JP2005089797A - Method of producing hydrogen and reduced iron, and device therefor - Google Patents

Method of producing hydrogen and reduced iron, and device therefor Download PDF

Info

Publication number
JP2005089797A
JP2005089797A JP2003322538A JP2003322538A JP2005089797A JP 2005089797 A JP2005089797 A JP 2005089797A JP 2003322538 A JP2003322538 A JP 2003322538A JP 2003322538 A JP2003322538 A JP 2003322538A JP 2005089797 A JP2005089797 A JP 2005089797A
Authority
JP
Japan
Prior art keywords
hydrogen
iron
reduction process
gas
iron oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003322538A
Other languages
Japanese (ja)
Inventor
Tadashi Nishimura
忠史 西村
Kenichi Yajima
健一 矢島
Eiji Inoue
英二 井上
Kazuo Tsutsumi
香津雄 堤
Chikanori Kumagai
親徳 熊谷
Yasushi Sakakida
康史 榊田
Keiichi Komai
啓一 駒井
Teruo Murata
輝夫 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd filed Critical Kawasaki Heavy Industries Ltd
Priority to JP2003322538A priority Critical patent/JP2005089797A/en
Publication of JP2005089797A publication Critical patent/JP2005089797A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Abstract

<P>PROBLEM TO BE SOLVED: To produce hydrogen and reduced iron at a low cost by using a mixture of iron ore-containing iron oxide and carbon-containing fuel as the raw material. <P>SOLUTION: The production method comprises: a reduction step for iron oxide where a mixture of iron ore-containing iron oxide and carbon-containing solid fuel is heated in a first reaction furnace 10, and is subjected to carbon reduction; and a reduction step for steam where the mixture subjected to the reduction stage is brought into contact with steam or steam-containing gas in a second reaction furnace 12 to produce hydrogen and carbon monoxide-containing combustion gas. The hydrogen and carbon monoxide-containing combustion gas obtained by the reduction step for steam is introduced into a hydrogen separation apparatus 14 to separate hydrogen, and the remaining gas from which the hydrogen has been separated is used as fuel for heating a mixture in a reduction step for iron oxide. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、鉄鉱石を含む酸化鉄と炭素を含む固体燃料との混合物を原料として、水素と還元鉄を安価に製造する方法及び装置に関するものである。   The present invention relates to a method and apparatus for producing hydrogen and reduced iron at a low cost using a mixture of iron oxide containing iron ore and solid fuel containing carbon as a raw material.

水素は、従来のように、石油の軽質化(クラッキング)のための原料や製鉄分野での還元用ガス等の各種化学反応用原料として用いられるだけでなく、近年は無公害の優れた原料として注目されている。特に最近、安価で容易に貯蔵出来る水素貯蔵合金が商業化されたこと、及び燃料電池の実用化により、水素の市場は急激に拡大しつつある。
このような状況下にあって、反応器のチューブ内に天然ガスと蒸気(スチーム)とを導入し加熱して水素を製造する従来方式に代わりより熱効率が良く、安価で、かつ簡単な方法の商業化が待たれており、各社が開発に凌ぎを削っている。
Hydrogen is not only used as a raw material for lightening (cracking) petroleum and as a raw material for various chemical reactions such as a reducing gas in the steelmaking field, but in recent years as an excellent source of pollution-free materials. Attention has been paid. In particular, recently, the hydrogen market has been rapidly expanding due to the commercialization of hydrogen storage alloys that are inexpensive and can be easily stored, and the practical application of fuel cells.
Under such circumstances, instead of the conventional method of producing hydrogen by introducing natural gas and steam (steam) into the reactor tube and heating it, it is more efficient, cheap and simple. Commercialization is awaited, and companies are surpassing development.

ところが、本発明者らは、アイアンカーバイドを製造するプロセスを研究している過程でアイアンカーバイドに水蒸気が触れると、アイアンカーバイドが鉄に変わるのと同時に水素と一酸化炭素が発生することを発見した。即ち、水とアイアンカーバイドを原料にして簡単に水素を発生させることを見出した。なお、この技術は既に特許出願している。   However, the present inventors have discovered that when the water is touched on the eye anchor baid during the process of manufacturing the eye anchor baide, hydrogen and carbon monoxide are generated at the same time that the eye anchor baide is changed to iron. . That is, it has been found that hydrogen can be easily generated from water and eye anchor baids. A patent application has already been filed for this technology.

そこで、更に検討した結果、この反応は炭化物形態のアイアンカーバイドだけではなく、炭素により還元された鉄と固体炭素の混合物でも得られることを発見した。
アイアンカーバイドは水素による還元とメタンガスによる加炭、即ち、天然ガスによって製造されるが、上記混合物は石炭を使用する炭素還元プロセス、例えば、回転炉床炉で加熱還元された固体炭素混じりの還元鉄に水蒸気を導入することより水素が製造出来ることを示唆する。天然ガスが高価となり、石炭を還元剤とする直接還元製鉄プロセスが期待される中、本技術は非常に有効である。
As a result of further investigations, it was discovered that this reaction can be obtained not only in the form of carbide anchor iron but also in a mixture of iron and solid carbon reduced by carbon.
The iron anchor is produced by reduction with hydrogen and carburization with methane gas, that is, natural gas, but the above mixture is a carbon reduction process using coal, for example, reduced iron mixed with solid carbon that has been heat reduced in a rotary hearth furnace. It is suggested that hydrogen can be produced by introducing water vapor into the water. While natural gas is expensive and a direct reduction iron-making process using coal as a reducing agent is expected, this technology is very effective.

従来、水素製造方法としては、炭化鉄に水蒸気又は水蒸気を含むガスを接触させて、水蒸気中の酸素を炭化鉄中の炭素と結合させて一酸化炭素ガス又は一酸化炭素ガス及び二酸化炭素ガスに変化させ、酸素が除去された水蒸気を水素に変化させて水素ガスを発生させ、炭化鉄を炭素が除去された鉄に転換する工程を包含するようにしたものがある(例えば、特許文献1参照)。また、炭化鉄を水蒸気又は水蒸気を含むガスと反応させ、可燃性ガスである水素及び一酸化炭素を含むガスを発生させるとともに、炭化鉄の少なくとも一部を鉄に転換し、可燃性ガスを取り出した後の鉄及び炭化鉄を電気炉で製銑して銑鉄を製造し、回収した可燃性ガスである水素及び一酸化炭素をエネルギーとして利用するようにしたものもある(例えば、特許文献2参照)。   Conventionally, as a hydrogen production method, iron carbide is brought into contact with water vapor or a gas containing water vapor, and oxygen in the water vapor is combined with carbon in the iron carbide to form carbon monoxide gas or carbon monoxide gas and carbon dioxide gas. There is a method that includes a step of changing the water vapor from which oxygen is removed to hydrogen to generate hydrogen gas, and converting iron carbide into iron from which carbon is removed (see, for example, Patent Document 1). ). In addition, iron carbide is reacted with water vapor or a gas containing water vapor to generate a gas containing hydrogen and carbon monoxide, which is a combustible gas, and at least a part of the iron carbide is converted to iron, and the combustible gas is taken out. There is also a type in which pig iron is produced by iron-making iron and iron carbide after being produced in an electric furnace, and using the recovered combustible gas hydrogen and carbon monoxide as energy (for example, see Patent Document 2). ).

