed by a mill, etc., to 0.1-20mu particle diameter, and then slurred. The slurry is wash-coated on a monolithic honeycomb carrier, dried, and then baked, as required, to produce the catalyst for purifying exhaust gas. Besides, a refractory inorg. oxide such as activated alumina can be appropriately added to the noble metal-carrying zirconia, and jointly used.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、排気ガス浄化用触媒に関するものである。詳
しく述べると、本発明は、自動車等の内燃機関からの排
気ガス中に含まれる有害成分である炭化水素(HC)、
−酸化炭素(Go)および窒素酸化物(NOX >を同
時に除去する排気ガス浄化用触媒に関するものであり、
特に、高温酸化雰囲気のような厳しい条件下で使用され
ても優れた耐久性を有し、かつ上記有害成分に対し、低
温での高い浄化性能を有する排気ガス浄化用触媒に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a catalyst for purifying exhaust gas. Specifically, the present invention deals with hydrocarbons (HC), which are harmful components contained in exhaust gas from internal combustion engines such as automobiles,
- relates to an exhaust gas purification catalyst that simultaneously removes carbon oxides (Go) and nitrogen oxides (NOX);
In particular, the present invention relates to an exhaust gas purifying catalyst that has excellent durability even when used under severe conditions such as high-temperature oxidizing atmospheres, and has high purification performance at low temperatures against the above-mentioned harmful components.

[従来の技術] 従来、排気ガス浄化用触媒においては、使用量が微量に
限定された貴金属を有効に使用するため、例えば、高表
面積の活性アルミナ等に貴金属を出来るだけ高分散に担
持する努力がなされてきた。
[Prior art] Conventionally, in exhaust gas purification catalysts, in order to effectively use precious metals whose usage was limited to trace amounts, efforts were made to support precious metals as highly dispersed as possible, for example, on activated alumina with a high surface area. has been done.

しかしながら貴金属を高分散に担持した触媒は、初期活
性は高いが、高温酸化雰囲気のような厳しい条件に曝さ
れると、貴金属の粒子成長や貴金属と担体物質との反応
が起こりやすく、貴金属が高分散に担持されているが故
に却って活性劣化が大きいという問題があった。
However, although catalysts with highly dispersed noble metals have high initial activity, when exposed to harsh conditions such as high-temperature oxidizing atmospheres, noble metal particles are likely to grow and reactions between noble metals and the support material occur, resulting in noble metals becoming highly active. Since it is supported in a dispersion, there is a problem in that the deterioration of activity is rather large.

そして、ジルコニアは、本分野においては、触媒の比表
面積等の物性の安定を目的として主として担持基材に添
加して使用されることが多い。貴金属の担持基材として
使用した例としては、特公昭57−29215号および
特開昭57−153737号公報において、アルミナお
よびジルコニアを含有する被覆層を担体に形成せしめた
後に貴金属を担持する方法が提案されている。しかし、
これらの方法では、大部分の貴金属が実質的にはアルミ
ナに高分散されるため、上記したのと同様な原因による
活性劣化が起こる。
In this field, zirconia is often used mainly by being added to a supporting base material for the purpose of stabilizing the physical properties such as the specific surface area of the catalyst. As an example of use as a substrate for supporting noble metals, Japanese Patent Publication No. 57-29215 and Japanese Patent Application Laid-open No. 57-153737 disclose a method in which a coating layer containing alumina and zirconia is formed on a carrier and then noble metals are supported. Proposed. but,
In these methods, since most of the noble metals are substantially highly dispersed in alumina, activity deterioration occurs due to the same causes as described above.

米国特許第4233189号明細書では、ジルコニアの
被覆層を担体に形成せしめた後に、ジルコニアに対して
低い担持率のロジウムを担持する触媒が開示されている
が、本発明に開示する貴金属を高い担持率で担持した少
量のジルコニアを他の多量の耐火性無機酸化物に分散さ
せた触媒と比較して、触媒の耐久性能が大幅に劣るもの
であった。
U.S. Pat. No. 4,233,189 discloses a catalyst that supports rhodium at a low loading rate on zirconia after forming a coating layer of zirconia on a carrier, but the catalyst disclosed in the present invention supports a high loading of noble metal. The durability of the catalyst was significantly inferior to that of a catalyst in which a small amount of zirconia supported at a high concentration was dispersed in a large amount of other refractory inorganic oxide.

1問題点を解決するための手段] 本発明者らは鋭意研究の結果、使用量が微量に限定され
るべき貴金属は、多量の高表面積の耐火性無機酸化物に
低い担持率で担持し、出来るだけ貴金属の分散度を高め
るべきとする従来の知見とは全く逆に貴金属を物性を特
定された少量のジルコニアに高い担持率で担持せしめて
なる貴金属含有ジルコニアを、その平均粒径0.1〜2
0μの比較的大きい凝集粒子に調整し、これを触媒コー
ティング層に分散させることにより触媒の耐久性能が飛
躍的に向上することを見出し、本発明を完成するに至っ
たのである。
[Means for Solving Problem 1] As a result of intensive research, the present inventors have found that noble metals whose usage should be limited to a trace amount are supported at a low loading rate on a large amount of refractory inorganic oxide with a high surface area. Quite contrary to the conventional knowledge that the degree of dispersion of precious metals should be increased as much as possible, precious metal-containing zirconia is made by supporting a small amount of zirconia with specified physical properties at a high loading rate, and its average particle size is 0.1. ~2
They discovered that the durability of the catalyst could be dramatically improved by adjusting the agglomerated particles to a relatively large size of 0μ and dispersing them in the catalyst coating layer, leading to the completion of the present invention.

