JPS63171804A - Utilization of oxygen blast furnace gas - Google Patents

Utilization of oxygen blast furnace gas

Info

Publication number
JPS63171804A
JPS63171804A JP62001851A JP185187A JPS63171804A JP S63171804 A JPS63171804 A JP S63171804A JP 62001851 A JP62001851 A JP 62001851A JP 185187 A JP185187 A JP 185187A JP S63171804 A JPS63171804 A JP S63171804A
Authority
JP
Japan
Prior art keywords
gas
blast furnace
oxygen blast
furnace gas
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62001851A
Other languages
Japanese (ja)
Inventor
Shiro Fujii
藤井 史郎
Kazutsugu Kitajima
北島 一嗣
Toshio Watanabe
渡辺 富志男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP62001851A priority Critical patent/JPS63171804A/en
Publication of JPS63171804A publication Critical patent/JPS63171804A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/10Reduction of greenhouse gas [GHG] emissions
    • Y02P10/143Reduction of greenhouse gas [GHG] emissions of methane [CH4]

Landscapes

  • Blast Furnaces (AREA)

Abstract

PURPOSE:To produce substitution gas of natural gas, which can utilize as fuel gas for various uses, by treating de-CO, de-S after removing dust in oxygen blast furnace gas and removing the impurities by reaction of adjusted H2/CO ratio. CONSTITUTION:After removing the dust in the oxygen blast furnace gas 1 obtd. from the furnace top of oxygen blast furnace 10 by a rough dust collector 2, a part of the gas is used to preheating of raw material charged in the oxygen blast furnace 10. After the remaining part of gas is treated by supplying successively to de-S mechanism 5 and de-CO mechanism 6 through a pressurized sending mechanism 10, H2/CO ratio is adjusted by H2 source introducing device 16. Next, after reacting the gas by supplying to a reaction tower 8 through the pressurized rising mechanism 7, it is supplied to an impurity remover 15 through a cooler 9, to remove the impurities and make the production gas 11. In this way, the substitute fuel gas having about 10,000-11,000kcal/Nm<3> is obtd.

Description

【発明の詳細な説明】 「発明の目的」 (産業上の利用分野) 酸素高炉から発生する高炉ガスの処理利用技術。[Detailed description of the invention] "Purpose of invention" (Industrial application field) Technology for processing and utilizing blast furnace gas generated from oxygen blast furnaces.

(従来の技術) 高濃度の酸素を高炉羽口から吹込んで操業することによ
って有利な操業をなすことが可能であり、斯うした方法
については特開昭60−159104号公報に記載され
ている。
(Prior art) Advantageous operations can be achieved by injecting high-concentration oxygen through the blast furnace tuyere, and such a method is described in JP-A-60-159104. .

(発明が解決しようとする問題点) 上記のような従来の酸素高炉から発生する高炉ガスは、
一般的には1300〜2000Kca17Nnfとカロ
リーが普通高炉から発生する高炉ガスより高いので、こ
の酸素高炉ガスを普通高炉ガスの回収利用系において利
用することは極めて運用上の困難性を伴う。
(Problems to be solved by the invention) The blast furnace gas generated from the conventional oxygen blast furnace as described above is
Generally, it has a calorific value of 1,300 to 2,000 Kcal and 17 Nnf, which is higher than that of blast furnace gas generated from an ordinary blast furnace, so it is extremely difficult to use this oxygen blast furnace gas in a recovery and utilization system for ordinary blast furnace gas.

そこでこの酸素高炉ガスを全く別個の貯蔵ないし配管設
備を設けて利用することも考えられるが、そのための設
備費ないし機器費が莫大となり実質的に困難である。
Therefore, it is conceivable to utilize this oxygen blast furnace gas by providing a completely separate storage or piping facility, but this would require enormous equipment costs and would be practically difficult.