従来、水素製造用触媒として、触媒を還元性ガスによって還元した後、水蒸気と接触反応させて水素を生成させる水素製造用触媒において、この触媒は、モリブデン、タングステン、バナジウム、ウラン、鉄及びニッケルからなる群から選ばれた少くとも一種の金属の酸化物にロジウムを添加したものであるようにすることが知られている(例えば、特許文献3参照)。
また、Fe30〜60重量%、Ni0.1〜10重量%及びCaO20重量%以下の組成より成り、かつ比表面積が0.1〜30m2/g 、みかけ比重が2.5〜4.0である流動床条件下に重質炭化水素を酸化ないしは分解し、この組成中の酸化鉄を還元し、還元された鉄とスチームとの反応により水素を製造するプロセスに用いる触媒組成物も知られている(例えば、特許文献4参照)。
特許第2954585号公報(第1頁、図1) 特開2002−194411号公報(第2頁、図1) 特公昭63−35301号公報(第1頁) 特公昭59−51336号公報(第1頁)
Conventionally, as a catalyst for hydrogen production, a catalyst for hydrogen production in which a catalyst is reduced by a reducing gas and then reacted with water vapor to generate hydrogen. This catalyst is composed of molybdenum, tungsten, vanadium, uranium, iron and nickel. It is known that rhodium is added to an oxide of at least one metal selected from the group (for example, see Patent Document 3).
Moreover, it consists of a composition of Fe 30 to 60% by weight, Ni 0.1 to 10% by weight and CaO 20% by weight or less, a specific surface area of 0.1 to 30 m 2 / g and an apparent specific gravity of 2.5 to 4.0. There is also known a catalyst composition for use in a process for producing hydrogen by oxidizing or decomposing heavy hydrocarbons under fluidized bed conditions, reducing iron oxide in the composition, and reacting the reduced iron with steam. (For example, refer to Patent Document 4).
Japanese Patent No. 2945585 (first page, FIG. 1) JP 2002-194411 A (2nd page, FIG. 1) Japanese Examined Patent Publication No. 63-35301 (first page) Japanese Examined Patent Publication No.59-51336 (first page)

解決しようとする問題点は、水素の製造及び還元鉄の製造のいずれの場合においても、高価な天然ガスを使用する方法が一般的である点である。   The problem to be solved is that, in both cases of producing hydrogen and producing reduced iron, a method using expensive natural gas is common.

即ち、水素製造は主に下記の2つの方法によっている。
(1) 炭化水素の改質
(2) 炭化水素(ガス又は液体)に水蒸気を混合して反応させて水素と一酸化炭素と二酸化炭素を得、そのガスから水素を分離する。これらの方式の主な欠点は下記のとおりである。即ち、ガス改質器の加熱ガス温度が1000℃以上であるため多量の熱(燃料)が必要である。また、同じ理由で高温に耐える材料が必要である。また、高温の排ガスの熱回収を行うための各種付帯設備が必要であること等の理由で設備費が大きくなる。さらに、主原料が水と高価な天然ガスである。
That is, hydrogen production is mainly performed by the following two methods.
(1) Hydrocarbon reforming (2) Hydrocarbon (gas or liquid) is mixed with water vapor and reacted to obtain hydrogen, carbon monoxide and carbon dioxide, and hydrogen is separated from the gas. The main drawbacks of these methods are as follows. That is, since the heating gas temperature of the gas reformer is 1000 ° C. or higher, a large amount of heat (fuel) is required. For the same reason, materials that can withstand high temperatures are required. In addition, the equipment cost increases due to the necessity of various incidental equipment for performing heat recovery of high-temperature exhaust gas. Furthermore, the main raw materials are water and expensive natural gas.

還元鉄製造は主に下記の2つの方法によっているが、いずれの方法も下記の欠点がある。
(1) 天然ガス使用プロセス、シャフト充填層(ミドレックス(Midrex)法)方式
高価で、かつ価格変動が大きい天然ガスを使用するため、コスト評価は不安定である。また、プラント立地が天然ガスの産出国と限定され、輸送時の再酸化対策を施す必要がある。
(2) 石炭使用プロセス、回転炉床炉(RHF)方式
石炭に内在している灰分等の不純物が多く、得られた還元鉄を電気炉スクラップ中の不純物の希釈材として利用した場合、これら不純物を電気炉へ投入する手前で分離するか、又はこれら不純物も加熱しなければならず、エネルギー損失が大きくなって使用電力量が上がり、操業コストが高くなる。
Although the reduced iron production is mainly performed by the following two methods, both methods have the following disadvantages.
(1) Process for using natural gas, shaft-filled layer (Midrex method) The cost evaluation is unstable because natural gas is expensive and has a large price fluctuation. In addition, the plant location is limited to the country that produces natural gas, and it is necessary to take measures against reoxidation during transportation.
(2) Coal use process, rotary hearth furnace (RHF) system There are many impurities such as ash in the coal, and when the obtained reduced iron is used as a diluent for impurities in electric furnace scrap, these impurities Must be separated before putting them into the electric furnace, or these impurities must be heated, resulting in a large energy loss, an increase in power consumption, and an increase in operating costs.

また、アイアンカーバイド(IC)と水蒸気とにより、還元鉄と水素を製造する方法では、ICは大気中で安定した特性を示し、上記2つの方法による還元鉄製造方法より有利であるが、天然ガス使用のプロセスであり、コスト評価は基本的にミドレックス(Midrex)法と同じとなる。
なお、2ステージIC製造プロセスにおける反応式はつぎの通りである。
3Fe23+5H2→4FeO+2Fe+5H2
4FeO+2Fe+2CH4→2Fe3C+4H2
また、鉄と水素を併産するICプロセスにおける反応式はつぎの通りである。
2Fe3C+2H2O→6Fe+2H2+2CO
Further, in the method of producing reduced iron and hydrogen by using an iron anchor (IC) and water vapor, IC exhibits stable characteristics in the atmosphere and is more advantageous than the above two methods of producing reduced iron. This is a process of use, and the cost evaluation is basically the same as the Midrex method.
The reaction formula in the two-stage IC manufacturing process is as follows.
3Fe 2 O 3 + 5H 2 → 4FeO + 2Fe + 5H 2 O
4FeO + 2Fe + 2CH 4 → 2Fe 3 C + 4H 2 O
The reaction formula in the IC process that produces iron and hydrogen together is as follows.
2Fe 3 C + 2H 2 O → 6Fe + 2H 2 + 2CO

本発明は、鉄鉱石又は製鉄ダスト等の鉄鉱石を含む酸化鉄と、石炭等の炭素を含む固体燃料との混合物を原料として、水素及び還元鉄を安価に製造することを最も主要な特徴とする。   The main feature of the present invention is to produce hydrogen and reduced iron at a low cost from a mixture of iron oxide containing iron ore such as iron ore or iron dust and solid fuel containing carbon such as coal. To do.

