JP2002114573A - Method for manufacturing conductive carbon porous body and conductive carbon porous body manufactured by the method - Google Patents

Method for manufacturing conductive carbon porous body and conductive carbon porous body manufactured by the method

Info

Publication number
JP2002114573A
JP2002114573A JP2000306734A JP2000306734A JP2002114573A JP 2002114573 A JP2002114573 A JP 2002114573A JP 2000306734 A JP2000306734 A JP 2000306734A JP 2000306734 A JP2000306734 A JP 2000306734A JP 2002114573 A JP2002114573 A JP 2002114573A
Authority
JP
Japan
Prior art keywords
porous body
conductive carbon
carbon porous
porosity
pore diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000306734A
Other languages
Japanese (ja)
Inventor
Hiroshi Yoshikawa
大士 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Noritake Co Ltd
Japan Science and Technology Agency
Original Assignee
Noritake Co Ltd
Japan Science and Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Noritake Co Ltd, Japan Science and Technology Corp filed Critical Noritake Co Ltd
Priority to JP2000306734A priority Critical patent/JP2002114573A/en
Publication of JP2002114573A publication Critical patent/JP2002114573A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00853Uses not provided for elsewhere in C04B2111/00 in electrochemical cells or batteries, e.g. fuel cells
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/90Electrical properties
    • C04B2111/94Electrically conducting materials

Abstract

PROBLEM TO BE SOLVED: To provide a method to easily manufacture a conductive carbon porous body having a desired pore diameter and porosity and to provide a conductive carbon porous body manufactured by the above method. SOLUTION: The conductive carbon porous body is obtained by press forming self-sintering carbon particles in a forming die corresponding to the desired pore diameter and porosity, decreasing the pressure and then calcining.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、燃料電池の電極
等に用いる導電性カーボン多孔体の作製方法と、その方
法で作製した導電性カーボン多孔体に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a conductive carbon porous body used for an electrode of a fuel cell and the like, and a conductive carbon porous body produced by the method.

【0002】[0002]

【従来の技術】増え続けるエネルギー消費にともない、
炭酸ガス排出量が増え続け、急激な地球温暖化をもたら
している。炭酸ガス排出を伴わずに、かつ高効率で電気
エネルギーを取り出すことのできる燃料電池技術は、2
1世紀の究極のエネルギー技術の一つとして、世界中で
その研究開発が行われている。燃料電池は、水素と酸素
が化学反応し水を生成する過程の化学エネルギーを電気
エネルギーとして取り出すものであり、炭酸ガスの排出
を伴わずに電気エネルギーを得ることができる。燃料電
池は、図6に示すように、燃料極、空気極と呼ばれる電
極の間に、電解質またはイオン交換膜を挟んだ構造を有
している。燃料極において、燃料から供給される水素を
電解質またはイオン交換膜にイオンとして供給し、この
際の電極反応により燃料極に電子を取り込み、この電子
は、水素イオンが空気極に到達し酸素と反応する際に消
費される。こうして、燃料極と空気極の化学ポテンシャ
ル差に基づく起電力と水素イオンの供給量によって定ま
る電力が得られる。
2. Description of the Related Art With increasing energy consumption,
Carbon dioxide emissions continue to increase, causing rapid global warming. Fuel cell technology that can extract electric energy with high efficiency without carbon dioxide emission
As one of the ultimate energy technologies of the first century, research and development are being carried out all over the world. A fuel cell extracts chemical energy in the process of producing water by the chemical reaction of hydrogen and oxygen as electric energy, and can obtain electric energy without discharging carbon dioxide gas. As shown in FIG. 6, the fuel cell has a structure in which an electrolyte or an ion exchange membrane is interposed between electrodes called a fuel electrode and an air electrode. At the fuel electrode, hydrogen supplied from the fuel is supplied as ions to the electrolyte or ion exchange membrane, and electrons are taken into the fuel electrode by the electrode reaction at this time, and the hydrogen ions reach the air electrode and react with oxygen. To be consumed. In this way, an electromotive force based on the chemical potential difference between the fuel electrode and the air electrode and electric power determined by the supply amount of hydrogen ions are obtained.