「発明の構成」 (問題点を解決するための手段) 本発明は上記したような従来のものの問題点を解消する
ように創案されたもので、酸素高炉ガスを粗集塵してか
ら脱COおよび脱S処理し、次いでH2/CO比を調整
したものを反応塔に送って反応せしめ、不純分を除去し
て代替天然ガスを得ることを特徴とする酸素高炉ガスの
利用方法である。
"Structure of the Invention" (Means for Solving the Problems) The present invention was devised to solve the problems of the conventional products as described above. This is a method of utilizing oxygen blast furnace gas, which is characterized in that it undergoes S removal treatment, and then sends the gas with an adjusted H2/CO ratio to a reaction tower for reaction, removes impurities, and obtains an alternative natural gas.

(作用) 粗菓じんされた酸素高炉ガスを脱CO即ちC調整をなし
且つ脱Sすることによって、後段反応塔における反応触
媒の被毒による活性度低下を回避する。
(Function) By removing CO, that is, adjusting C, and removing S from the oxygen blast furnace gas which has been reduced to coarse dust, a reduction in activity due to poisoning of the reaction catalyst in the latter reaction tower is avoided.

又H2ガス、コークス炉ガス、スチームなどによりCO
とH2の比を調整することにより例えばH2/CO比が
大きいと、メタン生成に有利であり、この比が小さくな
るとエタン、プロパン等の02の炭化水素が生成しやす
くなると云うように、生成ガスのコントロールが可能で
ある。
Also, CO is removed by H2 gas, coke oven gas, steam, etc.
By adjusting the ratio of H2 and H2, for example, if the H2/CO ratio is large, it is advantageous for methane production, and if this ratio is small, it becomes easier to produce 02 hydrocarbons such as ethane and propane. control is possible.

更に反応塔で、例えば20〜30kg/aJ、300〜
500℃の操作条件により反応させることにより炭化水
素化反応 GO+3Hz −’CH4+H20,2CO
+2H! −CH4+co*、Co2+4H2−’CH
4+2H!O、CO+H!0−4CO2+)(、の進行
を速めると共に熱量を更に高める。
Furthermore, in a reaction tower, for example, 20 to 30 kg/aJ, 300 to
Hydrocarbonization reaction by reacting under operating conditions of 500℃ GO+3Hz -'CH4+H20,2CO
+2H! -CH4+co*, Co2+4H2-'CH
4+2H! O, CO+H! 0-4CO2+)(,) and further increases the amount of heat.

反応塔出口ガス中のC01CO□、Nz s Hzのよ
うな不純物を除(ことにより10000〜11000 
Kcal /Nrrr程度の好ましい代替燃料ガスが得
られる。
Removal of impurities such as CO1CO□ and Nz s Hz in the reaction tower outlet gas (possibly 10,000 to 11,000
A preferable alternative fuel gas of about Kcal/Nrrr is obtained.

即ち本発明者等は上記したような酸素高炉ガスの好まし
い利用法について種々の検討を重ねた結果、上記酸素高
炉ガスにおいてはNi分が少く、Co、co、、H2が
主成分であり、このような酸素高炉ガス成分のうちでC
Oおよび8分を除去し、しかもH2ガス、コークス炉ガ
ス、スチームなどによりCOとH2の比率を調整するこ
とにより容易に代替天然ガス化し得ることを確認した。
That is, as a result of various studies on the preferable use of the oxygen blast furnace gas as described above, the present inventors found that the oxygen blast furnace gas has a low Ni content and the main components are Co, co, and H2. Among the oxygen blast furnace gas components, C
It was confirmed that natural gas can be easily substituted by removing O and 8% and adjusting the ratio of CO and H2 using H2 gas, coke oven gas, steam, etc.

