JPS63171802A - Prodoction of porous sintered metallic body - Google Patents

Prodoction of porous sintered metallic body

Info

Publication number
JPS63171802A
JPS63171802A JP62002476A JP247687A JPS63171802A JP S63171802 A JPS63171802 A JP S63171802A JP 62002476 A JP62002476 A JP 62002476A JP 247687 A JP247687 A JP 247687A JP S63171802 A JPS63171802 A JP S63171802A
Authority
JP
Japan
Prior art keywords
fibers
metal
metal powder
sintered body
expendable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62002476A
Other languages
Japanese (ja)
Inventor
Yuji Horii
堀井 雄二
Kanji Shimizu
幹治 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP62002476A priority Critical patent/JPS63171802A/en
Publication of JPS63171802A publication Critical patent/JPS63171802A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Filtering Materials (AREA)
  • Powder Metallurgy (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Abstract

PURPOSE:To produce a sintered metallic body having uniform quality and high porosity with high productivity by mixing metal powder with heat-expandable fibers and subjecting the mixture to a heating treatment to expend the fibers and sinter the metal powder to each other. CONSTITUTION:The metal powder and/or metallic fibers are added together with a flocculating and fixing agent into an aq. dispersion of the expendable fibers (pulp, natural fibers, synthetic fibers, carbon fibers, etc.) which are expended by heating. Paper body is manufactured from the mixture composed thereof while said liquid is held adsorbed to the expendable fibers. The is then subjected to the heating treatment to expend the expendable fibers and to sinter and integrate the metal powder and/or metallic fibers to each other to leave the parts where the expendable fibers exist as gaps. The porous sintered metallic body is thus obtd. The metal powder and metallic fibers are adequately selected according to the purposes of use. The porous sintered metallic body having the uniform quality, high porosity and excellent strength is thereby produced with high productivity.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、金属触媒、金属フィルター、燃料電池用電極
等として優れた性能を発揮する多孔質金属焼結体の製造
方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for manufacturing a porous metal sintered body that exhibits excellent performance as a metal catalyst, metal filter, electrode for fuel cells, etc.

[従来の技術] 上記の様な用途に適用される多孔質金属焼結体は、金属
微粉末を原料とし無加圧焼結法、スラリー成形法、ロー
ル成形法等によって製造されている。
[Prior Art] Porous metal sintered bodies applied to the above-mentioned uses are manufactured using fine metal powder as a raw material by a pressureless sintering method, a slurry molding method, a roll molding method, or the like.

無加圧焼結法とは、金属微粉末を型内に充填して表面を
平滑にならした後焼結することにより、金属微粉末同士
を適当な隙間が残された状態で接合一体化させる方法で
あり、たとえばカルボニル法等によって得られるニッケ
ル粉や鉄粉などの微粉末を使用すると多孔度が0.8を
超える高多孔質の金属焼結体を容易に得ることができる
。ところがこの方法は各工程がパッチ方式であるため生
産性を高めることができず、し°かも平板状以外の形状
(たとえば円筒状等)のものが得られ難く利用分野も著
しく制限されるという問題がある。
The pressureless sintering method involves filling a mold with fine metal powder, smoothing the surface, and then sintering it to join the fine metal powders together with appropriate gaps left. For example, if fine powder such as nickel powder or iron powder obtained by the carbonyl method is used, a highly porous metal sintered body with a porosity exceeding 0.8 can be easily obtained. However, this method cannot increase productivity because each process is a patch method, and furthermore, it is difficult to obtain shapes other than flat plates (for example, cylindrical shapes), which severely limits the field of application. There is.

次にスラリー成形法とは、金属微粉末に少量のバインダ
(ポリビニルアルコールやメチルセルロース等)を配合
し、更に必要により消泡剤等の助剤を加えた後水その他
の溶媒を加えてスラリー状とし、ドクターブレード等で
テープ状に成形した後溶媒の揮発除去、予備焼成による
バインダ等の消失除去、及び本焼成による金属微粉末同
士の部分融着を順次行なう方法であり、連続生産システ
ムの採用が可能であるため生産性が高く、しかも安定し
た品質のものが得られるといった利点を有している。と
ころがこの方法では、成形工程の段階で早くも金属微粉
末同士の密着が始まるため多孔度が低下するという難点
があり、焼結状態でせいぜい0.6程度の多孔度が得ら
れるにすぎない。多孔度不足を補うため、焼結時の熱処
理によって消失する微粉末(カーボン、プラスチックス
、セルロース等)や繊維などを原料スラリー中へ混入し
ておく方法も提案されているが、この方法を採用したと
しても前記無加圧焼結法差みの高多孔度が得られる訳で
はなく、むしろ過剰添加による焼結体の強度劣化が著し
くなって割れ等の問題が生じてくる。
Next, the slurry molding method involves blending fine metal powder with a small amount of binder (polyvinyl alcohol, methyl cellulose, etc.), adding auxiliary agents such as antifoaming agents if necessary, and then adding water and other solvents to form a slurry. This is a method in which after forming into a tape shape with a doctor blade etc., the solvent is evaporated off, the binder etc. is removed by pre-firing, and the metal fine powder is partially fused together by main baking, and a continuous production system is adopted. This has the advantage of high productivity and stable quality. However, this method has the disadvantage that the metal fine powders begin to adhere to each other as early as the molding process, resulting in a decrease in porosity, and a porosity of about 0.6 at most can be obtained in the sintered state. In order to compensate for the lack of porosity, a method has been proposed in which fine powders (carbon, plastics, cellulose, etc.) and fibers that disappear during heat treatment during sintering are mixed into the raw material slurry, but this method is not adopted. Even if this is done, it will not be possible to obtain a higher porosity than the pressureless sintering method described above, and on the contrary, the strength of the sintered body will deteriorate significantly due to excessive addition, leading to problems such as cracking.