【0003】このように、燃料極及び空気極は、電気導
体であると共に燃料及び空気の供給体であることが必要
である。燃料電池の出力電力密度を高めるためには、電
極反応速度を高めることが必要であり、このため触媒を
使用し、さらに、高温で動作させる。そのため、燃料極
及び空気極は、電気の良導体、燃料及び空気の通気性、
電解質に対する耐腐食性のみならず、耐熱性があること
が必要であり、これらの要件を全て満たす電極として導
電性カーボン多孔体が用いられている。導電性カーボン
多孔体の燃料及び空気に対する通気性は、導電性カーボ
ンに細孔を設け、細孔の直径と細孔の密度、すなわち気
孔率で制御する。細孔の直径は十分な通気性を確保でき
ると共に、電解質またはイオン交換膜と電極との界面で
起こる電極反応に最適な径が必要であり、使用する触
媒、使用する電解質またはイオン交換膜の種類に応じ
て、最適な径に作製しなければならない。上記説明で
は、燃料電池を例として説明したが、導電性カーボン多
孔体は、燃料電池の電極への応用のみならず、導電性、
通気性、耐薬品性及び機械的強度を必要とするその他の
化学プラントにとっても重要部品である。
As described above, the fuel electrode and the air electrode need to be an electric conductor and a fuel and air supplier. In order to increase the output power density of a fuel cell, it is necessary to increase the electrode reaction rate. Therefore, a catalyst is used, and the fuel cell is operated at a high temperature. Therefore, the fuel electrode and air electrode are good conductors of electricity, air permeability of fuel and air,
It is necessary to have not only corrosion resistance to the electrolyte but also heat resistance, and a conductive carbon porous body is used as an electrode satisfying all these requirements. The permeability of the porous conductive carbon material to fuel and air is controlled by providing pores in the conductive carbon and controlling the diameter of the pores and the density of the pores, that is, the porosity. The diameter of the pores must be sufficient to ensure sufficient air permeability, and the diameter must be optimal for the electrode reaction occurring at the interface between the electrolyte or ion exchange membrane and the electrode. The type of catalyst used, the type of electrolyte or ion exchange membrane used Must be made to the optimum diameter according to In the above description, the fuel cell has been described as an example, but the conductive carbon porous body is not only applied to the electrode of the fuel cell, but also has conductivity,
It is also an important component for other chemical plants that require breathability, chemical resistance and mechanical strength.

【0004】従来、このような最適な細孔径及び気孔率
を有する導電性カーボン多孔体は、最適な細孔径に対応
した径を有する炭素繊維あるいは有機繊維を適量、バイ
ンダーに混合して成形し、炭素化焼成して作製していた
(特開平10−036179号、特開平06−2635
58号並びに特開平06−263559号の各公報を参
照)。これらの方法は、細孔径を炭素繊維あるいは有機
繊維の径によって、さらに、気孔率を炭素繊維あるいは
有機繊維の混合する量によって制御するものである。
Conventionally, a conductive carbon porous body having such an optimum pore diameter and porosity has been prepared by mixing an appropriate amount of carbon fibers or organic fibers having a diameter corresponding to the optimum pore diameter with a binder, and molding the mixture. It was prepared by carbonization and firing (JP-A-10-036179, JP-A-06-2635).
58 and JP-A-06-263559). In these methods, the pore diameter is controlled by the diameter of the carbon fiber or the organic fiber, and the porosity is controlled by the amount of the carbon fiber or the organic fiber to be mixed.

【0005】しかしながら、このような従来法では、最
適な細孔径に対応した径の炭素繊維あるいは有機繊維を
準備し、細孔径及び気孔率に対応してバインダーの種類
及び量を厳密に調整し、かつ炭素化焼成においても細孔
径及び気孔率に対応した焼成条件を精密に制御して作製
しなければ、所望の細孔径及び気孔率を有し、かつ、機
械的強度及び導電性も十分なカーボン多孔体が得られな
かった。このため、導電性カーボン多孔体のコストが高
いと言った課題がある。
However, in such a conventional method, a carbon fiber or an organic fiber having a diameter corresponding to the optimum pore diameter is prepared, and the kind and amount of the binder are strictly adjusted according to the pore diameter and the porosity. Also, in carbonization firing, unless the firing conditions corresponding to the pore diameter and the porosity are precisely controlled, the carbon having the desired pore diameter and the porosity, and having sufficient mechanical strength and conductivity is obtained. A porous body was not obtained. For this reason, there is a problem that the cost of the conductive carbon porous body is high.

【0006】[0006]

【発明が解決しようとする課題】本発明は、上記課題に
かんがみ、所望の細孔径及び気孔率を有する導電性カー
ボン多孔体を容易に作製できる方法及びこの方法で製造
した導電性カーボン多孔体を提供することを目的とす
る。
SUMMARY OF THE INVENTION In view of the above-mentioned problems, the present invention provides a method for easily producing a conductive carbon porous body having a desired pore diameter and porosity, and a conductive carbon porous body produced by this method. The purpose is to provide.