さらに、本発明者らは、白金および/またはパラジウム
とロジウムを共に本発明に開示する高い担持率で耐火性
無機酸化物上に共存させると、白金および/またはパラ
ジウムとロジウムの相互作用によって各々の貴金属が不
活性な状態へ化学変化することが抑制されることも見出
した。
Furthermore, the present inventors have discovered that when platinum and/or palladium and rhodium are co-existed on the refractory inorganic oxide at the high loading rate disclosed in the present invention, each of the platinum and/or palladium interacts with rhodium. It has also been found that the chemical change of precious metals to an inactive state is suppressed.

このことも、排気ガス浄化用触媒においては、白金、パ
ラジウム、ロジウムが密接に存在すると、合金化するな
どして活性が失われるという従来の知見からは全く予見
しえなかったことである。
This was also completely unexpected based on the conventional knowledge that when platinum, palladium, and rhodium are closely present in an exhaust gas purifying catalyst, they become alloyed and lose their activity.

[発明の構成] 本発明の構成を以下に詳細に説明する。[Structure of the invention] The configuration of the present invention will be explained in detail below.

まず、貴金属のジルコニアへの高い担持率の範囲は、白
金および/またはパラジウムについては、5〜30重量
%、好ましくは10〜20重量%。
First, the range of high noble metal support on zirconia is 5 to 30% by weight, preferably 10 to 20% by weight for platinum and/or palladium.

ロジウムについては1〜20重量%、好ましくは1〜1
0重量%である。白金および/またはパラジウムが5重
量%未満、またはロジウムが1重量%未満では通常の高
分散の状態に近くなり活性劣化が大きくなる。また、白
金および/またはパラジウムが30重量%を超えたり、
ロジウムが20重量%を超える場合は、反応に有効に寄
与する貴金属の活性点が増加せず、むしろ初期から少な
くなるため、触媒の初期性能が低く、また本発明の担持
率の範囲にある場合には見られない貴金属の粒子成長が
起こり、粒子が巨大化して触媒の活性は大幅に低下して
しまう。
1-20% by weight for rhodium, preferably 1-1
It is 0% by weight. If the content of platinum and/or palladium is less than 5% by weight, or if the content of rhodium is less than 1% by weight, the content will approach a normal highly dispersed state, resulting in significant deterioration of activity. In addition, platinum and/or palladium exceeds 30% by weight,
If rhodium exceeds 20% by weight, the number of noble metal active sites that effectively contribute to the reaction will not increase, but rather decrease from the beginning, resulting in poor initial performance of the catalyst, and if the loading ratio is within the range of the present invention. Particle growth of the precious metal occurs, which is not seen in conventional methods, and the particles become huge, significantly reducing the activity of the catalyst.

また、白金および/またはパラジウムとロジウムを共に
高い担持率で担持することにより更に耐久性能が向上す
る。これは各々の貴金属の相互作用によって、例えば、
ロジウムが還元され難い酸化ロジウムを形成するといっ
た、不活性な状態への不可逆的な化学変化が抑制される
ためと考えられる。そして、本発明の担持率の範囲では
、驚くべきことに白金、パラジウム、ロジウムの合金化
による失活は見られなかった。
Further, by supporting both platinum and/or palladium and rhodium at a high loading rate, durability performance is further improved. This is due to the interaction of each noble metal, e.g.
This is thought to be because an irreversible chemical change to an inactive state, such as rhodium forming rhodium oxide that is difficult to reduce, is suppressed. Surprisingly, within the loading ratio range of the present invention, no deactivation due to alloying of platinum, palladium, and rhodium was observed.

次に、貴金属が高い担持率で担持されたジルコニアを、
0.1〜20μの比較的大きい平均粒子径をもつ凝集粒
子に調整された形で、他の多量の耐火性無機酸化物に分
散させることが本発明の特6一 徴である。この範囲の平均粒子径とすることによって、
排気ガス浄化反応の効率を阻害することな(、貴金属と
耐火性無機酸化物との相互作用や反応を緩和することが
出来る。
Next, we made zirconia with a high loading rate of precious metals.
The sixth feature of the present invention is that it is dispersed in a large amount of other refractory inorganic oxide in a form that is adjusted to form agglomerated particles having a relatively large average particle diameter of 0.1 to 20 μm. By setting the average particle size in this range,
It can alleviate the interaction and reaction between noble metals and refractory inorganic oxides without impeding the efficiency of the exhaust gas purification reaction.

本発明に使用されるジルコニアは、少くとも10TI1
.7g、好ましくは60〜100m/gの比表面積を有
し、かつ、2000Å以下好ましくは500Å以下の平
均−次粒子径を有するものが好適である。
The zirconia used in the present invention is at least 10TI1
.. It is preferable to have a specific surface area of 7 g, preferably 60 to 100 m/g, and an average primary particle size of 2000 Å or less, preferably 500 Å or less.

上記物性を有するジルコニアであれば、市販のものを使
用しても良く、また、新たにジルコニウム塩の水溶液を
アンモニア等で中和し、水洗後乾燥焼成する方法等によ
っても調整されうるちのである。さらに、10重量%以
下のイツトリウムまたはカルシウム等のアルカリ土類金
属によって安定化されたジルコニアも使用可能である。
Commercially available zirconia having the above physical properties may be used, or it may be prepared by neutralizing a new aqueous solution of zirconium salt with ammonia, washing with water, drying and firing, etc. . Additionally, zirconia stabilized with up to 10% by weight of an alkaline earth metal such as yttrium or calcium can also be used.