ロール成形法も基本的には上記スラリー成形法と同様で
あり、連続生産が可能であ−るという利点は有している
ものの、金属微粉末同士の密着はスラリー成形法の場合
よりも更に進み易く多孔度を十分に高めることができな
い。
The roll forming method is basically the same as the slurry forming method mentioned above, and although it has the advantage of being able to perform continuous production, the adhesion between the fine metal powders is more advanced than in the slurry forming method. porosity cannot be increased sufficiently.

[発明が解決しようとする問題点] 本発明は上記の様な事情に着目してなされたものであっ
て、その目的は、均質で多孔度の高い金属焼結体を生産
性よく製造することのできる方法を提供しようとするも
のである。
[Problems to be Solved by the Invention] The present invention has been made focusing on the above-mentioned circumstances, and its purpose is to manufacture a homogeneous and highly porous metal sintered body with high productivity. The aim is to provide a method that allows for

[問題点を解決するための手段] 上記の目的を達成することのできた本発明方法の構成は
、加熱消失可能な消失性繊維に金属粉および/または金
属繊維を抄き込んで混抄体を得た後、該混抄体を加熱処
理し上記消失性繊維を消失させ、更に金属粉および/ま
たは金属繊維同士の焼結を行なうところに要旨を有する
ものである。
[Means for Solving the Problems] The structure of the method of the present invention that can achieve the above object is to obtain a mixed paper product by incorporating metal powder and/or metal fibers into fugitive fibers that can be dissipated by heating. After that, the mixed paper sheet is heat-treated to eliminate the fugitive fibers, and the metal powder and/or metal fibers are further sintered.

[作用] 本発明では、加熱により消失可能な消失性繊維、たとえ
ばバルブ、天然繊維、合成繊維等の有機質繊維あるいは
炭素繊維等の水分散液中に、ポリアクリルアミドの如き
凝集定着剤と共に金属粉を加え、該金属粉を消失性繊維
に吸着させた状態で抄紙することによって混抄体を得る
か、あるいは金属繊維と消失性繊維を混抄して混抄体を
得、この混抄体を加熱処理することにより消失性繊維を
消失させると共に、該消失性繊維と共に混抄された金属
粉および/または金属繊維を焼結一体化せしめ、消失性
繊維の存在していた部分を空隙として残すことにより多
孔質の金属焼結体を得るものである。従って金属粉およ
び/または金属繊維と消失性繊維の混抄比率を調整する
ことによって任意の多孔度を有する金属焼結体を得るこ
とができる。しかもこの焼結体は、均一な混抄状態から
消失性繊維を消失せしめたものであるから、全体に亘っ
て均一な多孔性を有するものとなり、且つ金属粉および
/または金属繊維は焼結によって相互に3次元的に接合
しあったものとなり、強度的にも優れたものとなる。ま
た消失性繊維の径や金属粉および/または金属繊維の直
径や長さ等を調整することによって、所望の孔径を有す
る多孔質金属焼結体を得ることができ、更には混抄体の
肉厚を変えることによって任意の厚さの多孔質金属焼結
体を得ることができる。
[Function] In the present invention, metal powder is added together with a coagulating fixing agent such as polyacrylamide into an aqueous dispersion of fugitive fibers that can be dissipated by heating, such as organic fibers such as bulbs, natural fibers, synthetic fibers, or carbon fibers. In addition, a mixed paper product is obtained by paper-making with the metal powder adsorbed on fugitive fibers, or a mixed paper product is obtained by mixing metal fibers and fugitive fibers, and this mixed paper product is heat-treated. In addition to eliminating the fugitive fibers, the metal powder and/or metal fibers mixed with the fugitive fibers are sintered and integrated, leaving the areas where the fugitive fibers were present as voids to create a porous metal sinter. It is something that gives rise to unity. Therefore, a metal sintered body having an arbitrary porosity can be obtained by adjusting the mixing ratio of metal powder and/or metal fiber and fugitive fiber. Furthermore, since this sintered body is made by eliminating fugitive fibers from a uniform mixed paper state, it has uniform porosity throughout, and the metal powder and/or metal fibers are mutually bonded by sintering. This results in three-dimensional bonding to each other, resulting in excellent strength. In addition, by adjusting the diameter of the fugitive fibers and the diameter and length of the metal powder and/or metal fibers, it is possible to obtain a porous metal sintered body having a desired pore size, and furthermore, it is possible to obtain a porous metal sintered body having a desired pore size. A porous metal sintered body of any thickness can be obtained by changing the .