【0007】[0007]

【課題を解決するための手段】上記課題を達成するため
に本発明の導電性カーボン多孔体の作製方法は、自己焼
結性カーボン粒子を所定の成型圧で加圧成型後、除圧
し、ついで焼成することを特徴とする。上記構成におい
て、所定の成型圧を選択することにより、所定の細孔径
と気孔率を有する導電性カーボン多孔体を得ることを特
徴とする。また、上記焼成は、窒素雰囲気中で、600
〜1500℃でおこなうことを特徴とする。また、上記
所定の成型圧が60kg/cm2 〜320kg/cm2
の範囲において、所定の細孔径が0.6μm〜0.32
μmの範囲で変化することを特徴とする。また、上記所
定の成型圧が60kg/cm2 〜320kg/cm2
範囲において、所定の気孔率が43%〜28.4%の範
囲で変化することを特徴とする。この構成によれば、導
電性を有し、かつ用途に応じた細孔径及び気孔率を有す
る導電性カーボン多孔体を容易に作製できる。従って、
本発明の作製方法による導電性カーボン多孔体は、コス
トが低く、従って低価格で提供することができる。
Means for Solving the Problems In order to achieve the above object, a method for producing a porous conductive carbon material according to the present invention comprises the steps of: subjecting self-sintering carbon particles to pressure molding at a predetermined molding pressure; It is characterized by firing. The above configuration is characterized in that by selecting a predetermined molding pressure, a conductive carbon porous body having a predetermined pore diameter and a porosity is obtained. The firing is performed in a nitrogen atmosphere at 600 ° C.
~ 1500C. Further, the predetermined molding pressure is 60 kg / cm 2 to 320 kg / cm 2.
Is within the range of 0.6 μm to 0.32.
It changes in the range of μm. The predetermined molding pressure is in the range of 60kg / cm 2 ~320kg / cm 2 , wherein the predetermined porosity is varied in the range of 43% ~28.4%. According to this configuration, a conductive carbon porous body having conductivity and having a pore diameter and a porosity suitable for the intended use can be easily produced. Therefore,
The conductive carbon porous body produced by the production method of the present invention is low in cost and can be provided at low cost.

【0008】[0008]

【発明の実施の形態】自己焼結性カーボン粒子とは、重
質油等を加熱処理して得られる、メソフェーズと呼ばれ
るカーボンの液晶状の物質を仮焼処理したものである。
自己焼結性カーボン粒子の表面には、−COOH、−S
3 等の官能基成分が存在し、これらの成分が、加圧成
型時に型を保持するバインダーの役割を果たし、また、
焼成時にはこれらの成分が溶融し、隣の粒子と結合及び
炭化することによって粒子同士の結合力が生じる。この
ように、自己焼結性カーボン粒子は、それ自身で優れた
自己焼結性を有しており、バインダーを使用することな
く、自己焼結性カーボン粒子をそのまま加圧成型及び焼
成することによって、高密度、かつ高曲げ強度を有する
炭素成型品を得ることができる。本発明は、自己焼結性
カーボン粒子を加圧成型する際に、成型圧を適宜選択す
ることにより、自己焼結性カーボン粒子間の空隙の大き
さ、及び空隙の密度を制御し、所望の細孔径と気孔率を
有する導電性カーボン多孔体を得るものである。図1
は、本発明の導電性カーボン多孔体の作製方法を示す模
式図である。図1に示すように、本発明の作製方法は、
加圧成型と、窒素雰囲気中焼成の二つの工程のみで構成
される。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Self-sintering carbon particles are obtained by calcining a liquid crystalline substance of carbon called mesophase obtained by heating heavy oil or the like.
The surface of the self-sintering carbon particles has -COOH, -S
There is a functional group component such as O 3 , and these components serve as a binder for holding a mold during pressure molding.
At the time of firing, these components are melted and bonded and carbonized with adjacent particles, thereby generating a bonding force between the particles. As described above, the self-sintering carbon particles have excellent self-sintering properties by themselves, and can be obtained by directly molding and firing the self-sintering carbon particles without using a binder. Thus, a molded carbon article having high density and high bending strength can be obtained. The present invention, when pressure-molding the self-sintering carbon particles, by appropriately selecting the molding pressure, to control the size of the gap between the self-sintering carbon particles, and the density of the gap, the desired It is intended to obtain a conductive carbon porous body having a pore diameter and a porosity. FIG.
FIG. 1 is a schematic view illustrating a method for producing a conductive carbon porous body of the present invention. As shown in FIG. 1, the manufacturing method of the present invention comprises:
It consists of only two steps, pressure molding and baking in a nitrogen atmosphere.