本発明の水素と還元鉄の製造方法は、鉄鉱石を含む酸化鉄と炭素を含む固体燃料との混合物を加熱して炭素還元する酸化鉄の還元工程と、該還元工程を経た混合物に水蒸気又は水蒸気を含むガスを接触させて水素及び一酸化炭素ガスを含む燃焼ガスを生成させる水蒸気の還元工程からなることを特徴としている。   The method for producing hydrogen and reduced iron according to the present invention includes a reduction step of iron oxide in which a mixture of iron oxide containing iron ore and a solid fuel containing carbon is heated to reduce the carbon, and water or It is characterized by comprising a water vapor reduction step in which a gas containing water vapor is brought into contact to produce a combustion gas containing hydrogen and carbon monoxide gas.

この方法において、酸化鉄の還元工程を経た混合物に、さらに炭素を含む固体燃料を追加し、この混合物(固体燃料を追加した混合物)を水蒸気の還元工程に導入する場合もある。
また、これらの方法において、水蒸気の還元工程で得られた水素及び一酸化炭素ガスを含む燃焼ガスを、水素分離装置に導入して水素を分離し、水素が分離された残りガスを酸化鉄の還元工程における混合物を加熱する燃料として使用する場合もある。
In this method, a solid fuel further containing carbon may be added to the mixture that has undergone the iron oxide reduction step, and this mixture (a mixture to which the solid fuel is added) may be introduced into the steam reduction step.
In these methods, the combustion gas containing hydrogen and carbon monoxide gas obtained in the steam reduction step is introduced into a hydrogen separator to separate the hydrogen, and the remaining gas from which the hydrogen has been separated is removed from the iron oxide. In some cases, the mixture in the reduction process is used as a fuel for heating.

また、これらの方法において、水蒸気の還元工程に必要な反応熱を、酸化鉄の還元工程を経た混合物の顕熱と、水蒸気又は水蒸気を含むガスに酸素又は空気を混入して生成した水素及び一酸化炭素ガスの一部を燃焼させた燃焼熱とで賄うように構成することがある。   In these methods, the reaction heat required for the reduction process of water vapor includes the sensible heat of the mixture that has undergone the reduction process of iron oxide, hydrogen generated by mixing oxygen or air with water vapor or a gas containing water vapor, and It may be configured to cover with combustion heat obtained by burning a part of the carbon oxide gas.

本発明の水素と還元鉄の製造装置は、酸化鉄の還元工程を行うための回転炉床炉と、水蒸気の還元工程を行うための気流搬送装置とを備えたことを特徴としている。また、本発明の装置は、酸化鉄の還元工程を行うための回転炉床炉と、水蒸気の還元工程を行うための流動層反応炉とを備えたことを特徴としている。また、本発明の装置は酸化鉄の還元工程を行うための回転炉床炉と、水蒸気の還元工程を行うための移動層反応炉とを備えたことを特徴としている。さらに、本発明の装置は、酸化鉄の還元工程を回転炉床炉の略半分で行い、水蒸気の還元工程を回転炉床炉の残り略半分で行うようにしたことを特徴としている。   The apparatus for producing hydrogen and reduced iron according to the present invention is characterized by including a rotary hearth furnace for performing a reduction process of iron oxide and an airflow conveying apparatus for performing a reduction process of water vapor. In addition, the apparatus of the present invention includes a rotary hearth furnace for performing the iron oxide reduction process and a fluidized bed reactor for performing the steam reduction process. In addition, the apparatus of the present invention includes a rotary hearth furnace for performing a reduction process of iron oxide and a moving bed reaction furnace for performing a reduction process of water vapor. Furthermore, the apparatus of the present invention is characterized in that the iron oxide reduction process is performed in approximately half of the rotary hearth furnace, and the steam reduction process is performed in the remaining half of the rotary hearth furnace.

本発明はつぎのような効果を奏する。
(1) 従来の炭化水素の改質による水素製造に対し、設備が安価であること、原料として高価な天然ガス等の化石原料の使用量が少ないこと等の理由により、得られた水素の価格が安くなる。
(2) 従来の天然ガス使用プロセスであるシャフト充填層(ミドレックス法(Midrex)法)方式による還元鉄製造、及びアイアンカーバイド(IC)と水蒸気とにより還元鉄と水素を製造する方式に対し、設備が安価であること、原料として高価な天然ガス等の化石原料の使用量が少ないこと等の理由により得られた還元鉄の価格が安くなる。また、プロセス内圧力が大気圧に近い圧力か、又は10kg/cm2・G以下の低い値であるため、設備費が安いことに加えて、運転が容易である。
(3) 従来の石炭使用プロセスである回転炉床炉(RHF)方式による還元鉄製造に対し、水蒸気の還元工程を気流搬送方式とした場合、混合物中の石炭に内在している灰分等の不純物と還元鉄をサイクロンで分離することができ、電気炉のスクラップ代替として利用する上で、これらの不純物の加熱が不要となり、エネルギー消費上有効である。さらに、同時に、水素及び一酸化炭素ガスを含む燃焼ガスを生成するという利点がある。
The present invention has the following effects.
(1) Compared to conventional hydrogen production by reforming hydrocarbons, the price of the hydrogen obtained is because the equipment is inexpensive and the amount of fossil raw materials such as expensive natural gas used as raw materials is small. Will be cheaper.
(2) Compared to the conventional process using natural gas, the reduced iron production by the shaft packed bed (Midrex method) method, and the method of producing reduced iron and hydrogen by the iron anchor (IC) and steam, The price of reduced iron obtained is reduced because of the low cost of equipment and the low usage of fossil raw materials such as expensive natural gas. Further, since the pressure in the process is close to atmospheric pressure or a low value of 10 kg / cm 2 · G or less, the operation cost is easy in addition to the low equipment cost.
(3) In contrast to the conventional process of using reduced coal using the rotary hearth furnace (RHF) method, when the steam reduction process is an air flow system, impurities such as ash present in the coal in the mixture And reduced iron can be separated by a cyclone, and when used as a scrap substitute for an electric furnace, heating of these impurities is unnecessary, which is effective in terms of energy consumption. Furthermore, there is an advantage that combustion gas containing hydrogen and carbon monoxide gas is generated at the same time.

水素及び還元鉄を安価に製造するという目的を、鉄鉱石を含む酸化鉄と炭素を含む固体燃料(例えば石炭)との混合物を原料とし、この原料を加熱して炭素還元し、ついで水蒸気を含むガスと接触させることにより実現した。   For the purpose of producing hydrogen and reduced iron at a low cost, a mixture of iron oxide containing iron ore and solid fuel containing carbon (for example, coal) is used as a raw material. This raw material is heated to reduce carbon, and then contains water vapor. Realized by contacting with gas.