本発明で使用する消失性繊維は、前述の如く加熱処理に
よって消失し得るものであれば種類の如何を問うもので
はなく、木綿、麻、羊毛等の各種天然繊維、再生セルロ
ース繊維、ナイロン、ポリエステル等の各種合成繊維、
あるいは炭素繊維、更にはバルブ等のすべてを使用する
ことがで、きるが、金属粉や金属繊維を効率良く定着さ
せるうえで最も好ましいのは植物性天然繊維及びバルブ
である。
The fugitive fibers used in the present invention are not limited to any type as long as they can be burnt out by heat treatment as described above, including various natural fibers such as cotton, linen, and wool, regenerated cellulose fibers, nylon, and polyester. Various synthetic fibers such as
Alternatively, carbon fibers, even bulbs, etc. can all be used, but vegetable natural fibers and bulbs are most preferred for efficiently fixing metal powder and metal fibers.

混抄体の製造には格別特殊な技術が要求される訳ではな
く、従来から一般に採用されている紙や繊維質ボード等
の製法に準じて実施すればよく、この場合原料として金
属粉を使用するときは消失性繊維への定着率を高めるた
めポリアクリルアミドの様な高分子定着剤を併用するこ
とが望まれる。
The production of mixed paper does not require any particularly special technology, and can be carried out in accordance with conventionally commonly used manufacturing methods for paper, fiber boards, etc. In this case, metal powder is used as the raw material. In some cases, it is desirable to use a polymer fixing agent such as polyacrylamide in combination to increase the fixation rate on fugitive fibers.

本発明ではこの様にして得られる混抄体を一旦乾燥して
水分を除去した後加熱処理し、消失性繊維の消失と金属
粉および/または金属繊維の焼結を行なうもので、加熱
処理の方法は本発明を限定する性質のものではないが、
最も一般的な方法を例示すると次の通りである。
In the present invention, the mixed paper sheet obtained in this manner is once dried to remove moisture and then heat-treated to eliminate fugitive fibers and sinter the metal powder and/or metal fibers. does not limit the present invention, but
Examples of the most common methods are as follows.

■混抄体を酸化性ガス雰囲気中で加熱して消失性繊維を
燃焼消失せしめ、次いで処理雰囲気を還元性ガスに切換
え、燃焼消失工程で生じた金属酸化物を還元すると共に
焼結させる方法。
(2) A method in which the mixed paper is heated in an oxidizing gas atmosphere to burn out the fugitive fibers, and then the treatment atmosphere is switched to a reducing gas to reduce and sinter the metal oxides produced in the burning process.

この方法は酸化物が水素等の還元性ガスにょフて容易に
還元される金属にニッケル等)を用いる場合には特に効
果的である。
This method is particularly effective when the oxide is a metal (such as nickel) that is easily reduced by a reducing gas such as hydrogen.

■混抄体を002ガス雰囲気中またはCo2を含むガス
雰囲気中で加熱し、消失性繊維を熱分解させると共に残
留する炭素は(C+co2→2CO)の反応によって除
去し、次いで雰囲気ガスを還元性ガス(主として水素)
に切換え、消失性繊維の消失過程で生成した金属酸化物
を還元しつつ焼結させる方法。
■Heat the mixed paper in a 002 gas atmosphere or a gas atmosphere containing Co2 to thermally decompose the fugitive fibers and remove the remaining carbon by the reaction (C + co2 → 2CO), and then convert the atmospheric gas into a reducing gas ( mainly hydrogen)
A method in which the metal oxides generated during the disappearance process of fugitive fibers are reduced and sintered.

この方法は前記■の方法に比べると消失性繊維消失工程
で金属の酸化が進みにくいので、酸化され易い金属粉や
金属繊維を使用する場合に適した方法である。
This method is suitable for using metal powders or metal fibers that are easily oxidized, since metal oxidation does not proceed as easily during the fugitive fiber disappearance step as compared to method (1) above.

この場合、消失性繊維の消失を水素雰囲気中で行ない、
該繊維の熱分解と(C+2H2−CH4)の反応を利用
した残留炭素の除去を併行して進めることも可能である
と思われるが、この方法では熱分解により生成した炭素
がスケルトン状となって残留し金属粉および/または金
属繊維の焼結を阻害するので焼結体が非常に脆弱となっ
て実用性を欠くものとなる。
In this case, the disappearance of the fugitive fibers is carried out in a hydrogen atmosphere,
It seems possible to simultaneously proceed with the thermal decomposition of the fibers and the removal of residual carbon using the (C+2H2-CH4) reaction, but with this method, the carbon produced by the thermal decomposition becomes skeleton-like. Since the remaining metal particles and/or metal fibers inhibit sintering, the sintered body becomes extremely brittle and impractical.