【0009】以下に実施例を示す。図2は本発明の作製
方法による導電性カーボン多孔体の細孔径と成型圧の関
係を示すグラフである。図3は本発明の作製方法による
導電性カーボン多孔体の気孔率と成型圧の関係を示すグ
ラフである。本実施例に用いた導電性カーボン多孔体
は、(1)自己焼結性カーボン原料粉(粒径5μm)を
ステンレス製型に入れ、(2)1分間、一定の成型圧で
加圧して成型し、(3)成型圧を零にしたままN2 雰囲
気中で、100℃から2℃/minの割合で昇温して1
000℃にし、1000℃で2時間保持することにより
作製した。得られた導電性カーボン多孔体の細孔径及び
気孔率は、水銀圧入法で測定した。加圧成型する際の自
己焼結性カーボン粒子の量は、成型体が2mm厚程度に
なるように調整した。
An embodiment will be described below. FIG. 2 is a graph showing the relationship between the pore diameter of the conductive carbon porous body and the molding pressure according to the production method of the present invention. FIG. 3 is a graph showing the relationship between the porosity of the conductive carbon porous body and the molding pressure according to the production method of the present invention. The conductive carbon porous body used in this example was molded by (1) putting a self-sintering carbon raw material powder (particle diameter: 5 μm) into a stainless steel mold, and (2) pressing under a constant molding pressure for 1 minute. (3) The temperature is raised from 100 ° C. at a rate of 2 ° C./min in an N 2 atmosphere while keeping the molding pressure at zero, and
The temperature was raised to 000 ° C. and the temperature was kept at 1000 ° C. for 2 hours. The pore diameter and porosity of the obtained conductive carbon porous body were measured by a mercury intrusion method. The amount of the self-sintering carbon particles at the time of pressure molding was adjusted so that the molded body had a thickness of about 2 mm.

【0010】図2に見られるように、成型圧が60kg
/cm2 〜320kg/cm2 の範囲において、成型圧
を大きくするに従って、細孔径が小さくなり、0.6μ
m〜0.32μmの範囲で変化する。なお、図中の縦バ
ーは誤差範囲を示す。図3に見られるように、成型圧が
60kg/cm2 〜320kg/cm2 の範囲におい
て、成型圧を大きくするに従って、気孔率が減少し、4
3%〜28.4%の範囲で変化する。なお、図中の縦バ
ーは誤差範囲を示す。また、4探針測定法で測定した、
導電性カーボン多孔体の比抵抗は、2.4×10-2Ω・
cmであった。
As can be seen in FIG. 2, the molding pressure is 60 kg.
/ Cm 2 to 320 kg / cm 2 , as the molding pressure increases, the pore diameter decreases,
It changes within a range of m to 0.32 μm. Note that the vertical bar in the figure indicates an error range. As seen in FIG. 3, in the range molding pressure of 60kg / cm 2 ~320kg / cm 2 , according to increase the molding pressure, the porosity decreases, 4
It changes in the range of 3% to 28.4%. Note that the vertical bar in the figure indicates an error range. In addition, measured by the four-probe measurement method,
The specific resistance of the conductive carbon porous body is 2.4 × 10 −2 Ω ·
cm.

【0011】図4は、成型圧135kg/cm2 で作製
した導電性カーボン多孔体の厚さ(2mm)方向の断面
の電子顕微鏡写真である。図5は、上記導電性カーボン
多孔体の表面の電子顕微鏡写真である。図4及び図5か
ら明らかなように、本発明の導電性カーボン多孔体は、
自己焼結性カーボン粒子が互いに空隙を有しながら結合
し、この空隙が均一に分布している。
FIG. 4 is an electron micrograph of a cross section in the thickness (2 mm) direction of the conductive carbon porous body produced at a molding pressure of 135 kg / cm 2 . FIG. 5 is an electron micrograph of the surface of the conductive carbon porous body. As is clear from FIGS. 4 and 5, the conductive carbon porous body of the present invention is:
The self-sintering carbon particles are bonded to each other while having voids, and the voids are uniformly distributed.