前記したCO除去は吸着法、溶液吸着法などによって適
切に実施することができる。又脱Sは水添吸着法などに
よって的確に達成し得る。CoとH2の比率に関しては
一般的にHz/Co比を2゜6〜4.5程度とする。即
ちH,/Coが266以下では触媒の表面に炭素質の析
出2CO→CO□+Cを生じ触媒の活性を著しく低下さ
せる。又このHt/Coが4.5を越えるときは生成ガ
スが目標とするカロリー(11000Kcal/Nrr
r)よりも低く、カロリーアップ用のLPGの使用量が
多くなり、製造コストのアップにつながる。反応塔にお
ける操作条件は一般的に20〜30kJr/−で、且つ
300〜500℃である。即ち20−/−未満であれば
炭素質の析出が、又、圧力が高いと動力費がかさみ、高
製造コストとなる。500℃以上であると、炭化水素化
反応の進行が遅くなる。
The above-mentioned CO removal can be appropriately carried out by an adsorption method, a solution adsorption method, or the like. Further, the removal of S can be accurately achieved by a hydrogenation adsorption method or the like. Regarding the ratio of Co and H2, the Hz/Co ratio is generally set to about 2.6 to 4.5. That is, when H,/Co is less than 266, carbonaceous deposits 2CO→CO□+C are formed on the surface of the catalyst, which significantly reduces the activity of the catalyst. Also, when this Ht/Co exceeds 4.5, the generated gas has the target calorie (11000Kcal/Nrr
r), and the amount of LPG used to increase calories increases, leading to an increase in manufacturing costs. The operating conditions in the reaction tower are generally 20-30 kJr/- and 300-500°C. That is, if the pressure is less than 20 -/-, carbonaceous substances will precipitate, and if the pressure is high, the power cost will increase, leading to high manufacturing costs. If the temperature is 500°C or higher, the progress of the hydrocarbonization reaction will be slow.

又、300℃以下にするためには、多量の冷却水が必要
となり、動力コストがかさむ。なお反応塔においてはN
i系、Ru系、Co系などの触媒を用いて反応させる。
Further, in order to lower the temperature to 300° C. or lower, a large amount of cooling water is required, which increases the power cost. Note that in the reaction tower, N
The reaction is carried out using an i-based, Ru-based, or Co-based catalyst.

上記したような本発明方法を実施する設備の概要を添附
図面について説明すると、酸素高炉10の炉頂から得ら
れる酸素高炉ガス1は粗菓しん機2で除塵された後、そ
の一部は燃焼器3で適宜に酸素などが添加燃焼されて高
温化されてから前記酸素高炉lOのシャフト部に供給さ
れ、該酸素高炉10に装入された原料を予熱するように
成っている。前記酸素高炉10から排出され粗菓塵され
た酸素高炉ガス1の残部は圧送機構4を介して脱S機構
5および脱CO機構6に順次供給され、脱CO機構6は
コンプレッサーのような昇圧機構7及びH2源導入装置
16を介して反応塔8に接続されている。反応塔8は冷
却機構9を介して不純分除去器15に接続され、製品ガ
ス11が得られるように成っている。
The outline of the equipment for carrying out the method of the present invention as described above will be explained with reference to the attached drawings. After the oxygen blast furnace gas 1 obtained from the top of the oxygen blast furnace 10 is removed by the coarse confectionery machine 2, a part of it is combusted. Oxygen and the like are suitably added and combusted in the vessel 3 to raise the temperature and then supplied to the shaft portion of the oxygen blast furnace 10 to preheat the raw material charged into the oxygen blast furnace 10. The remainder of the oxygen blast furnace gas 1 discharged from the oxygen blast furnace 10 and crushed into dust is sequentially supplied to a de-S mechanism 5 and a de-CO mechanism 6 via a pressure-feeding mechanism 4, and the de-CO mechanism 6 is a pressure increasing mechanism such as a compressor. 7 and a reaction tower 8 via an H2 source introduction device 16. The reaction tower 8 is connected to an impurity remover 15 via a cooling mechanism 9, so that a product gas 11 can be obtained.

なお前記した脱CO機構6は部分燃焼器12にも接続さ
れ、酸素の如きを添加して部分燃焼せしめたものは炉頂
ガス発電機13において電力を得しめ、しかも前記部分
燃焼器12において通常の高炉ガス(800Kcaj2
/No?)レベルまでカロリー低下されたガスは前記炉
頂ガス発電機13から既存の通常高炉ガス利用ライン1
4に供給されるように構成しである。
The above-mentioned CO removal mechanism 6 is also connected to a partial combustor 12, and the partially combusted material by adding oxygen or the like generates electric power in the furnace top gas generator 13. blast furnace gas (800Kcaj2
/No? ) The gas whose calorie has been reduced to the level of
4.