また消失雰囲気中に水蒸気を供給しくC+H20−= 
CO+ H2)の反応を利用することにより、残留炭素
を除去すると共に生成する還元性ガス(CO+)12 
)によって金属酸化物の還元を行なうこともできると思
われるが、実際に行なってみると残留炭素の除去が不十
分となり、やはり焼結体が脆弱となる。同様の趣旨で消
失雰囲気中にCo、+H,の混合ガスを供給しCO2に
よる脱炭作用とH2による還元作用を同時に発揮させる
方法も試みたが、やはり残留炭素の除去が不十分となっ
て焼結が困難となり、強度上の要求を満たすことができ
なかった。
Also, to supply water vapor to the disappearing atmosphere, C+H20-=
By utilizing the reaction of CO+ H2), residual carbon is removed and reducing gas (CO+)12 is generated.
), but when this is actually done, the removal of residual carbon is insufficient and the sintered body becomes brittle. For the same purpose, we tried a method in which a mixed gas of Co and +H was supplied into the evaporation atmosphere to simultaneously exert the decarburization effect by CO2 and the reduction effect by H2, but the removal of residual carbon was still insufficient and the incineration This made it difficult to tie and could not meet the strength requirements.

この理由は、水蒸気を利用する場合[C+H20:CO
+H2] 、Co2とH2の混合ガスを用いた場合[C
O2+H2::co+H20] +73各反応によって
生成するCOがC02による脱炭反応[C+ CO2→
2CO]の進行を阻害するためと考えている。
The reason for this is that when using water vapor [C+H20:CO
+H2], when using a mixed gas of Co2 and H2, [C
O2+H2::co+H20] +73 CO generated by each reaction undergoes decarburization reaction by CO2 [C+ CO2→
This is thought to be due to inhibiting the progress of 2CO].

但しCO2と共に少量の水蒸気を含む混合ガスを用いた
場合、脱炭反応は極めて効率よく進行することを確認し
ている。
However, it has been confirmed that when a mixed gas containing CO2 and a small amount of water vapor is used, the decarburization reaction proceeds extremely efficiently.

この様なところから、本発明を実施する際においては前
記■又は■の方法を採用することが望まれる。尚消失及
び焼結のための温度は金属の種類により異なるが、例え
ばニッケルを用いた場合には、700〜1100℃程度
(最も一般的なのは800〜!000℃程度)が好まし
く、700℃未満の場合は脱炭不足及び焼結不足となっ
て十分な強度が得られず、一方ttoo℃を超えると過
焼結となって多孔度が低下し本発明の特徴を有効に活用
し得なくなる。
For this reason, it is desirable to employ the method (1) or (2) above when implementing the present invention. The temperature for vanishing and sintering varies depending on the type of metal, but for example, when nickel is used, it is preferably about 700 to 1100°C (most commonly about 800 to 1,000°C), and less than 700°C. If the temperature is too high, decarburization and sintering will be insufficient, and sufficient strength will not be obtained. On the other hand, if the temperature exceeds too much, oversintering will occur and the porosity will decrease, making it impossible to effectively utilize the features of the present invention.

金属粉および/または金属繊維としては用途に応じて様
々のものが使用されるが、代表的なものを例示すると、
金属触媒や担体用としてはニッケル、ニッケル・クロム
合金、ステンレス鋼、鉄・クロム合金等が、金属フィル
タ用としてはステンレス鋼等が、また燃料電池電極用(
又は基板用)としてはニッケル、ニッケル・クロム合金
、ニッケル・コバルト合金、ニッケル・アルミ合金等が
挙げられる。又、これらの金属元素粉末を混合したもの
であっても良い。
Various metal powders and/or metal fibers are used depending on the purpose, but typical examples include:
Nickel, nickel-chromium alloy, stainless steel, iron-chromium alloy, etc. are used for metal catalysts and carriers, stainless steel, etc. are used for metal filters, and fuel cell electrodes (
or for substrates) include nickel, nickel-chromium alloy, nickel-cobalt alloy, nickel-aluminum alloy, etc. Alternatively, a mixture of these metal element powders may be used.

また焼結体の形状は抄造方法を工夫することによって平
板状あるいは筒状等の任意の寸法・形状となし得るばか
りでなく、焼結前または焼結後の切断あるいは変形加工
等によっても自由に変更することができる。
In addition, the shape of the sintered body can not only be made into any size or shape such as a flat plate or a cylinder by devising the papermaking method, but also by cutting or deforming it before or after sintering. Can be changed.