【0012】[0012]

【発明の効果】上記説明から理解されるように、本発明
の作製方法によれば、成型時の成型圧を選択することに
より、所望の細孔径を有する導電性カーボン多孔体を得
ることができる。また、成型時の成型圧を選択すること
により、所望の気孔率を有する導電性カーボン多孔体を
得ることができる。従って、所望の細孔径及び気孔率を
有する導電性カーボン多孔体を容易に得ることができ、
また、この製造方法で製造した導電性カーボン多孔体は
低コストである。
As will be understood from the above description, according to the production method of the present invention, a conductive carbon porous body having a desired pore diameter can be obtained by selecting a molding pressure during molding. . Further, by selecting a molding pressure at the time of molding, a conductive carbon porous body having a desired porosity can be obtained. Therefore, it is possible to easily obtain a conductive carbon porous body having a desired pore diameter and porosity,
Moreover, the conductive carbon porous body manufactured by this manufacturing method is low in cost.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の導電性カーボン多孔体の作製方法を
示す模式図である。
FIG. 1 is a schematic view showing a method for producing a conductive carbon porous body of the present invention.

【図2】この発明の作製方法による導電性カーボン多孔
体の細孔径と成型圧の関係を示すグラフである。
FIG. 2 is a graph showing the relationship between the pore diameter and the molding pressure of the conductive carbon porous body according to the production method of the present invention.

【図3】この発明の作製方法による導電性カーボン多孔
体の気孔率と成型圧の関係を示すグラフである。
FIG. 3 is a graph showing a relationship between a porosity of a conductive carbon porous body and a molding pressure according to a production method of the present invention.

【図4】この発明の作製方法による導電性カーボン多孔
体の厚さ(2mm)方向の断面の電子顕微鏡写真であ
る。
FIG. 4 is an electron micrograph of a cross section in a thickness (2 mm) direction of a conductive carbon porous body according to a manufacturing method of the present invention.

【図5】この発明の作製方法による導電性カーボン多孔
体の表面の電子顕微鏡写真である。
FIG. 5 is an electron micrograph of the surface of a conductive carbon porous body prepared by the method of the present invention.

【図6】燃料電池の構造である。FIG. 6 shows a structure of a fuel cell.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C04B 35/52 F Fターム(参考) 4G019 GA04 4G032 AA08 BA05 GA06 GA12 4G046 CB05 CB09 CC02 CC03 5G301 BA01 BE01 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C04B 35/52 FF Term (Reference) 4G019 GA04 4G032 AA08 BA05 GA06 GA12 4G046 CB05 CB09 CC02 CC03 5G301 BA01 BE01

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 自己焼結性カーボン粒子を所定の成型圧
で加圧成型後、除圧し、ついで焼成することを特徴とす
る、導電性カーボン多孔体の作製方法。
1. A method for producing a porous conductive carbon material, comprising pressure-forming a self-sintering carbon particle at a predetermined molding pressure, removing the pressure, and then firing.
【請求項2】 前記所定の成型圧を選択することによ
り、所定の細孔径と気孔率を有する導電性カーボン多孔
体を得ることを特徴とする、請求項1に記載の導電性カ
ーボン多孔体の作製方法。
2. The conductive carbon porous body according to claim 1, wherein a conductive carbon porous body having a predetermined pore diameter and a porosity is obtained by selecting the predetermined molding pressure. Production method.
【請求項3】 前記焼成は、窒素雰囲気中で、600〜
1500℃でおこなうことを特徴とする、請求項1に記
載の導電性カーボン多孔体の作製方法。
3. The sintering is performed in a nitrogen atmosphere at 600 to 600.
The method for producing a conductive carbon porous body according to claim 1, wherein the method is performed at 1500 ° C.
【請求項4】 前記所定の成型圧が60kg/cm2
320kg/cm2の範囲において、前記所定の細孔径
が0.6μm〜0.32μmの範囲で変化することを特
徴とする、請求項1に記載の導電性カーボン多孔体の作
製方法。
4. The predetermined molding pressure is 60 kg / cm 2 or more.
The method for producing a conductive carbon porous body according to claim 1, wherein the predetermined pore diameter changes within a range of 0.6 µm to 0.32 µm in a range of 320 kg / cm 2 .
【請求項5】 前記所定の成型圧が60kg/cm2
320kg/cm2の範囲において、前記所定の気孔率
が43%〜28.4%の範囲で変化することを特徴とす
る、請求項1に記載の導電性カーボン多孔体の作製方
法。
5. The method according to claim 1, wherein the predetermined molding pressure is 60 kg / cm 2 or more.
In the range of 320 kg / cm 2, wherein said predetermined porosity is varied in the range of 43% ~28.4%, a method for manufacturing a conductive carbon porous body according to claim 1.
【請求項6】 請求項1に記載の作製方法で作製した、
導電性カーボン多孔体。
6. A production method according to claim 1,
Conductive carbon porous body.
JP2000306734A 2000-10-05 2000-10-05 Method for manufacturing conductive carbon porous body and conductive carbon porous body manufactured by the method Pending JP2002114573A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000306734A JP2002114573A (en) 2000-10-05 2000-10-05 Method for manufacturing conductive carbon porous body and conductive carbon porous body manufactured by the method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000306734A JP2002114573A (en) 2000-10-05 2000-10-05 Method for manufacturing conductive carbon porous body and conductive carbon porous body manufactured by the method