図1は、本発明方法の1実施例のブロック図であって、10は第1反応炉、12は第2反応炉である。第1反応炉10としては、回転炉床炉(rotary hearth furnace、RHF)等が用いられ、第2反応炉12としては、流動層反応炉等が用いられる。
粉鉱石(例えば、粉状の鉄鉱石)と粉炭材(例えば、粉状の石炭)との混合物を第1反応炉10に供給するとともに、LNG、コークス炉ガス等の燃料を燃焼させた燃焼ガスを第1反応炉10に供給して酸化鉄の還元工程が行われる。なお、燃料と空気とを第1反応炉10に供給して、炉10内で燃焼させるようにしてもよい。第1反応炉10が回転炉床炉(RHF)の場合は、RHF内を約1200〜1400℃のガス輻射加熱雰囲気温度として、鉄鉱石を含む酸化鉄と炭素を含む固体燃料(石炭)の混合物を加熱して炭素還元する酸化鉄の還元工程が行なわれる。
FIG. 1 is a block diagram of an embodiment of the method of the present invention, in which 10 is a first reactor and 12 is a second reactor. As the first reactor 10, a rotary hearth furnace (RHF) or the like is used, and as the second reactor 12, a fluidized bed reactor or the like is used.
Combustion gas obtained by supplying a mixture of powdered ore (for example, powdered iron ore) and powdered coal material (for example, powdered coal) to the first reactor 10 and burning fuel such as LNG and coke oven gas. Is supplied to the first reactor 10 to perform a reduction process of iron oxide. Note that fuel and air may be supplied to the first reactor 10 and burned in the furnace 10. In the case where the first reactor 10 is a rotary hearth furnace (RHF), a mixture of iron oxide containing iron ore and solid fuel (coal) containing carbon is set at a gas radiation heating atmosphere temperature of about 1200 to 1400 ° C. in the RHF. A reduction step of iron oxide is performed in which is heated to reduce the carbon.

第1反応炉10からの排ガスは、集塵処理された後、大気放出される。第1反応炉10からの還元鉄、残カーボンは第2反応炉12に供給されるとともに、水蒸気又は水蒸気を含むガスが第2反応炉12に供給され、水素、CO、CO2を含むガスが生成する。そして、第2反応炉12から、還元鉄が排出される。第2反応炉12は、酸化鉄の還元工程を経た混合物に水蒸気又は水蒸気を含むガスを接触させ、約600〜750℃の温度下で、水素及び一酸化炭素ガスを含む燃焼ガスを生成する水蒸気の還元工程が行われる。このとき、図1においては、水蒸気の還元工程に必要な熱を、酸化鉄の還元工程を経た混合物の顕熱によって賄うように構成されるが、後述の図3に示すように、さらに、生成した水素及びCOの一部を別途導入する酸素又は空気により燃焼させて賄うように構成することが好ましい。 The exhaust gas from the first reactor 10 is discharged to the atmosphere after being collected. Reduced iron and residual carbon from the first reactor 10 are supplied to the second reactor 12, and water vapor or a gas containing water vapor is supplied to the second reactor 12, and gas containing hydrogen, CO, and CO 2 is supplied. Generate. Then, reduced iron is discharged from the second reaction furnace 12. The second reactor 12 is a steam that generates steam and gas containing hydrogen and carbon monoxide gas at a temperature of about 600 to 750 ° C. by contacting the mixture that has undergone the iron oxide reduction step with water vapor or a gas containing water vapor. The reduction step is performed. At this time, in FIG. 1, the heat necessary for the water vapor reduction step is covered by the sensible heat of the mixture that has undergone the iron oxide reduction step. However, as shown in FIG. It is preferable that the hydrogen and a part of CO be covered with oxygen or air introduced separately.

第1反応炉10内では、一例として下記の反応による酸化鉄の還元工程が行われる。
3Fe23+10.5C→6Fe+6CO+1.5CO2+3C
また、第2反応炉12内では、還元された鉄を触媒とし、残存するカーボンと水蒸気が接触して、一例として下記の反応による水蒸気の還元工程により水素が製造される。後述の図2に示す実施例におけるように、炭材はこの段階で加えてもよく、また量も任意に設定することができ、より多くの水素生成が期待できる。
6Fe+3C+3H2O→6Fe+3H2+3CO
In the first reactor 10, as an example, a reduction process of iron oxide by the following reaction is performed.
3Fe 2 O 3 + 10.5C → 6Fe + 6CO + 1.5CO 2 + 3C
Further, in the second reaction furnace 12, reduced iron is used as a catalyst, the remaining carbon and water vapor come into contact with each other, and as an example, hydrogen is produced by a water vapor reduction process by the following reaction. As in the embodiment shown in FIG. 2 to be described later, the carbonaceous material may be added at this stage, the amount can be arbitrarily set, and more hydrogen production can be expected.
6Fe + 3C + 3H 2 O → 6Fe + 3H 2 + 3CO

図2は、本発明方法の他の実施例のブロック図である。本例は、第2反応炉12に石炭等の炭材を供給して水蒸気の還元工程を行うものである。炭材供給量を任意に設定することにより、より多くの水素生成を期待することができる。他の構成及び作用は、図1に示す実施例の場合と同様である。   FIG. 2 is a block diagram of another embodiment of the method of the present invention. In this example, a steam material reduction process is performed by supplying a carbon material such as coal to the second reactor 12. More hydrogen production can be expected by arbitrarily setting the carbonaceous material supply amount. Other configurations and operations are the same as those of the embodiment shown in FIG.

図3は、本発明方法のさらに他の実施例のブロック図である。本例は、第2反応炉12からのH2、CO、CO2を含む生成ガスを水素分離装置14に導入して、H2を分離し、残りのガスを第1反応炉10に供給して燃料ガスとして利用し、第2反応炉12からの鉄を電気炉(EAF)16に供給するようにしたものである。水素分離装置14としては、圧力スイング方式(PSA)分離装置、膜分離装置等が用いられる。本例では、水蒸気の還元工程に必要な反応熱を、酸化鉄の還元工程を経た混合物の顕熱と、生成した水素及びCOの一部を別途導入する酸素又は空気(図3では、燃焼エア)により燃焼させた燃焼熱とで賄うように構成される。他の構成及び作用は、図1又は図2に示す実施例の場合と同様である。 FIG. 3 is a block diagram of still another embodiment of the method of the present invention. In this example, a product gas containing H 2 , CO, and CO 2 from the second reactor 12 is introduced into the hydrogen separator 14, H 2 is separated, and the remaining gas is supplied to the first reactor 10. In this way, iron from the second reactor 12 is supplied to an electric furnace (EAF) 16 as a fuel gas. As the hydrogen separator 14, a pressure swing system (PSA) separator, a membrane separator, or the like is used. In this example, the reaction heat required for the steam reduction process is the sensible heat of the mixture that has undergone the iron oxide reduction process, and oxygen or air that separately introduces part of the generated hydrogen and CO (in FIG. 3, combustion air). ) To cover with the combustion heat burned. Other configurations and operations are the same as those of the embodiment shown in FIG. 1 or FIG.