(実施例) 前記したような設備を利用して具体的に操業した結果に
ついて説明すると、出銑量5QOOt/dayの高炉1
0に鉱石およびコークスを装入し、羽口から95%程度
の純度をもった酸素ガス6880 (H’jrrr/h
rと微粉炭62500 kg/hrを吹込み、又炉頂か
らの高炉ガスを燃焼器3で空気を吹込みながら燃焼し約
1000℃とされたものをシャフト部に吹込んで装入原
料を予熱しながら操業した。即ちこのときの高炉ガスの
組成はc。
(Example) To explain the results of a concrete operation using the above-mentioned equipment, a blast furnace 1 with an iron output of 5QOOt/day
Oxygen gas with a purity of about 95% (6880 H'jrrr/h) was charged from the tuyeres.
62,500 kg/hr of pulverized coal and 62,500 kg/hr of pulverized coal were blown into the furnace, and the blast furnace gas from the top of the furnace was combusted in the combustor 3 while blowing air, and the resulting mixture was brought to about 1000°C and then blown into the shaft to preheat the charging material. It was operated while That is, the composition of the blast furnace gas at this time is c.

が48.5%、CO,が36.8%であって、1740
Kcaj!/Nnfのものである。
is 48.5%, CO is 36.8%, and 1740
Kcaj! /Nnf.

上記高炉ガスの燃焼器3に送られた以外のもの1000
0 Nrrr/hrは脱COおよび脱S処理されてから
H2源導入装置16からH2ガス380ONrrr/h
r導入し、Hx /Co比を3.5に調整し、これを昇
圧機構7で25kg/aj程度に昇圧して反応塔8に送
り込んだ。
Items other than those sent to the blast furnace gas combustor 3 1000
0 Nrrr/hr is H2 gas 380ONrrr/h from the H2 source introducing device 16 after CO and S removal processing.
The Hx /Co ratio was adjusted to 3.5, the pressure was increased to about 25 kg/aj by the pressure increasing mechanism 7, and the pressure was increased to the reaction tower 8.

反応塔8においては23kg/cd、380℃でNi触
媒を用い反応処理され、490℃の反応塔出口ガスは冷
却器9において40℃に冷却されてから不純分除去器1
5で、CO! 、Nt 、Hz 、G Oなどの不純分
を吸着法により除去して10500KcallNrdの
熱量を有する製品燃料ガスを得た。
In the reaction tower 8, reaction treatment is carried out using a Ni catalyst at 23 kg/cd and 380°C, and the reaction tower outlet gas at 490°C is cooled to 40°C in the cooler 9, and then sent to the impurity remover 1.
At 5, CO! , Nt , Hz , and G 2 O were removed by adsorption to obtain a product fuel gas having a calorific value of 10,500 KcallNrd.

なおこの場合において、昇圧機構7に入るガスに対し、
4550 Kcaj!/Nnfのコークス炉ガス500
0 Nrrf/hr及び水蒸気2300kg/Hの添加
した場合には、得られる製品ガスの熱量は11080K
cal/Nrrrとなり、又その量は3580 Nrr
r/hrとなった。製品ガスの組成は、CH482,5
%、CaH213,5%、C3H112,5%、C4H
I01.0%、Hzo、5%であった。
In this case, for the gas entering the pressure boosting mechanism 7,
4550 Kcaj! /Nnf coke oven gas 500
When adding 0 Nrrf/hr and water vapor of 2300 kg/H, the calorific value of the product gas obtained is 11080 K.
cal/Nrrr, and the amount is 3580 Nrr
It became r/hr. The composition of the product gas is CH482,5
%, CaH213.5%, C3H112.5%, C4H
I01.0%, Hzo, 5%.