こうしたジルコニアは、高い担持率で貴金属を担持した
際、良好な担持状態を与える。貴金属の担持は、貴金属
溶液をジルコニアと混合後乾燥し、焼成し、必要により
還元して行なわれるが、この操作においては複数の貴金
属溶液の混合溶液を用いてもよいし、または貴金属溶液
を一種類ずつジルコニアと混合し乾燥する操作を繰り返
しても良い。
Such zirconia provides a good supporting state when noble metal is supported at a high loading rate. The noble metal is supported by mixing the noble metal solution with zirconia, drying it, firing it, and reducing it if necessary. In this operation, a mixed solution of multiple noble metal solutions may be used, or a mixture of multiple noble metal solutions may be used. The operation of mixing each type with zirconia and drying may be repeated.

この際、ジルコニアは凝集粒子として粒径が大きくなる
ので、これをミル等で粉砕して、平均粒子径を0.1〜
20μとする。このようにして得られる粒子径を調整さ
れた貴金属含有ジルコニアを含むスラリーを一体構造を
有するハニカム担体にウォッシュコートし、乾燥し、必
要により焼成して完成触媒を得る。
At this time, the particle size of zirconia becomes large as agglomerated particles, so this is ground with a mill etc. to reduce the average particle size to 0.1~
It is set to 20μ. The thus obtained slurry containing noble metal-containing zirconia whose particle size has been adjusted is wash-coated onto a honeycomb carrier having an integral structure, dried and, if necessary, calcined to obtain a finished catalyst.

一体構造を有するハニカム担体とは、コージエライ1〜
.ムライト、α−アルミナ等のセラミック担体およびス
テンレスまたはFe −Cr −A、i合金等の酸化抵
抗性の耐熱金属を用いたメタルモノリス担体のことをい
う。
A honeycomb carrier having an integral structure is a type of honeycomb carrier having a monolithic structure.
.. It refers to a metal monolith support using a ceramic support such as mullite or α-alumina and an oxidation-resistant heat-resistant metal such as stainless steel or Fe-Cr-A, i-alloy.

本発明に使用される貴金属源としては、塩化白金酸、ジ
ニトロジアンミン白金、塩化パラジウム。
The noble metal sources used in the present invention include chloroplatinic acid, dinitrodiammine platinum, and palladium chloride.

硝酸パラジウム、塩化ロジウム、硝酸ロジウム。Palladium nitrate, rhodium chloride, rhodium nitrate.

硫酸ロジウム等が好ましい。Rhodium sulfate and the like are preferred.

本発明に使用される耐火性無機酸化物としては、アルミ
ナ、シリカ、チタニア、ジルコニア、マグネシアなどが
挙げられるが、アルミナ特に活性アルミナの使用が好ま
しい。アルミナの結晶形としては、γ、δ、θ、α、χ
、に、ηのいずれの形でも使用可能である。また、カル
シウム、バリウム等のアルカリ土類元素、さらに、クロ
ム、マンガン、鉄、コバルト、ニッケル、セリウム、ジ
ルコニウムなどの金属元素のうちの少くとも一種を酸化
物の形で、0.1〜30重量%担持された活性アルミナ
も使用可能である。
Examples of the refractory inorganic oxide used in the present invention include alumina, silica, titania, zirconia, magnesia, etc., and use of alumina, particularly activated alumina, is preferred. The crystal forms of alumina are γ, δ, θ, α, χ
, , and η can be used. In addition, at least one of alkaline earth elements such as calcium and barium, and metal elements such as chromium, manganese, iron, cobalt, nickel, cerium, and zirconium in the form of oxides of 0.1 to 30% by weight % loaded activated alumina can also be used.

以下、実施例にて本発明を更に詳細に説明するが、本発
明は、これら実施例のみに限定されるものではないこと
は言うまでもない。
EXAMPLES Hereinafter, the present invention will be explained in more detail with reference to Examples, but it goes without saying that the present invention is not limited only to these Examples.

実施例1 市販コージェライト質モノリス担体(日本碍子株式会社
製)を用いて触媒を調整した。用いられたモノリス担体
は横断面が1インチ平方当り約400個のガス流通セル
を有する外径33醋φ。
Example 1 A catalyst was prepared using a commercially available cordierite monolith carrier (manufactured by Nippon Insulators Co., Ltd.). The monolithic support used had an outer diameter of 33 mm with a cross section of approximately 400 gas flow cells per square inch.

長さ76 mm lの円柱状のもので約65dの体積を
有した。
It had a cylindrical shape with a length of 76 mm l and a volume of about 65 d.

白金(Pt )1.5gを含有するジニトロジアンミン
白金の硝酸水溶液と、ロジウム(Rh )0.3aを含
有する硝酸ロジウム水溶液の混合溶液と、比表面積60
Td/(]、平均粒径200人を有するジルコニア(第
−稀元素化学製>7.5gを混合し、120℃で一晩乾
燥した。その後、空気中400℃で2時間焼成して16
.1重量%ptおよび3.2重量%Rh含有ジルコニア
粉体を調整した。
A mixed solution of a nitric acid aqueous solution of dinitrodiammine platinum containing 1.5 g of platinum (Pt) and a rhodium nitrate aqueous solution containing 0.3a of rhodium (Rh), and a specific surface area of 60
Td/(], zirconia with an average particle size of 200 g (manufactured by Daiki Genso Kagaku Co., Ltd. > 7.5 g) was mixed and dried at 120°C overnight. Then, it was fired in air at 400°C for 2 hours to obtain 16
.. Zirconia powder containing 1% by weight PT and 3.2% by weight Rh was prepared.