図4は、本発明装置の1実施例の系統説明図である。鉄鉱石又は製鉄ダスト(以下、単に鉄鉱石という)が酸化鉄ホッパ20に投入され、石炭が石炭ホッパ22に投入される。ホッパ20からの鉄鉱石とホッパ22からの石炭は混合機24で混合された後、回転炉床炉(RHF)26に供給され、燃焼ガスにより1200〜1400℃に加熱されて酸化鉄が還元される。このときの反応式は、一例として、
3Fe23+9.5C→6Fe+6CO+1.5CO2+2C
となる。なお、前述の反応式とCの係数が異なっているが、これは加えるCの量を適宜調節することができるからである。
FIG. 4 is a system explanatory diagram of one embodiment of the device of the present invention. Iron ore or iron-making dust (hereinafter simply referred to as iron ore) is input to the iron oxide hopper 20, and coal is input to the coal hopper 22. The iron ore from the hopper 20 and the coal from the hopper 22 are mixed by the mixer 24, then supplied to the rotary hearth furnace (RHF) 26, and heated to 1200 to 1400 ° C. by the combustion gas to reduce the iron oxide. The The reaction formula at this time is, for example,
3Fe 2 O 3 + 9.5C → 6Fe + 6CO + 1.5CO 2 + 2C
It becomes. Note that the coefficient of C is different from the above reaction formula, because the amount of C to be added can be adjusted as appropriate.

回転炉床炉(RHF)は、水平面を回転する耐火材からなるリング状平板(台車)の上部を、空間(燃焼室)を介して耐火材からなるケーシング(固定)で被覆し、水平方向に回転するリング状平板の上に原料を投入して加熱するように構成されている。
回転炉床炉26からの還元鉄と炭素との混合物は一旦、還元鉄ホッパ28に貯留された後、200℃前後の水蒸気とともに搬送管30を介してサイクロン32に気流搬送される。
このとき、還元鉄に水蒸気が接触して、H2及びCOを含む燃焼ガスが生成する。即ち、搬送管30が水蒸気の還元工程を行うための気流搬送装置となり、水蒸気の還元工程に必要な反応熱が、酸化鉄の還元工程を経た混合物の顕熱(約1,200℃)によって賄われる。このときの反応式は、一例として、
6Fe+2C+2H2O→6Fe+2H2+2CO
となる。なお、前述の反応式とC、H2O、H2及びCOの係数が異なっているが、これは加えるH2Oの量を適宜調節することができるからである。
A rotary hearth furnace (RHF) covers the upper part of a ring-shaped flat plate (cart) made of a refractory material rotating on a horizontal plane with a casing (fixed) made of a refractory material through a space (combustion chamber), and horizontally A raw material is put on a rotating ring-shaped flat plate and heated.
The mixture of reduced iron and carbon from the rotary hearth furnace 26 is temporarily stored in the reduced iron hopper 28 and then air-flowed to the cyclone 32 via the transfer pipe 30 together with steam at around 200 ° C.
At this time, steam comes into contact with the reduced iron, and combustion gas containing H 2 and CO is generated. That is, the conveyance pipe 30 becomes an air flow conveyance device for performing the water vapor reduction process, and the reaction heat necessary for the water vapor reduction process is covered by the sensible heat (about 1,200 ° C.) of the mixture that has undergone the iron oxide reduction process. Is called. The reaction formula at this time is, for example,
6Fe + 2C + 2H 2 O → 6Fe + 2H 2 + 2CO
It becomes. Incidentally, because the above reaction formula and C, H 2 O, although the coefficient of H 2 and CO are different, this can be appropriately adjusted the amount of H 2 O added.

回転炉床炉(RHF)26からの排ガスは空気予熱器34で冷却された後、集塵装置36で除塵処理されて大気放出される。38は排ガスブロワである。一方、空気ブロワ40により供給された空気は、空気予熱器34で予熱された後、回転炉床炉(RHF)26に供給される。
サイクロン32からの残カーボン、灰分、H2、CO、CO2を含むガスは集塵装置42で除塵処理された後、昇圧用ブロワ44により昇圧されて水素分離装置(PSA)46に導入される。
The exhaust gas from the rotary hearth furnace (RHF) 26 is cooled by an air preheater 34, then dust-removed by a dust collector 36 and released into the atmosphere. 38 is an exhaust gas blower. On the other hand, the air supplied by the air blower 40 is preheated by the air preheater 34 and then supplied to the rotary hearth furnace (RHF) 26.
Gas containing residual carbon, ash, H 2 , CO, and CO 2 from the cyclone 32 is subjected to dust removal processing by the dust collector 42, then pressurized by the booster blower 44, and introduced into the hydrogen separator (PSA) 46. .

水素分離装置46で分離された水素は、ガスホルダー(GH)48に貯留され、高純度の製品として取り出される。水素が分離された残ガスは、回転炉床炉(RHF)26へ燃料として供給される。サイクロン32から抜き出された高温の還元鉄は電気炉(EAF)50へ供給され、製品の鋼となる。なお、電気炉50にスクラップが供給されることもある。また、電気炉の代わりに、石炭を燃料とした溶融炉を用いても良い。   Hydrogen separated by the hydrogen separator 46 is stored in a gas holder (GH) 48 and taken out as a high-purity product. The residual gas from which the hydrogen has been separated is supplied as fuel to a rotary hearth furnace (RHF) 26. The high-temperature reduced iron extracted from the cyclone 32 is supplied to an electric furnace (EAF) 50 and becomes product steel. Note that scrap may be supplied to the electric furnace 50. A melting furnace using coal as fuel may be used instead of the electric furnace.

図5は、本発明装置の他の実施例の系統説明図である。本例は、酸化鉄の還元工程を、図4の場合と同様に回転炉床炉(RHF)26で行い、水蒸気の還元工程を流動層反応炉52で行うように構成したものである。
図5に示すように、回転炉床炉(RHF)26からの混合物は流動層反応炉52に供給され、流動層54の下部に水蒸気が供給される。56は分散板である。流動層反応炉52からの生成ガスは集塵装置42を経て水素分離装置(PSA)46に導入され、流動層反応炉52からの高温の還元鉄は電気炉(EAF)50に供給される。他の構成及び作用は、図4に示す実施例の場合と同様である。
FIG. 5 is a system explanatory diagram of another embodiment of the device of the present invention. In this example, the iron oxide reduction process is performed in the rotary hearth furnace (RHF) 26 as in the case of FIG. 4, and the steam reduction process is performed in the fluidized bed reactor 52.
As shown in FIG. 5, the mixture from the rotary hearth furnace (RHF) 26 is supplied to the fluidized bed reactor 52, and steam is supplied to the lower part of the fluidized bed 54. Reference numeral 56 denotes a dispersion plate. The product gas from the fluidized bed reactor 52 is introduced into the hydrogen separator (PSA) 46 through the dust collector 42, and the hot reduced iron from the fluidized bed reactor 52 is supplied to the electric furnace (EAF) 50. Other configurations and operations are the same as those of the embodiment shown in FIG.