[実施例] 実施例1 ニッケル微粉末(インコ社製二カルボニルNi−123
)と直径10〜20μmの木材バルブを用い、凝集定着
剤としてポリアクリルアミドを用いて常法により混抄し
、前者:後者り1:1(重量比)の混抄体(厚み: 1
.02±0.02m+a、乾燥後におけるニッケルの占
める容積比率:565%)を得た。
[Example] Example 1 Fine nickel powder (dicarbonyl Ni-123 manufactured by Inco)
) and a wood valve with a diameter of 10 to 20 μm, and polyacrylamide was used as a coagulation fixing agent to form a mixed paper in a conventional manner, with the former:latter ratio of 1:1 (weight ratio) (thickness: 1
.. 02±0.02 m+a, volume ratio occupied by nickel after drying: 565%) was obtained.

この混抄体を管状炉内へ装入し、空気を流しつつ600
℃で30分間保持した後、窒素ガスを吹込んで空気と置
換しその後頁に水素ガスで置換した後900℃で30分
熱処理した。
This mixed paper product was charged into a tube furnace and heated for 600 minutes while flowing air.
After being maintained at 900° C. for 30 minutes, nitrogen gas was blown in to replace the air, and then with hydrogen gas, followed by heat treatment at 900° C. for 30 minutes.

得られたニッケル焼結体の多孔度は0.79と非常に高
く、平均細孔径は5.9μm1直径1μm以下のサブミ
クロン孔の全細孔容積に占める割合は17容積%であり
、炭素の残存量は定量限界の10ppm以下であった。
The porosity of the obtained nickel sintered body is extremely high at 0.79, and the average pore diameter is 5.9 μm.The proportion of submicron pores with a diameter of 1 μm or less in the total pore volume is 17% by volume, and the carbon The residual amount was below the quantification limit of 10 ppm.

実施例2 上記実施例1と同様にして得た混抄体を管状炉内へ装入
し、C02を流しなから31時間を要して900℃まで
加熱昇温した後、供給ガスを水素に切換え同温度で30
分保持し、冷却後取り出した。
Example 2 A mixed paper product obtained in the same manner as in Example 1 above was charged into a tube furnace, heated to 900°C over 31 hours without flowing CO2, and then the supply gas was switched to hydrogen. 30 at the same temperature
It was kept for a minute and then taken out after cooling.

このニッケル焼結体の多孔度は0.80と非常に高く、
平均細孔径は5.1μm、直径1μm以下のサブミクロ
ン孔の全細孔容積に占める割合は20容量%であり、炭
素残存量は120ppmであった。
The porosity of this nickel sintered body is extremely high at 0.80.
The average pore diameter was 5.1 μm, the proportion of submicron pores with a diameter of 1 μm or less in the total pore volume was 20% by volume, and the residual amount of carbon was 120 ppm.

比較例1 実施例2で用いたのと同じニッケル微粉末をカルボキシ
メチルセルロース2%と共に水に加えてスラリーとし、
ボールミルで十分に混合して水性スラリーを得た。この
スラリーをポリエステルシート上に広げ、ドクターブレ
ードで均等な厚さとなる様に展延した後乾燥し、薄板状
のシート(平均厚さ: 0.99±0.02m+a)と
した、このシートを前記実施例2と同様の条件で熱処理
しニッケル焼結体を得た。
Comparative Example 1 The same fine nickel powder used in Example 2 was added to water together with 2% carboxymethyl cellulose to make a slurry.
The mixture was thoroughly mixed in a ball mill to obtain an aqueous slurry. This slurry was spread on a polyester sheet, spread to an even thickness using a doctor blade, and dried to form a thin sheet (average thickness: 0.99±0.02 m+a). A nickel sintered body was obtained by heat treatment under the same conditions as in Example 2.

この焼結体の多孔度は0.52と低く、また平均細孔径
は4.7μmで実施例2の焼結体とあまり差がなかった
が、1μm以下のサブミクロン孔の全細孔容積に占める
割合は7.0%と少なく、多孔質ニッケル焼結体として
の品質は実施例2の焼結体に比べてかなり劣るものであ
った。尚炭素残存量は1107ppであった。
The porosity of this sintered body was as low as 0.52, and the average pore diameter was 4.7 μm, which was not much different from the sintered body of Example 2, but the total pore volume of submicron pores of 1 μm or less The proportion thereof was as small as 7.0%, and the quality of the porous nickel sintered body was considerably inferior to that of the sintered body of Example 2. The amount of carbon remaining was 1107 pp.

実施例3 消失性繊維消失のための最適雰囲気ガスを明確にするた
め次の実験を行なった。
Example 3 The following experiment was conducted to clarify the optimal atmospheric gas for the disappearance of fugitive fibers.