上記PtおよびRh含有ジルコニア粉体を乳鉢で凝集粒
子の平均粒子径が約20μとなるように粉砕した後、比
表面積100m/gの活性アルミナ139gと混合し、
ボールミルで20時時間式粉砕することによってコーテ
ィング用水性スラリーを調整した。
The above Pt and Rh-containing zirconia powder was ground in a mortar so that the average particle size of aggregated particles was about 20μ, and then mixed with 139g of activated alumina with a specific surface area of 100m/g,
An aqueous coating slurry was prepared by milling in a ball mill for 20 hours.

このコーティング用水性スラリーに前記モノリス担体を
浸漬し、取り出した後、セル内の過剰スラリーを圧縮空
気でブローして全ての目詰りを除去した。次いで130
℃で3時間乾燥して完成触媒を得た。
The monolithic carrier was immersed in this aqueous slurry for coating, and after being taken out, the excess slurry in the cells was blown out with compressed air to remove all clogging. then 130
The finished catalyst was obtained by drying at ℃ for 3 hours.

この触媒のコーティング層をE 1eotronPro
be  Micro  Analysis  (EPM
A)によって3000倍の倍率のPt、Rhの分布写真
を無作為に30ケ所撮影し分析したところ、Ptおよび
Rh含有ジルコニアがそれぞれ平均粒子径7μで分散し
ていた。
This catalyst coating layer is coated with E 1eotronPro.
be Micro Analysis (EPM
When Pt and Rh distribution photographs were taken at 30 random locations at 3000 times magnification using A) and analyzed, it was found that Pt and Rh-containing zirconia were each dispersed with an average particle size of 7 μm.

また、この触媒は、−個当りPt 0.065(] 。In addition, this catalyst has a Pt value of 0.065 (] per - piece.

Rh 0.013+;l含有していた。Contained Rh 0.013+;l.

実施例2 パラジウム(Pd )1.5aを含有する硝酸パラジウ
ム水溶液と、ロジウム0.3(!を含有する硝酸ロジウ
ム水溶液の混合溶液と、実施例1で用いたのと同じジル
コニア7.5gを混合し、120℃で一晩乾燥した。そ
の後、空気中400℃で2時間焼成して、16.1重量
%Pdおよび3.2重量%Rh含有ジルコニア粉体を調
整した。
Example 2 A mixed solution of a palladium nitrate aqueous solution containing 1.5a of palladium (Pd), a rhodium nitrate aqueous solution containing 0.3(!) of rhodium, and 7.5 g of the same zirconia used in Example 1 were mixed. The powder was dried overnight at 120° C. Thereafter, it was fired in air at 400° C. for 2 hours to prepare a zirconia powder containing 16.1% by weight of Pd and 3.2% by weight of Rh.

実施例1において、ptおよびRh含有ジルコニア粉体
の代わりに上記PdおよびRh含有ジルコニア粉体を用
いる以外は実施例1と同様な方法で完成触媒を得た。
A finished catalyst was obtained in the same manner as in Example 1 except that the Pd and Rh containing zirconia powder was used instead of the pt and Rh containing zirconia powder.

この触媒のコーティング層をEPMAで分析したところ
PCIおよびRh含有ジルコニアが平均粒子径3μで分
散していた。
When the coating layer of this catalyst was analyzed by EPMA, it was found that PCI and Rh-containing zirconia were dispersed with an average particle size of 3 μm.

また、この触媒は一個当りPct 0.065(1。Moreover, this catalyst has a Pct of 0.065 (1.

Rh 0.013(l含有していた。Contained Rh 0.013 (l).

実施例3 Pd 0.9!IIを含有する塩化白金酸水溶液と、P
d 0.6CIを含有する塩化パラジウム水溶液および
Rh 0.3!Itを含有する硝酸ロジウム水溶液の混
合溶液と、実施例1で用いたのと同じジルコニア7.5
gを混合し、120℃で一晩乾燥した。
Example 3 Pd 0.9! A chloroplatinic acid aqueous solution containing P
d Palladium chloride aqueous solution containing 0.6 CI and Rh 0.3! A mixed solution of rhodium nitrate aqueous solution containing It and the same zirconia 7.5 as used in Example 1
g were mixed and dried at 120°C overnight.

その後、空気中400℃で2時間焼成して、9.7重量
%Pt 、6.5重量%Pdおよび3.2重量%Rh含
有ジルコニア粉体を調整した。
Thereafter, it was fired in air at 400° C. for 2 hours to prepare a zirconia powder containing 9.7% by weight Pt, 6.5% by weight Pd, and 3.2% by weight Rh.

実施例1において、ptおよびRh含有ジルコニア粉体
の代わりに上記Pt、PdおよびRh含有ジルコニア粉
体を用いる以外は実施例1と同様な方法で完成触媒を得
た。
A finished catalyst was obtained in the same manner as in Example 1, except that the Pt, Pd and Rh containing zirconia powder was used instead of the pt and Rh containing zirconia powder.

この触媒のコーティング層をEPMAで分析したところ
Pt、PdおよびRh含有ジルコニアは平均粒子径13
μで分散していた。
When the coating layer of this catalyst was analyzed by EPMA, the average particle size of zirconia containing Pt, Pd, and Rh was 13.
It was dispersed in μ.