図6は、本発明装置の他の実施例の系統説明図である。本例は、酸化鉄の還元工程を、図4の場合と同様に回転炉床炉(RHF)26で行い、水蒸気の還元工程を移動層反応炉58で行うように構成したものである。
図6に示すように、回転炉床炉(RHF)26からの混合物は移動層反応炉58に供給され、移動層60の下部に水蒸気が供給される。62は分散板である。移動層反応炉58からの生成ガスは集塵装置42を経て水素分離装置(PSA)46に導入され、移動層反応炉58からの高温の還元鉄は電気炉(EAF)50に供給される。鉄鉱石を含む酸化鉄と炭素を含む固体燃料の混合物を、事前処理としてペレット又はブリケットとした場合に、本例のように、塊の壊れが少ない移動層を用いることは有効である。他の構成及び作用は、図4に示す実施例の場合と同様である。
FIG. 6 is a system explanatory diagram of another embodiment of the device of the present invention. In this example, the iron oxide reduction process is performed in the rotary hearth furnace (RHF) 26 as in the case of FIG. 4, and the steam reduction process is performed in the moving bed reaction furnace 58.
As shown in FIG. 6, the mixture from the rotary hearth furnace (RHF) 26 is supplied to the moving bed reaction furnace 58, and water vapor is supplied to the lower part of the moving bed 60. Reference numeral 62 denotes a dispersion plate. The product gas from the moving bed reaction furnace 58 is introduced into the hydrogen separator (PSA) 46 through the dust collector 42, and the high-temperature reduced iron from the moving bed reaction furnace 58 is supplied to the electric furnace (EAF) 50. When a mixture of iron oxide containing iron ore and solid fuel containing carbon is formed into pellets or briquettes as a pretreatment, it is effective to use a moving bed with less lump breakage as in this example. Other configurations and operations are the same as those of the embodiment shown in FIG.

図7は、本発明装置のさらに他の実施例の系統説明図である。本例は、酸化鉄の還元工程を、回転炉床炉(RHF)64の略半分で行い、水蒸気の還元工程をこの回転炉床炉(RHF)64の残り略半分で行うように構成したものである。酸化鉄と水蒸気の還元工程とを1つの反応炉で行うようにしたため、設備費上有効である。
以下、本例における回転炉床炉(RHF)64について詳細に説明する。図8は回転炉床炉(RHF)64の斜視図、図9は図8におけるA−A線拡大断面図、図10は回転炉床炉(RHF)64の環状の部分(ケーシング及び台車)の縦方向の環状断面を直線状に展開した断面説明図である。
FIG. 7 is a system explanatory view of still another embodiment of the device of the present invention. In this example, the iron oxide reduction process is performed in approximately half of the rotary hearth furnace (RHF) 64, and the steam reduction process is performed in the remaining half of the rotary hearth furnace (RHF) 64. It is. Since the reduction process of iron oxide and water vapor is performed in one reactor, it is effective in terms of equipment costs.
Hereinafter, the rotary hearth furnace (RHF) 64 in this example will be described in detail. 8 is a perspective view of a rotary hearth furnace (RHF) 64, FIG. 9 is an enlarged sectional view taken along line AA in FIG. 8, and FIG. 10 is an annular portion (casing and carriage) of the rotary hearth furnace (RHF) 64. It is sectional explanatory drawing which expand | deployed the cyclic | annular cross section of the vertical direction linearly.

66は耐火材からなるリング状平板(台車)で、このリング状平板66は水平面を回転するように構成されている。68はレール、70はモータである。このリング状平板66の上部は、空間(燃焼室)72を介して耐火材からなるケーシング74で被覆されている。なお、このケーシング74は回転しない。
リング状平板(台車)66は、図10における矢印の方向に回転移動する。リング状平板66上に、原料投入口76から鉄鉱石と石炭との混合物77が供給されるとともに、燃焼室72に燃焼ガスと空気(又は燃料と空気)が供給され、酸化鉄の還元工程が行われる。78は燃焼ガス・エア供給口、80はバーナ、82は排ガス排出口である。
Reference numeral 66 denotes a ring-shaped flat plate (cart) made of a refractory material. The ring-shaped flat plate 66 is configured to rotate on a horizontal plane. 68 is a rail, and 70 is a motor. The upper part of the ring-shaped flat plate 66 is covered with a casing 74 made of a refractory material via a space (combustion chamber) 72. The casing 74 does not rotate.
The ring-shaped flat plate (cart) 66 rotates in the direction of the arrow in FIG. On the ring-shaped flat plate 66, a mixture 77 of iron ore and coal is supplied from a raw material inlet 76, and combustion gas and air (or fuel and air) are supplied to the combustion chamber 72, thereby reducing the iron oxide. Done. Reference numeral 78 is a combustion gas / air supply port, 80 is a burner, and 82 is an exhaust gas discharge port.

ついで、酸化鉄の還元工程を経た混合物に水蒸気が供給され、H2 及びCOを含むガスを生成させる水蒸気の還元工程が行われる。84は水蒸気噴射器、86は水蒸気供給口、88は生成ガス排出口、90はスクリュー、92は還元鉄抜出口、94は2つの還元工程が行われる部分を区画するための凹部である。
排ガス排出口82からの排ガスは、図7に示すように、空気予熱器34に導入され、生成ガス排出口88からの生成ガスは集塵装置42を経て、水素分離装置46に導入され、還元鉄抜出口92からの高温の還元鉄は電気炉(EAF)50に供給される。他の構成及び作用は、図4に示す実施例の場合と同様である。
Next, steam is supplied to the mixture that has undergone the iron oxide reduction process, and a steam reduction process is performed to generate a gas containing H 2 and CO. 84 is a steam injector, 86 is a steam supply port, 88 is a product gas discharge port, 90 is a screw, 92 is a reduced iron outlet, and 94 is a recess for partitioning a portion where two reduction processes are performed.
As shown in FIG. 7, the exhaust gas from the exhaust gas discharge port 82 is introduced into the air preheater 34, and the product gas from the product gas discharge port 88 is introduced into the hydrogen separator 46 through the dust collector 42 and reduced. High-temperature reduced iron from the iron outlet 92 is supplied to an electric furnace (EAF) 50. Other configurations and operations are the same as those of the embodiment shown in FIG.

本発明の方法について、炭素量のFeに対するモル比の関係をまとめると以下のようである。第1反応の酸化鉄還元工程は、既存の技術が存在し、C/Fe(モル比)約1.25程度で実用化されている。第2反応の水蒸気還元工程では、アイアンカーバイドを用いた場合、C/Fe(モル比)0.33と一様であるのに対し、本発明の方法においては、任意に設定が可能である。   Regarding the method of the present invention, the relationship of the molar ratio of carbon to Fe is summarized as follows. The iron oxide reduction process of the first reaction has an existing technique and is put into practical use with a C / Fe (molar ratio) of about 1.25. In the steam reduction step of the second reaction, C / Fe (molar ratio) of 0.33 is uniform in the case of using an anchor anchor, but can be arbitrarily set in the method of the present invention.