木材バルブ(平均粒径10〜20μm)とニッケル微粉
末(同前)を7:3または6:4(重量比)で使用して
水性スラリーとし、凝集定着剤(ポリアクリルアミド)
を加えて抄造することにより、厚さが約1.0 amの
混抄体を得た。
Wood bulb (average particle size 10-20 μm) and fine nickel powder (same as above) were used in a 7:3 or 6:4 (weight ratio) to make an aqueous slurry, and a coagulation fixing agent (polyacrylamide) was used.
A mixed paper product with a thickness of about 1.0 am was obtained by adding and performing papermaking.

この混抄体を乾燥して水分を除去した後管状炉へ装入し
、第1表に示す6種類の雰囲気ガスを夫々供給しつつ9
00℃まで昇温(所要時間23時間)し、その後供給ガ
スを水素に切換えて同温度で30分間保持し焼結した。
After drying this mixed paper to remove moisture, it was charged into a tube furnace, and while supplying each of the six types of atmospheric gases shown in Table 1,
The temperature was raised to 00° C. (required time: 23 hours), and then the supply gas was changed to hydrogen and the temperature was maintained for 30 minutes for sintering.

得られた各焼結物の炭素残存量(原料バルブに対する重
量比率)は第1表に併記する通りであり、消失性繊維消
失のための雰囲気ガスとしてはco、またはCO2リッ
チガスが最も適していることを確認することができる。
The remaining amount of carbon (weight ratio to the raw material bulb) of each sintered product obtained is as shown in Table 1, and co or CO2-rich gas is most suitable as the atmospheric gas for the disappearance of fugitive fibers. You can confirm that.

尚雰囲気ガスとして1(2:100%、Hz:80%−
1(20:20%、N2:80%−Hz0:20%、C
O,:50%−Hz 750%を用いた焼結体は何れも
炭素残存量が多く焼結不良状態を呈しており、何れも極
めて脆弱であるのに対し、炭素残存率が0%である2種
の焼結体は機械的強度も非常に優れたものであった。
Note that the atmospheric gas was 1 (2: 100%, Hz: 80%-
1 (20:20%, N2:80%-Hz0:20%, C
The sintered bodies using O,:50%-Hz 750% all have a large amount of residual carbon and exhibit poor sintering, and are extremely brittle, whereas the residual carbon rate is 0%. The two types of sintered bodies also had very excellent mechanical strength.

また第1.2図は上記で得た焼結体の一部を抜粋して示
す図面代用SEM写真(走査型電子顕微鏡写真)であり
、第1図は雰囲気ガスとして[CO2:100%]を用
いた炭素残存量が0%のもの、第2図は雰囲気ガスとし
て[COz:50%−Hz:50%]を用いた炭素残存
量の多いものを夫々示している。これらの写真からも明
らかである様に、適正な雰囲気ガスを用いて得た焼結体
(第1図)には炭素の存在が認められず、全体に亘って
網状の焼結状態が得られているのに対し、雰囲気ガスが
適当でなかった焼結体(第2図)には大量の炭素が残存
しており、焼結が十分に進んでいないことを確認するこ
とができる。
Figure 1.2 is an SEM photograph (scanning electron microscope photograph) showing an excerpt of the sintered body obtained above, and Figure 1 shows [CO2: 100%] as the atmospheric gas. Fig. 2 shows a case in which the residual amount of carbon was 0%, and a case in which [COz:50%-Hz:50%] was used as the atmospheric gas and a large residual amount of carbon. As is clear from these photographs, the presence of carbon was not observed in the sintered body obtained using the appropriate atmospheric gas (Fig. 1), and a network-like sintered state was obtained throughout. On the other hand, a large amount of carbon remained in the sintered body (Fig. 2) in which the atmosphere gas was not appropriate, and it can be confirmed that sintering has not progressed sufficiently.

[発明の効果] 本発明は以上の様に構成されており、均質で多孔度が高
く且つ強度の優れた多孔質金属焼結体を生産性良く製造
し得ることになった。そしてこの焼結体は次の様な用途
に使用することによってその優れた性能を有効に発揮す
る。
[Effects of the Invention] The present invention is configured as described above, and a porous metal sintered body that is homogeneous, has high porosity, and has excellent strength can be manufactured with high productivity. This sintered body effectively exhibits its excellent performance when used in the following applications.

■金属触媒又はその担体として、 多孔質金属焼結体をそのまま金属触媒として使用し、あ
るいは触媒担体として使用することは、たとえば特公昭
51−41598号、同56−18254号、特開昭5
9− 225742号等により知られているが、本発明によっ
て得られる焼結体は多孔度が高く細孔分布も小さいので
、高レベルの触媒活性を発揮させることができる。
■ As a metal catalyst or its carrier The porous metal sintered body can be used as it is as a metal catalyst or as a catalyst carrier, for example, as described in Japanese Patent Publications No. 51-41598, No. 56-18254, and Japanese Patent Application Laid-open No. 56-1825.
The sintered body obtained by the present invention has a high porosity and a small pore distribution, so it can exhibit a high level of catalytic activity.