この触媒は一個当りPt 0.039(] 、PdO,
,026(1、Rh 0.013g含有していた。
This catalyst contains Pt 0.039(], PdO,
,026(1) Contained 0.013g of Rh.

実施例4 実施例1で用いたジルコニアの代わりに比表面積90f
fl/!II 、平均粒径150人を有するジルコニア
(第−稀元素化学製)を用いる以外は実施例1と同様な
方法で完成触媒を得た。
Example 4 Specific surface area 90f instead of zirconia used in Example 1
fl/! II. A finished catalyst was obtained in the same manner as in Example 1, except that zirconia (manufactured by Dai-Kigenso Kagaku) having an average particle size of 150 mm was used.

この触媒のコーティング層をEPMAで分析したところ
ptおよびR11含有ジルコニアは平均粒子径2μで分
散していた。
When the coating layer of this catalyst was analyzed by EPMA, it was found that zirconia containing pt and R11 was dispersed with an average particle size of 2 μm.

こ(DM[は−11M]当りPt 0.065(+ 、
Rh0.013(l含有していた。
This (DM [is -11M] per Pt 0.065 (+,
It contained Rh0.013 (l).

実施例5 厚さ60μでアルミニウムを5重量%含有するフェライ
トステンレススチールの薄板と、この薄板をピッチ2.
5mmの波形に成形した波板とを交互に重ねて積層し、
外径33sφ、長さ76mmの円柱状の金属製モノリス
担体を成形した。この担13一 体は横断面が1インチ平方当り約475個のガス流通セ
ルを有していた。
Example 5 A thin plate of ferritic stainless steel having a thickness of 60 μm and containing 5% by weight of aluminum, and this thin plate having a pitch of 2.
Laminated by alternating layers of corrugated sheets formed into 5mm corrugated shapes,
A cylindrical metal monolith carrier having an outer diameter of 33 sφ and a length of 76 mm was molded. The carrier 13 had a cross section of approximately 475 gas flow cells per square inch.

実施例1においてコージェライト質モノリス担体の代わ
りに上記金属製モノリス担体を用いる以外は実施例1と
同様な方法で完成触媒を得た。
A completed catalyst was obtained in the same manner as in Example 1 except that the above metal monolith support was used instead of the cordierite monolith support.

このコーティング層をEPMAで分析したところPtお
よびRh含有ジルコニアは平均粒子径6μで分散してい
た。
When this coating layer was analyzed by EPMA, it was found that Pt and Rh-containing zirconia were dispersed with an average particle size of 6 μm.

この触媒は一個当りPt 0.065G 、Rh0.0
13(l含有していた。
This catalyst has Pt 0.065G and Rh0.0 per piece.
It contained 13 (l).

実施例6 硝酸セリウム(Ce  (No3)3 ・6H20)2
5.2Qと、硝酸鉄(Fe  (No:l )3  ・
9H20)10.1gを純水100gに溶解し、比表面
積100TIt/gの活性アルミナ127gと混合して
120℃で一晩乾燥した。その後空気中700℃で1時
間焼成してCe 02およびFe2O:l含有アルミナ
粉体を得た。
Example 6 Cerium nitrate (Ce (No3)3 ・6H20)2
5.2Q and iron nitrate (Fe (No:l)3 ・
9H20) was dissolved in 100 g of pure water, mixed with 127 g of activated alumina having a specific surface area of 100 TIt/g, and dried at 120° C. overnight. Thereafter, it was calcined in air at 700° C. for 1 hour to obtain alumina powder containing Ce 02 and Fe 2 O:l.

実施例1において、139gの活性アルミナの代わりに
上記Ce 02およびFe 20:l含有アルミナを用
いる以外は実施例1と同様にして完成触媒を得た。
A finished catalyst was obtained in the same manner as in Example 1, except that the above Ce 02 and Fe 20:1-containing alumina was used instead of 139 g of activated alumina.

この触媒のコーティング層をEPMAで分析したところ
PtおよびRh含有ジルコニアが平均粒子径5μで分散
していた。
When the coating layer of this catalyst was analyzed by EPMA, it was found that Pt and Rh-containing zirconia were dispersed with an average particle size of 5 μm.

また、この触媒は一個当りPt0.065(1。Moreover, this catalyst has Pt0.065 (1.

Rh 0.013!IJ含有していた。Rh 0.013! It contained IJ.

比較例1 実施例1で用いた比表面積100m/qの活性アルミナ
150gをボールミルで20時時間式粉砕することによ
りコーティング用水性スラリーを調整した。
Comparative Example 1 An aqueous slurry for coating was prepared by milling 150 g of the activated alumina having a specific surface area of 100 m/q used in Example 1 for 20 hours in a ball mill.

このコーティング用水性スラリーと実施例1と同様な方
法でコージェライト質モノリス担体にアルミナとして6
.5gコーティングした。この活性アルミナコーティン
グ担体をジニトロジアンミン白金の硝酸水溶液と硝酸ロ
ジウム水溶液との混合溶液に浸漬し、引き出した後、圧
縮空気で余分な水溶液を除いた後、130℃で3時間乾
燥し、空気中400℃で2時間焼成し完成触媒を得た。
This coating aqueous slurry was applied to a cordierite monolithic support as alumina by the same method as in Example 1.
.. 5g coated. This activated alumina-coated carrier was immersed in a mixed solution of dinitrodiammine platinum in nitric acid and rhodium nitrate, pulled out, excess aqueous solution removed with compressed air, dried at 130°C for 3 hours, and heated to 400°C in air. A completed catalyst was obtained by calcining at ℃ for 2 hours.