又前記酸素高炉ガス132100Nrrf/hrを部分
燃焼器12で02を14900 Nrrr/hrの割合
で添加し部分燃焼させてから炉頂ガス発電機13で発電
させることにより14300 Kw/hrの電力が得ら
れ、しかも800 Kcal/Nrrr程度とされた普
通高炉ガスレベルのガスを35400ONITr/hr
得ることができ、このガスは既設の高炉ガス設備に混入
して使用できた。
In addition, 132,100 Nrrf/hr of the oxygen blast furnace gas is added to the oxygen blast furnace gas at a rate of 14,900 Nrrf/hr in the partial combustor 12 and partially combusted, and then the furnace top gas generator 13 generates electricity, thereby generating 14,300 Kw/hr of electric power. Moreover, the gas at the level of normal blast furnace gas, which is about 800 Kcal/Nrrr, is 35400ONITr/hr.
This gas could be used by mixing it into the existing blast furnace gas equipment.

「発明の効果」 以上説明したような本発明によるときは酸素高炉から発
生するガスを用いて代替天然ガスを得しめ、これを燃料
ガスとして各種の用途に利用し得るものであって、酸素
高炉を燃料ガス製造目的にも利用したものと言うべきで
あって、有利な酸素高炉操業をなし得ることは当然であ
り、工業的にその効果の大きい発明である。
"Effects of the Invention" According to the present invention as explained above, gas generated from an oxygen blast furnace can be used to obtain alternative natural gas, and this can be used as a fuel gas for various purposes. It should be said that this invention is also used for the purpose of producing fuel gas, and it is natural that an advantageous oxygen blast furnace operation can be achieved, and this invention is industrially highly effective.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の技術的内容を示すものであって、本発明
方法を実施する設備の概要を示した説明図である。 然してこの図面において、■は酸素高炉ガス、2は粗菓
塵機、3は燃焼機、4は圧送機構、5は脱S機構、6は
脱CO機構、7は昇圧機構、8は反応塔、9は冷却器、
lOは酸素高炉、11は製品ガス、12部分燃焼器、1
3は炉頂ガス発電機、14は通常高炉ガス利用ライン、
15は不純分除去機構、16はH2源導入機構を示すも
のである。
The drawings show the technical content of the present invention, and are explanatory diagrams showing an outline of equipment for implementing the method of the present invention. However, in this drawing, ■ is oxygen blast furnace gas, 2 is a coarse powder, 3 is a combustion machine, 4 is a pressure feeding mechanism, 5 is a de-S mechanism, 6 is a de-CO mechanism, 7 is a pressure boosting mechanism, 8 is a reaction tower, 9 is a cooler;
1O is the oxygen blast furnace, 11 is the product gas, 12 is the partial combustor, 1
3 is a furnace top gas generator, 14 is a normal blast furnace gas utilization line,
15 is an impurity removal mechanism, and 16 is an H2 source introduction mechanism.

Claims (2)

【特許請求の範囲】[Claims] (1)酸素高炉ガスを粗集塵してから脱COおよび脱S
処理し、次いでH_2/CO比を調整したものを反応塔
に送って反応せしめ、不純分を除去して代替天然ガスを
得ることを特徴とする酸素高炉ガスの利用方法。
(1) CO and S removal after rough dust collection of oxygen blast furnace gas
1. A method of utilizing oxygen blast furnace gas, which comprises treating the gas, and then sending the gas with an adjusted H_2/CO ratio to a reaction tower for reaction to remove impurities and obtain alternative natural gas.
(2)H_2/CO比を調整すると共にコークス炉ガス
を添加したものを反応塔に送って反応させる特許請求の
範囲第1項に記載した酸素高炉ガスの利用方法。
(2) A method for utilizing oxygen blast furnace gas as set forth in claim 1, in which the H_2/CO ratio is adjusted and coke oven gas is added and sent to a reaction tower for reaction.
JP62001851A 1987-01-09 1987-01-09 Utilization of oxygen blast furnace gas Pending JPS63171804A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62001851A JPS63171804A (en) 1987-01-09 1987-01-09 Utilization of oxygen blast furnace gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62001851A JPS63171804A (en) 1987-01-09 1987-01-09 Utilization of oxygen blast furnace gas

Publications (1)

Publication Number Publication Date
JPS63171804A true JPS63171804A (en) 1988-07-15

Family

ID=11513052

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62001851A Pending JPS63171804A (en) 1987-01-09 1987-01-09 Utilization of oxygen blast furnace gas

Country Status (1)