■フィルタとして、 多孔度が高く且つ細孔分布幅が狭いのでフィルタとして
優れた性能を発揮する。しかも細孔径は金属粉および/
または金属繊維あるいは消失性繊維の大きさや両者の混
抄比率を変えることによって任意に調整することができ
るので、広範囲の用途に適用することができる。
■As a filter, it exhibits excellent performance as a filter due to its high porosity and narrow pore distribution width. Moreover, the pore diameter is smaller than that of metal powder and/or
Alternatively, it can be arbitrarily adjusted by changing the size of the metal fiber or fugitive fiber or the mixing ratio of the two, so it can be applied to a wide range of uses.

■燃料電池用電極あるいはその基板として、ニッケル(
またはニッケル合金)等からなる多孔質焼結体は燃料電
池用の電極あるいは基板として有用である。特に溶融炭
酸塩型燃料電池用電極として使用する場合、電極反応活
性を高めるうえで多孔度を高めることが極めて重要とな
るが、本発明によって得られる焼結体はこうした要請に
も十分答えることができる。
■Nickel (nickel) is used as a fuel cell electrode or its substrate.
A porous sintered body made of a material such as a nickel alloy or a nickel alloy is useful as an electrode or substrate for a fuel cell. In particular, when used as an electrode for a molten carbonate fuel cell, it is extremely important to increase the porosity in order to increase the electrode reaction activity, and the sintered body obtained by the present invention can sufficiently meet these demands. can.

【図面の簡単な説明】[Brief explanation of the drawing]

第1.2図は実施例3で得た多孔質金属焼結体の走査型
電子顕微鏡写真である。
FIG. 1.2 is a scanning electron micrograph of the porous metal sintered body obtained in Example 3.

Claims (1)

【特許請求の範囲】[Claims] 加熱消失可能な消失性繊維に金属粉および/または金属
繊維を抄き込んで混抄体を得た後、該混抄体を加熱処理
し上記消失性繊維を消失させ、更に金属粉および/また
は金属繊維同士の焼結を行なうことを特徴とする多孔質
金属焼結体の製造方法。
After a metal powder and/or metal fibers are mixed into heat-disappearable fugitive fibers to obtain a mixed paper, the mixed paper is heat-treated to eliminate the fugitive fibers, and then metal powder and/or metal fibers are added to the fugitive fibers. A method for producing a porous metal sintered body, characterized by performing sintering between the two.
JP62002476A 1987-01-08 1987-01-08 Prodoction of porous sintered metallic body Pending JPS63171802A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62002476A JPS63171802A (en) 1987-01-08 1987-01-08 Prodoction of porous sintered metallic body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62002476A JPS63171802A (en) 1987-01-08 1987-01-08 Prodoction of porous sintered metallic body

Publications (1)

Publication Number Publication Date
JPS63171802A true JPS63171802A (en) 1988-07-15

Family

ID=11530387

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62002476A Pending JPS63171802A (en) 1987-01-08 1987-01-08 Prodoction of porous sintered metallic body

Country Status (1)

Country Link
JP (1) JPS63171802A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0328301A (en) * 1989-06-23 1991-02-06 Asahi Tec Corp Method for compacting metal
US5174951A (en) * 1990-11-05 1992-12-29 Asahi Tec Corporation Method of producing a porous metal and a metal product using the same such as a catalyst carrier
JPH06277422A (en) * 1993-03-23 1994-10-04 Fuirutoreeshiyon Kk Production of filter medium and filter medium produced by the method
JPH11131105A (en) * 1997-10-31 1999-05-18 Tomoegawa Paper Co Ltd Production of metallic fiber sintered sheet
WO2000004580A1 (en) * 1998-07-14 2000-01-27 The Furukawa Electric Co., Ltd. Optical device, electronic device enclosure, and getter assembly
JP2001517273A (en) * 1997-03-31 2001-10-02 ファイバーマーク インコーポレイテッド Sheet of metal fiber and metal powder and method for producing the same
JP2001526737A (en) * 1997-03-31 2001-12-18 ファイバーマーク インコーポレイテッド Metal fiber sheet and method for producing the same
US6901095B2 (en) 2001-07-25 2005-05-31 The Furukawa Electric Co., Ltd. Semiconductor laser module, optical measuring method and optical measuring apparatus
JP2007533865A (en) * 2004-04-15 2007-11-22 ナムローゼ・フェンノートシャップ・ベーカート・ソシエテ・アノニム Method for producing metal fiber non-sintered body
WO2013100147A1 (en) * 2011-12-28 2013-07-04 太盛工業株式会社 Porous sintered body and process for producing porous sintered body
JP2014009391A (en) * 2012-07-02 2014-01-20 Nissin Kogyo Co Ltd Method for producing porous body, and porous body
CN109478655A (en) * 2016-07-25 2019-03-15 罗伯特·博世有限公司 For manufacturing the method and fuel cell that are used for the current-collector of fuel cell