この触媒のコーティング層をEPMAで分析したところ
Pt 、Rh共に0.5μ以上の粒子としては検出され
なかった。
When this catalyst coating layer was analyzed by EPMA, neither Pt nor Rh particles were detected as particles larger than 0.5μ.

この触媒は一個当りPt 0.065g、Rh0.01
3(+含有していた。
This catalyst has Pt 0.065g and Rh0.01 per piece.
3 (+).

比較例2 実施例1で用いた比表面積60TIt/(1,平均粒径
200人のジルコニア150gをボールミルで20時時
間式粉砕することによりコーティング用水性スラリーを
調整した。
Comparative Example 2 An aqueous slurry for coating was prepared by milling 150 g of zirconia with a specific surface area of 60 TIt/(1 and an average particle size of 200) used in Example 1 for 20 hours in a ball mill.

このコーティング用水性スラリーと実施例1と同様な方
法でコージェライト質モノリス担体にジルコニアとして
6.5gコーティングした。このジルコニアコーティン
グ担体に比較例1と同様な方法でPtとRhを担持し完
成触媒を得た。
A cordierite monolith carrier was coated with 6.5 g of zirconia using this aqueous coating slurry in the same manner as in Example 1. Pt and Rh were supported on this zirconia coated carrier in the same manner as in Comparative Example 1 to obtain a completed catalyst.

この触媒のコーティング層をEPMAで分析したところ
Pt、Rh共に0.5μ以上の粒子としては検出されな
かった。
When this catalyst coating layer was analyzed by EPMA, neither Pt nor Rh particles were detected as particles larger than 0.5 μm.

この触媒は一個当りPt 0.065g、RhO,01
3q含有していた。
This catalyst contains 0.065g of Pt and 0.01g of RhO per piece.
It contained 3q.

[発明の効果] 実施例1から実施例6までの触媒と、比較例1゜比較例
2の触媒の電気炉エージング後における触媒性能を調べ
た。
[Effects of the Invention] The catalyst performance of the catalysts of Examples 1 to 6 and the catalysts of Comparative Example 1 and Comparative Example 2 after aging in an electric furnace was investigated.

電気炉エージングは、空気中900℃で10時間触媒を
加熱するという、非常に厳しい高温酸化雰囲気で行なっ
た。
The electric furnace aging was carried out in a very harsh high temperature oxidizing atmosphere by heating the catalyst in air at 900° C. for 10 hours.

エージング後の触媒性能の評価は、市販の電子制御方式
のエンジン(4気筒1800cc)を使用し、各触媒を
充填したマルチコンバーターを、エンジンの排気系に連
設して行なった。空燃比をA/F=14.6に固定して
エンジンを運転し、エンジン排気系の触媒コンバーター
の前に熱交換器を取り付けて、触媒入口ガス温度を30
0℃から500℃まで連続的に変化させた時の触媒入口
及び出口ガス組成を分析してC○、HC及びNoの浄化
率を求めることにより触媒の低温での浄化性能を評価し
た。
The catalyst performance after aging was evaluated using a commercially available electronically controlled engine (4 cylinders, 1800 cc), with a multi-converter filled with each catalyst connected to the exhaust system of the engine. The engine is operated with the air-fuel ratio fixed at A/F = 14.6, a heat exchanger is installed in front of the catalytic converter in the engine exhaust system, and the catalyst inlet gas temperature is set to 30.
The purification performance of the catalyst at low temperatures was evaluated by analyzing the catalyst inlet and outlet gas compositions when continuously changing from 0° C. to 500° C. and determining the purification rates of CO, HC, and No.

上記のようにして求めたGo、HC及びNoの浄化率対
触媒入ロガス温度をグラフにプロットし、浄化率が50
%を示す触媒入口ガス温度(Tso)を求めて、触媒の
低温での浄化性能を評価する基準とした。
The purification rates of Go, HC, and No obtained as described above are plotted on a graph versus the temperature of the log gas containing the catalyst, and the purification rate is 50.
The catalyst inlet gas temperature (Tso) in % was determined and used as a standard for evaluating the purification performance of the catalyst at low temperatures.

以上の触媒性能評価方法により得られた結果を第1表に
示す。
Table 1 shows the results obtained by the above catalyst performance evaluation method.

次に、実施例1から実施例6までの触媒と、比較例1.
比較例2の触媒のエンジン耐久走行後における触媒活性
を調べた。
Next, the catalysts of Examples 1 to 6 and Comparative Example 1.
The catalytic activity of the catalyst of Comparative Example 2 was investigated after the engine was run for a long time.

市販の電子制御方式のエンジン(8気筒47100CC
)を使用し、各触媒を充填したマルチコンバーターをエ
ンジンの排気系に連設して耐久テストを行なった。エン
ジンは定常運転60秒、減速6秒(減速時に燃料がカッ
トされて、触媒は高温酸化雰囲気の厳しい条件に曝され
る)というモード運転で運転し、触媒入口ガス温度が定
常運転時800℃となる条件で50時間触媒をエージン
グした。
Commercially available electronically controlled engine (8 cylinders 47100CC)
), and a multi-converter filled with each catalyst was connected to the engine exhaust system for durability testing. The engine was operated in a mode of steady operation for 60 seconds and deceleration for 6 seconds (during deceleration, fuel is cut and the catalyst is exposed to severe conditions of a high temperature oxidizing atmosphere), and the catalyst inlet gas temperature was 800°C during steady operation. The catalyst was aged for 50 hours under the following conditions.