平衡計算では、第2反応でのC/Feモル比を大きくする程、Fe収率100%となる平衡温度は、例えば、C/Fe(モル比)0.5で740℃、C/Fe(モル比)2.0で640℃と、低くなり有利である。また、C/Fe(モル比)約1.0以上では、第2反応に要する反応熱を生成するガスの一部を導入する酸素との燃焼熱で、100%補償することができ、さらに、第1反応に要する反応熱を上記ガスの水素を分離した残りの燃焼ガスで、100%補償することができ、また、約1.2以上では第2反応に供給する水蒸気の潜熱、言い替えると水蒸気の製造までを補償することができる熱収支計算の結果を得ている。   In the equilibrium calculation, as the C / Fe molar ratio in the second reaction is increased, the equilibrium temperature at which the Fe yield becomes 100% is, for example, 740 ° C. at C / Fe (molar ratio) 0.5, C / Fe ( (Molar ratio) 2.0 is advantageously low at 640 ° C. When the C / Fe (molar ratio) is about 1.0 or more, the heat of combustion with oxygen that introduces a part of the gas that generates the heat of reaction required for the second reaction can be compensated 100%. The reaction heat required for the first reaction can be compensated 100% with the remaining combustion gas from which the hydrogen of the gas has been separated, and if it is about 1.2 or more, the latent heat of the steam supplied to the second reaction, in other words, the steam The result of the heat balance calculation that can compensate up to the production of is obtained.

石油の軽質化(クラッキング)用の水素、製鉄分野での還元用ガス、各種化学反応用原料、燃料電池用の水素等として利用することができ、また、製鉄分野での電気炉用、その他溶融還元炉用の還元鉄源として利用することができる。   It can be used as hydrogen for lightening (cracking) petroleum, reducing gas in the steelmaking field, raw materials for various chemical reactions, hydrogen for fuel cells, etc., for electric furnaces in the steelmaking field, and other melting It can be used as a reduced iron source for a reduction furnace.

水素と還元鉄の製造方法を示したブロック説明図である。(実施例1)It is block explanatory drawing which showed the manufacturing method of hydrogen and reduced iron. (Example 1) 水素と還元鉄の製造方法を示したブロック説明図である。(実施例2)It is block explanatory drawing which showed the manufacturing method of hydrogen and reduced iron. (Example 2) 水素と還元鉄の製造方法を示したブロック説明図である。(実施例3)It is block explanatory drawing which showed the manufacturing method of hydrogen and reduced iron. Example 3 水素と還元鉄の製造装置の一例を示した系統的概略構成説明図である。It is systematic schematic structure explanatory drawing which showed an example of the manufacturing apparatus of hydrogen and reduced iron. 水素と還元鉄の製造装置の他の例を示した系統的概略構成説明図である。It is systematic schematic structure explanatory drawing which showed the other example of the manufacturing apparatus of hydrogen and reduced iron. 水素と還元鉄の製造装置の他の例を示した系統的概略構成説明図である。It is systematic schematic structure explanatory drawing which showed the other example of the manufacturing apparatus of hydrogen and reduced iron. 水素と還元鉄の製造装置のさらに他の例を示した系統的概略構成説明図である。It is systematic schematic structure explanatory drawing which showed the further another example of the manufacturing apparatus of hydrogen and reduced iron. 図7における回転炉床炉を示す斜視図である。It is a perspective view which shows the rotary hearth furnace in FIG. 図8におけるA−A線断面拡大説明図である。It is an AA line cross-section enlarged explanatory view in FIG. 図8における回転炉床炉の環状の部分(ケーシング及び台車)の縦方向の環状断面を直線状に展開した状態を示す断面説明図である。FIG. 9 is an explanatory cross-sectional view illustrating a state in which a longitudinal annular cross section of an annular portion (a casing and a carriage) of the rotary hearth furnace in FIG. 8 is linearly developed.

符号の説明Explanation of symbols

10 第1反応炉
12 第2反応炉
14 水素分離装置
16 電気炉
20 酸化鉄ホッパ
22 石炭ホッパ
24 混合機
26 回転炉床炉
28 還元鉄ホッパ
30 搬送管
32 サイクロン
34 空気予熱器
36 集塵装置
38 排ガスブロワ
40 空気ブロワ
42 集塵装置
44 昇圧用ブロワ
46 水素分離装置
48 ガスホルダー
50 電気炉
52 流動層反応炉
54 流動層
56 分散板
58 移動層反応炉
60 移動層
62 分散板
64 回転炉床炉
66 リング状平板(台車)
68 レール
70 モータ
72 空間(燃焼室)
74 ケーシング
76 原料投入口
77 混合物
78 燃焼ガス・エア供給口
80 バーナ
82 排ガス排出口
84 水蒸気噴射器
86 水蒸気供給口
88 生成ガス排出口
90 スクリュー
92 還元鉄抜出口
94 凹部
DESCRIPTION OF SYMBOLS 10 1st reactor 12 2nd reactor 14 Hydrogen separator 16 Electric furnace 20 Iron oxide hopper 22 Coal hopper 24 Mixer 26 Rotary hearth furnace 28 Reduced iron hopper 30 Conveying pipe 32 Cyclone 34 Air preheater 36 Dust collector 38 Exhaust gas blower 40 Air blower 42 Dust collector 44 Booster blower 46 Hydrogen separator 48 Gas holder 50 Electric furnace 52 Fluidized bed reactor 54 Fluidized bed 56 Dispersing plate 58 Moving bed reactor 60 Moving bed 62 Distributing plate 64 Rotary hearth furnace 66 Ring-shaped flat plate (cart)
68 rail 70 motor 72 space (combustion chamber)
74 Casing 76 Raw material inlet 77 Mixture 78 Combustion gas / air supply port 80 Burner 82 Exhaust gas outlet 84 Steam injector 86 Steam supply port 88 Product gas outlet 90 Screw 92 Reduced iron outlet 94 Concave

Claims (8)