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0328301A (en) * 1989-06-23 1991-02-06 Asahi Tec Corp Method for compacting metal
US5174951A (en) * 1990-11-05 1992-12-29 Asahi Tec Corporation Method of producing a porous metal and a metal product using the same such as a catalyst carrier
AU640722B2 (en) * 1990-11-05 1993-09-02 Asahi Tec Corporation Method of producing a porous metal and a metal product using the same such as a catalyst carrier
JPH06277422A (en) * 1993-03-23 1994-10-04 Fuirutoreeshiyon Kk Production of filter medium and filter medium produced by the method
JP2001517273A (en) * 1997-03-31 2001-10-02 ファイバーマーク インコーポレイテッド Sheet of metal fiber and metal powder and method for producing the same
JP2001526737A (en) * 1997-03-31 2001-12-18 ファイバーマーク インコーポレイテッド Metal fiber sheet and method for producing the same
JPH11131105A (en) * 1997-10-31 1999-05-18 Tomoegawa Paper Co Ltd Production of metallic fiber sintered sheet
WO2000004580A1 (en) * 1998-07-14 2000-01-27 The Furukawa Electric Co., Ltd. Optical device, electronic device enclosure, and getter assembly
US6901095B2 (en) 2001-07-25 2005-05-31 The Furukawa Electric Co., Ltd. Semiconductor laser module, optical measuring method and optical measuring apparatus
JP2007533865A (en) * 2004-04-15 2007-11-22 ナムローゼ・フェンノートシャップ・ベーカート・ソシエテ・アノニム Method for producing metal fiber non-sintered body
JP4922921B2 (en) * 2004-04-15 2012-04-25 ナムローゼ・フェンノートシャップ・ベーカート・ソシエテ・アノニム Method for producing metal fiber non-sintered body
WO2013100147A1 (en) * 2011-12-28 2013-07-04 太盛工業株式会社 Porous sintered body and process for producing porous sintered body
JPWO2013100147A1 (en) * 2011-12-28 2015-05-11 太盛工業株式会社 Porous sintered body and method for producing porous sintered body
JP2014009391A (en) * 2012-07-02 2014-01-20 Nissin Kogyo Co Ltd Method for producing porous body, and porous body
CN109478655A (en) * 2016-07-25 2019-03-15 罗伯特·博世有限公司 For manufacturing the method and fuel cell that are used for the current-collector of fuel cell
US20190237774A1 (en) * 2016-07-25 2019-08-01 Robert Bosch Gmbh Method for producing a current collector for a fuel cell, and fuel cell
US10862137B2 (en) * 2016-07-25 2020-12-08 Robert Bosch Gmbh Method for producing a current collector for a fuel cell, and fuel cell
CN109478655B (en) * 2016-07-25 2022-03-18 罗伯特·博世有限公司 Method for producing a current collector for a fuel cell and fuel cell

Similar Documents

Publication Publication Date Title
US7374717B2 (en) Method for producing intermetallic compound porous material
JPS63171802A (en) Prodoction of porous sintered metallic body
US20030054154A1 (en) Method of making a porous green form and oxygen transport membrane
WO1997031738A1 (en) Porous materials and method for producing
DE3516587A1 (en) POROESIC SILICON CARBIDE SINTER AND METHOD FOR THE PRODUCTION THEREOF
JPS58117649A (en) Manufacture of electrode substrate of fuel cell
JP2007532778A (en) Method for producing sintered metal fiber
CN110125392B (en) High-flux external light Fe-Al intermetallic compound filter element and preparation method thereof
JPH04215853A (en) Heat resisting metal monolith and manufacture thereof
JPH1046268A (en) Manufacture of porous ni-cr alloy
KR101350150B1 (en) Metal porous structure and method of manufacturing by the same
JP4988334B2 (en) Method for producing a layer system comprising a metal carrier and an anode working layer
JPS6133041B2 (en)
JPH0246545B2 (en)
CN112707737B (en) Porous ceramic and preparation method and application thereof
JPS63171803A (en) Production of porous laminated and sintered body
JP2002114573A (en) Method for manufacturing conductive carbon porous body and conductive carbon porous body manufactured by the method
JPS63255304A (en) Production of porous metal sintered body
CN112517009B (en) Modified porous copper-nickel alloy plate and preparation method and application thereof
JPH11263681A (en) Production of carbonaceous porous body for fuel cell
CN110523295A (en) Porous structure continuous production process and device
Hong et al. Fabrication of a dense La0. 2Sr0. 8CoO3− δ/CoO composite membrane by utilizing the electroless cobalt plating technique
KR20120019524A (en) High-yield supporting method of uniform nano-catalyst on surface of the carbonized cellulose, and the nano-catalyst support using the same
JP2007204806A (en) Method for producing metal porous body
JPH0733547A (en) Production of porous silicon carbide sintered compact