エンジン耐久走行後の触媒性能評価は、前記電気炉エー
ジング後の評価と全く同じ方法で行ない低温での浄化性
能を比較した。その結果を次に第2表に示す。
Catalyst performance evaluation after engine endurance running was performed in exactly the same manner as the evaluation after electric furnace aging, and purification performance at low temperatures was compared. The results are shown in Table 2 below.

第2表 エンジン耐久走行後の触媒性能評価第1表およ
び第2表より明らかなように本発明に開示する白金、パ
ラジウムおよびロジウムを高い担持率で担持したジルコ
ニアを0.1〜20μの範囲の平均粒子径を有する凝集
粒子としてコーティング層に分散させた実施例1から実
施例6の触媒はいずれも、貴金属を従来の担持状態とし
た比較例1および比較例2の触媒よりも非常にすぐれた
触媒性能を示した。
Table 2 Evaluation of catalyst performance after engine endurance running As is clear from Tables 1 and 2, zirconia having a high loading rate of platinum, palladium and rhodium disclosed in the present invention was used in a range of 0.1 to 20μ. The catalysts of Examples 1 to 6, which were dispersed in the coating layer as agglomerated particles having an average particle size, were significantly superior to the catalysts of Comparative Examples 1 and 2, in which precious metals were conventionally supported. It showed catalytic performance.

以上の結果から、本発明に開示する触媒の通常のエンジ
ン走行条件はもちろん高温酸化雰囲気のような厳しい条
件下でも劣化の少ない優れた耐久性をもつ触媒であるこ
とが明らかである。
From the above results, it is clear that the catalyst disclosed in the present invention has excellent durability with little deterioration even under severe conditions such as normal engine running conditions as well as high temperature oxidizing atmosphere.

特許出願人 日本触媒化学工業株式会社手続補正書 く
自発) 昭和62年 S月夕日
Patent applicant Nippon Shokubai Kagaku Kogyo Co., Ltd. Procedural Amendment (Spontaneous) Sunset in September 1988

Claims (5)

【特許請求の範囲】[Claims] (1)白金および/またはパラジウムを5〜30重量%
の範囲およびロジウムを1〜20重量%の範囲担持せし
めてなるジルコニア(a)を0.1〜20μの平均粒子
径の凝集粒子の形で含有せしめた触媒組成物を一体構造
を有するハニカム担体に被覆担持せしめてなることを特
徴とする排気ガス浄化用触媒。
(1) 5 to 30% by weight of platinum and/or palladium
and a catalyst composition containing zirconia (a) carrying rhodium in the range of 1 to 20% by weight in the form of agglomerated particles with an average particle diameter of 0.1 to 20μ to a honeycomb carrier having an integral structure. An exhaust gas purifying catalyst characterized by being supported by a coating.
(2)当該触媒組成物が、当該ジルコニア(a)および
耐火性無機酸化物(b)からなることを特徴とする特許
請求の範囲(1)記載の触媒。
(2) The catalyst according to claim (1), wherein the catalyst composition comprises the zirconia (a) and the refractory inorganic oxide (b).
(3)当該担体1lあたり、当該ジルコニア(a)を1
〜20g、当該耐火性無機酸化物(b)を50〜200
gを担持せしめてなることを特徴とする特許請求の範囲
(2)記載の触媒。
(3) Add 1 zirconia (a) per 1 liter of the carrier.
~20g, 50~200g of the refractory inorganic oxide (b)
The catalyst according to claim (2), characterized in that it supports g.
(4)用いられるジルコニアが少くとも10m^2/g
の比表面積を有し、かつその一次粒子の平均粒径が20
00Å以下であることを特徴とする特許請求の範囲(1
)、(2)または(3)記載の触媒。
(4) Zirconia used is at least 10 m^2/g
has a specific surface area of , and the average particle size of its primary particles is 20
00 Å or less (1
), (2) or (3).
(5)用いられる耐火性無機酸化物(b)が、活性アル
ミナであることを特徴とする特許請求の範囲(2)、(
3)または(4)記載の触媒。
(5) Claims (2) and (2) characterized in that the refractory inorganic oxide (b) used is activated alumina.
3) or the catalyst described in (4).
JP62009110A 1986-12-18 1987-01-20 Catalyst for purifying exhaust gas Granted JPS63178848A (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
JP62009110A JPS63178848A (en) 1987-01-20 1987-01-20 Catalyst for purifying exhaust gas
US07/134,363 US4904633A (en) 1986-12-18 1987-12-17 Catalyst for purifying exhaust gas and method for production thereof
DE3751403T DE3751403T2 (en) 1986-12-18 1987-12-18 Exhaust gas purification catalyst and process for its manufacture.
KR1019870014488A KR930000917B1 (en) 1986-12-18 1987-12-18 Catalyst for purifying exhaust gas and method for its production
EP87311178A EP0272136B1 (en) 1986-12-18 1987-12-18 Catalyst for purifying exhaust gas and method for its production
EP19930201246 EP0558159A3 (en) 1986-12-18 1987-12-18 Catalyst for purifying exhaust gas and method for production thereof
AU10648/88A AU604083B2 (en) 1987-01-20 1988-01-19 Catalyst for purifying exhaust gas and method for production thereof
CN91102032A CN1055302A (en) 1987-01-20 1988-01-20 The catalyst of purifying exhaust air and production method thereof
CN88100589A CN1013245B (en) 1987-01-20 1988-01-20 Catalyst for purifying exhaust gas and method for prodn. thereof
KR1019920016764A KR930000918B1 (en) 1986-12-18 1992-09-15 Catalyst for purifying exhaust gas and method for its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62009110A JPS63178848A (en) 1987-01-20 1987-01-20 Catalyst for purifying exhaust gas