鉄鉱石を含む酸化鉄と炭素を含む固体燃料との混合物を加熱して炭素還元する酸化鉄の還元工程と、該還元工程を経た混合物に水蒸気又は水蒸気を含むガスを接触させて水素及び一酸化炭素ガスを含む燃焼ガスを生成させる水蒸気の還元工程からなることを特徴とする水素と還元鉄の製造方法。 A reduction step of iron oxide in which a mixture of iron oxide containing iron ore and a solid fuel containing carbon is heated to reduce the carbon, and water and gas monoxide are brought into contact with water vapor or a gas containing water vapor to the mixture after the reduction step A method for producing hydrogen and reduced iron, comprising a steam reduction step for generating combustion gas containing carbon gas. 酸化鉄の還元工程を経た混合物に、さらに炭素を含む固体燃料を追加し、この混合物を水蒸気の還元工程に導入する請求項1記載の水素と還元鉄の製造方法。   2. The method for producing hydrogen and reduced iron according to claim 1, wherein a solid fuel containing carbon is further added to the mixture that has undergone the iron oxide reduction step, and the mixture is introduced into the water vapor reduction step. 水蒸気の還元工程で得られた水素及び一酸化炭素ガスを含む燃焼ガスを、水素分離装置に導入して水素を分離し、水素が分離された残りガスを酸化鉄の還元工程における混合物を加熱する燃料として使用する請求項1又は2記載の水素と還元鉄の製造方法。   The combustion gas containing hydrogen and carbon monoxide gas obtained in the steam reduction process is introduced into a hydrogen separator to separate the hydrogen, and the remaining gas from which the hydrogen has been separated is heated in the iron oxide reduction process. The method for producing hydrogen and reduced iron according to claim 1 or 2 used as a fuel. 水蒸気の還元工程に必要な反応熱を、酸化鉄の還元工程を経た混合物の顕熱と、水蒸気又は水蒸気を含むガスに酸素又は空気を混入して生成した水素及び一酸化炭素ガスの一部を燃焼させた燃焼熱とで賄う請求項1、2又は3記載の水素と還元鉄の製造方法。   The reaction heat required for the reduction process of water vapor, the sensible heat of the mixture that has undergone the reduction process of iron oxide, and part of the hydrogen and carbon monoxide gas produced by mixing oxygen or air in the gas containing water vapor or water vapor The method for producing hydrogen and reduced iron according to claim 1, 2 or 3, which is covered by the combustion heat generated by combustion. 酸化鉄の還元工程を行うための回転炉床炉と、水蒸気の還元工程を行うための気流搬送装置とを備えたことを特徴とする水素と還元鉄の製造装置。   An apparatus for producing hydrogen and reduced iron, comprising: a rotary hearth furnace for performing a reduction process of iron oxide; and an airflow conveying apparatus for performing a reduction process of water vapor. 酸化鉄の還元工程を行うための回転炉床炉と、水蒸気の還元工程を行うための流動層反応炉とを備えたことを特徴とする水素と還元鉄の製造装置。   An apparatus for producing hydrogen and reduced iron, comprising: a rotary hearth furnace for performing a reduction process of iron oxide; and a fluidized bed reaction furnace for performing a reduction process of steam. 酸化鉄の還元工程を行うための回転炉床炉と、水蒸気の還元工程を行うための移動層反応炉とを備えたことを特徴とする水素と還元鉄の製造装置。   An apparatus for producing hydrogen and reduced iron, comprising: a rotary hearth furnace for performing a reduction process of iron oxide; and a moving bed reaction furnace for performing a reduction process of steam. 酸化鉄の還元工程を回転炉床炉の略半分で行い、水蒸気の還元工程を回転炉床炉の残り略半分で行うようにしたことを特徴とする水素と還元鉄の製造装置。   An apparatus for producing hydrogen and reduced iron, wherein the reduction process of iron oxide is performed in approximately half of the rotary hearth furnace, and the reduction process of steam is performed in approximately the other half of the rotary hearth furnace.
JP2003322538A 2003-09-16 2003-09-16 Method of producing hydrogen and reduced iron, and device therefor Pending JP2005089797A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003322538A JP2005089797A (en) 2003-09-16 2003-09-16 Method of producing hydrogen and reduced iron, and device therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003322538A JP2005089797A (en) 2003-09-16 2003-09-16 Method of producing hydrogen and reduced iron, and device therefor

Publications (1)

Publication Number Publication Date
JP2005089797A true JP2005089797A (en) 2005-04-07

Family

ID=34453852

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003322538A Pending JP2005089797A (en) 2003-09-16 2003-09-16 Method of producing hydrogen and reduced iron, and device therefor

Country Status (1)

Country Link
JP (1) JP2005089797A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010120825A (en) * 2008-11-21 2010-06-03 Wakasawan Energ Kenkyu Center Circulation type hydrogen-producing method capable of regenerating spongy iron
KR101384800B1 (en) 2012-12-27 2014-04-14 주식회사 포스코 Apparatus for manufacturing molten iron and method for manufacturing thereof
KR101384802B1 (en) 2012-12-27 2014-04-14 주식회사 포스코 Apparatus for manufacturing molten iron and method for manufacturing thereof
KR101448605B1 (en) 2012-12-27 2014-10-08 주식회사 포스코 Apparatus for manufacturing molten iron and method for manufacturing thereof
CN111363874A (en) * 2018-12-25 2020-07-03 北京京诚泽宇能源环保工程技术有限公司 System and method for preparing reducing gas of shaft furnace

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010120825A (en) * 2008-11-21 2010-06-03 Wakasawan Energ Kenkyu Center Circulation type hydrogen-producing method capable of regenerating spongy iron
KR101384800B1 (en) 2012-12-27 2014-04-14 주식회사 포스코 Apparatus for manufacturing molten iron and method for manufacturing thereof
KR101384802B1 (en) 2012-12-27 2014-04-14 주식회사 포스코 Apparatus for manufacturing molten iron and method for manufacturing thereof
WO2014104596A1 (en) * 2012-12-27 2014-07-03 주식회사 포스코 Molten iron manufacturing apparatus and molten iron manufacturing method
KR101448605B1 (en) 2012-12-27 2014-10-08 주식회사 포스코 Apparatus for manufacturing molten iron and method for manufacturing thereof
CN104870659A (en) * 2012-12-27 2015-08-26 株式会社Posco Molten iron manufacturing apparatus and molten iron manufacturing method
CN111363874A (en) * 2018-12-25 2020-07-03 北京京诚泽宇能源环保工程技术有限公司 System and method for preparing reducing gas of shaft furnace

Similar Documents

Publication Publication Date Title
US20220235426A1 (en) Method and system for producing steel or molten-iron-containing materials with reduced emissions
US8926729B2 (en) Method and apparatus for direct reduction ironmaking
WO2009037587A2 (en) Method and apparatus for the direct reduction of iron ores utilizing gas from a melter-gasifier
CN107128876A (en) The manufacture device and its manufacture method of forming gas containing carbon monoxide and hydrogen
TWI803522B (en) Method for producing hot synthesis gas, in particular for use in blast furnace operation
JP5640786B2 (en) How to operate a blast furnace or steelworks
CN114787392A (en) Method for operating a blast furnace
AU2012265081B2 (en) Reduction of metal oxides using a gas stream containing both hydrocarbon and hydrogen
JP2005089797A (en) Method of producing hydrogen and reduced iron, and device therefor
JPS60155627A (en) Metal compound reduction and apparatus therefor
CN117897506A (en) Method for recycling spent reducing gas in direct reduction of iron ore system using gas electric heater
US20230340628A1 (en) Method for operating a blast furnace installation
WO2023036474A1 (en) Method for producing direct reduced iron for an iron and steelmaking plant
LU500699B1 (en) Method for operating a shaft furnace plant
JP2016513004A (en) Method and apparatus for separating carbon dioxide from spent gas
JP2948771B2 (en) Manufacturing method of iron carbide
US20240018614A1 (en) Method for operating a blast furnace installation
KR20240068674A (en) Method for producing direct reduced iron for iron and steel plants
KR101220683B1 (en) Apparatus of manufacturing reduced iron using syngas and method for manufacturing reduced iron using the same
KR20240068675A (en) Method for producing direct reduced iron in iron and steel plants
CN118019863A (en) Method for operating a shaft furnace installation
JPH08120314A (en) Production of iron carbide
EA045314B1 (en) METHOD OF OPERATING THE BLAST FURNACE INSTALLATION
JP2004204294A (en) Method and apparatus for producing hydrogen and iron using iron carbide
WO1999028235A1 (en) Method of manufacturing iron carbide