Country Link
JP (1) JPS63171804A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021106579A1 (en) * 2019-11-29 2021-06-03 Jfeスチール株式会社 Method for operating blast furnace, and facility equipped with blast furnace
WO2021106578A1 (en) * 2019-11-25 2021-06-03 Jfeスチール株式会社 Blast furnace operation method and blast furnace ancillary equipment
WO2021215059A1 (en) * 2020-04-24 2021-10-28 Jfeスチール株式会社 Blast furnace operation method and auxiliary facility for blast furnace
WO2023162344A1 (en) * 2022-02-24 2023-08-31 Jfeスチール株式会社 Method for operating blast furnace, method for producing hot metal, and auxiliary facility for blast furnace

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021106578A1 (en) * 2019-11-25 2021-06-03 Jfeスチール株式会社 Blast furnace operation method and blast furnace ancillary equipment
JPWO2021106578A1 (en) * 2019-11-25 2021-12-02 Jfeスチール株式会社 Blast furnace operation method and blast furnace ancillary equipment
TWI775216B (en) * 2019-11-25 2022-08-21 日商杰富意鋼鐵股份有限公司 Blast furnace operation method and blast furnace accessory equipment
WO2021106579A1 (en) * 2019-11-29 2021-06-03 Jfeスチール株式会社 Method for operating blast furnace, and facility equipped with blast furnace
JPWO2021106579A1 (en) * 2019-11-29 2021-12-02 Jfeスチール株式会社 Blast furnace operation method and blast furnace ancillary equipment
WO2021215059A1 (en) * 2020-04-24 2021-10-28 Jfeスチール株式会社 Blast furnace operation method and auxiliary facility for blast furnace
JP7028367B1 (en) * 2020-04-24 2022-03-02 Jfeスチール株式会社 Blast furnace operation method and blast furnace ancillary equipment
WO2023162344A1 (en) * 2022-02-24 2023-08-31 Jfeスチール株式会社 Method for operating blast furnace, method for producing hot metal, and auxiliary facility for blast furnace

Similar Documents

Publication Publication Date Title
US20220235426A1 (en) Method and system for producing steel or molten-iron-containing materials with reduced emissions
MX2007001249A (en) Method and apparatus for producing clean reducing gases from coke oven gas.
US9377242B2 (en) Method for treating waste gases from plants for pig iron production
PL224230B1 (en) Methods for recycling carbon dioxide into the gasification system
JPH0635613B2 (en) Pig iron manufacturing method
CA1059065A (en) Arc reforming of hydrocarbons
EP0985735B1 (en) Integrated directly reduced iron production and power generation
CN104017923A (en) Ironmaking method and ironmaking furnace system
JP7028364B2 (en) Blast furnace operation method and blast furnace ancillary equipment
CA1309589C (en) Method of producing a clean gas containing carbon monoxide and hydrogen
CN115427588A (en) Steel-making equipment and method for manufacturing reduced iron
US4062673A (en) Flash smelting of iron with production of hydrogen of hydrogenation quality
CN107151721A (en) A kind of Lurgi gasifying gas produces the system and method for DRI through dual turn over metaplasia
JPS585229B2 (en) Method and apparatus for producing reducing gas for metallurgical use
JPS63171804A (en) Utilization of oxygen blast furnace gas
EP0086504A2 (en) A process for generating mechanical power
CA1141549A (en) Production for reducing gas for furnace injection
CN207002777U (en) A kind of Lurgi gasifying gas converts the device of production DRI through steam
CN107164594A (en) A kind of BGL gasifying gas produces the system and method for DRI through dual turn over metaplasia
US3888658A (en) Process for the direct reduction of iron ore to steel
CN112662824A (en) Blast furnace hydrogen-rich smelting process for efficiently utilizing metallurgical waste gas
CN207002778U (en) A kind of Lurgi gasifying gas produces the device of DRI through dual turn over metaplasia
JPS63171807A (en) Operation method for oxygen blast furnace
JP2005089797A (en) Method of producing hydrogen and reduced iron, and device therefor
RU2808330C1 (en) Method for producing low-carbon ammonia from natural gas decarbonized ammonia-2500