Publications (2)

Publication Number Publication Date
JPS63178848A true JPS63178848A (en) 1988-07-22
JPH0578379B2 JPH0578379B2 (en) 1993-10-28

Family

ID=11711488

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62009110A Granted JPS63178848A (en) 1986-12-18 1987-01-20 Catalyst for purifying exhaust gas

Country Status (1)

Country Link
JP (1) JPS63178848A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63185451A (en) * 1986-09-05 1988-08-01 Nippon Shokubai Kagaku Kogyo Co Ltd Catalyst for purifying exhaust gas
JPH01236942A (en) * 1988-03-14 1989-09-21 Mazda Motor Corp Catalyst for purifying exhaust gas
WO1994025143A1 (en) * 1993-04-28 1994-11-10 Nippon Shokubai Co., Ltd. Method of removing nitrogen oxides contained in exhaust gas
JP2006026635A (en) * 1993-04-28 2006-02-02 Nippon Shokubai Co Ltd Method of removing nitrogen oxides contained in exhaust gas
JP2007005031A (en) * 2005-06-21 2007-01-11 Mitsubishi Heavy Ind Ltd Catalyst for fuel gas combustion, fuel cell system, and combustion method of fuel gas

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63185451A (en) * 1986-09-05 1988-08-01 Nippon Shokubai Kagaku Kogyo Co Ltd Catalyst for purifying exhaust gas

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63185451A (en) * 1986-09-05 1988-08-01 Nippon Shokubai Kagaku Kogyo Co Ltd Catalyst for purifying exhaust gas

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63185451A (en) * 1986-09-05 1988-08-01 Nippon Shokubai Kagaku Kogyo Co Ltd Catalyst for purifying exhaust gas
JPH0578381B2 (en) * 1986-09-05 1993-10-28 Nippon Catalytic Chem Ind
JPH01236942A (en) * 1988-03-14 1989-09-21 Mazda Motor Corp Catalyst for purifying exhaust gas
WO1994025143A1 (en) * 1993-04-28 1994-11-10 Nippon Shokubai Co., Ltd. Method of removing nitrogen oxides contained in exhaust gas
US5756057A (en) * 1993-04-28 1998-05-26 Nippon Shokubai Co., Ltd. Method for removal of nitrogen oxides from exhaust gas
JP2006026635A (en) * 1993-04-28 2006-02-02 Nippon Shokubai Co Ltd Method of removing nitrogen oxides contained in exhaust gas
JP2010184238A (en) * 1993-04-28 2010-08-26 Nippon Shokubai Co Ltd Method of removing nitrogen oxides in exhaust gas
JP2012236193A (en) * 1993-04-28 2012-12-06 Nippon Shokubai Co Ltd Method of removing nitrogen oxides in exhaust gas
JP2007005031A (en) * 2005-06-21 2007-01-11 Mitsubishi Heavy Ind Ltd Catalyst for fuel gas combustion, fuel cell system, and combustion method of fuel gas
JP4699101B2 (en) * 2005-06-21 2011-06-08 三菱重工業株式会社 Fuel gas combustion catalyst, fuel cell system, and fuel gas combustion method

Also Published As

Publication number Publication date
JPH0578379B2 (en) 1993-10-28

Similar Documents

Publication Publication Date Title
KR910004071B1 (en) Catalyst for purifying exhaust gas
US4504598A (en) Process for producing honeycomb catalyst for exhaust gas conversion
KR101051418B1 (en) Catalyst for purification of exhaust gas, method for producing same and method for purification of exhaust gas using such catalyst
JP2018528847A (en) Nitrous oxide removal catalyst for exhaust system
JPH0626672B2 (en) Exhaust purification catalyst and method of manufacturing the same
JPS63162043A (en) Catalyst for cleaning exhaust gas
JP5014845B2 (en) Exhaust gas purification catalyst, method for producing the same, and exhaust gas purification method using such a catalyst
CN111065456B (en) Exhaust gas purifying catalyst
JP2020528348A (en) N2O removal from vehicle exhaust for lean / rich systems
EP1722889A1 (en) Exhaust gas purifying catalyst, metal oxide particle and production process thereof
CN114961940A (en) Novel three-zone two-layer TWC catalyst for gasoline exhaust gas applications
CN113042045A (en) Catalyst for exhaust gas purification
JP3297825B2 (en) Exhaust gas purification catalyst
JPH05237390A (en) Catalyst for purification of exhaust gas
JPS63156545A (en) Catalyst for purifying exhaust gas
JP2021104473A (en) Exhaust gas purification catalyst
JPH0578378B2 (en)
JPS63178848A (en) Catalyst for purifying exhaust gas
JPH0578380B2 (en)
JPH0573463B2 (en)
JPS6054730A (en) Catalyst for purifying exhaust gas
JPH0573462B2 (en)
JPH0554381B2 (en)
JPH0573465B2 (en)
JP4106762B2 (en) Exhaust gas purification catalyst device and purification method