Publications (1)

Publication Number Publication Date
JP2002114573A true JP2002114573A (en) 2002-04-16

Family

ID=18787371

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000306734A Pending JP2002114573A (en) 2000-10-05 2000-10-05 Method for manufacturing conductive carbon porous body and conductive carbon porous body manufactured by the method

Country Status (1)

Country Link
JP (1) JP2002114573A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005335999A (en) * 2004-05-26 2005-12-08 Tanken Seal Seiko Co Ltd Porous carbon
WO2020129513A1 (en) * 2018-12-19 2020-06-25 パナソニックIpマネジメント株式会社 Electrochemical hydrogen pump
JP6719075B1 (en) * 2019-01-24 2020-07-08 パナソニックIpマネジメント株式会社 Electrochemical hydrogen pump
JP6719076B1 (en) * 2019-02-19 2020-07-08 パナソニックIpマネジメント株式会社 Electrochemical hydrogen pump
WO2020170580A1 (en) * 2019-02-19 2020-08-27 パナソニックIpマネジメント株式会社 Electrochemical hydrogen pump

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005335999A (en) * 2004-05-26 2005-12-08 Tanken Seal Seiko Co Ltd Porous carbon
JP4681255B2 (en) * 2004-05-26 2011-05-11 株式会社タンケンシールセーコウ Porous carbon
WO2020129513A1 (en) * 2018-12-19 2020-06-25 パナソニックIpマネジメント株式会社 Electrochemical hydrogen pump
JPWO2020129513A1 (en) * 2018-12-19 2021-05-20 パナソニックIpマネジメント株式会社 Electrochemical hydrogen pump
JP6719075B1 (en) * 2019-01-24 2020-07-08 パナソニックIpマネジメント株式会社 Electrochemical hydrogen pump
WO2020153022A1 (en) * 2019-01-24 2020-07-30 パナソニックIpマネジメント株式会社 Electrochemical hydrogen pump
JP6719076B1 (en) * 2019-02-19 2020-07-08 パナソニックIpマネジメント株式会社 Electrochemical hydrogen pump
WO2020170580A1 (en) * 2019-02-19 2020-08-27 パナソニックIpマネジメント株式会社 Electrochemical hydrogen pump

Similar Documents

Publication Publication Date Title
JP3383953B2 (en) Method for producing graphite member for polymer electrolyte fuel cell
CA2618287C (en) Separator for fuel cell and production process for the same
JP5391391B2 (en) Method for producing NiO-ceramic composite powder
CN107978768B (en) Fuel cell assembly and preparation method thereof
CN110690397A (en) Fused salt composite electrolyte diaphragm, preparation method and application
JP3573444B2 (en) Carbonaceous separator member for polymer electrolyte fuel cell and method of manufacturing the same
RU2713189C2 (en) Tubular solid oxide electrochemical cell with bearing electrode
CN106669436A (en) Supporting-free asymmetric hybrid conductor hydrogen permeation membrane as well as preparation and application thereof
JPH0746610B2 (en) Molten carbonate fuel cell positive electrode and method for producing the same
JP2002114573A (en) Method for manufacturing conductive carbon porous body and conductive carbon porous body manufactured by the method
JPH0652863A (en) Electrode body for solid electrolytic fuel cell and manufacture thereof
JP5190039B2 (en) Solid oxide fuel cell
CN110993981B (en) Method for preparing ultrathin carbon/carbon composite bipolar plate
JP2004139885A (en) Fuel cell separator and manufacturing method of the same
KR101952581B1 (en) Method of fabricating porous structure
CN107119283A (en) The electrochemical preparation method of mesoporous carbon nanocoils
KR101288407B1 (en) Manufacturing method of anode for solid oxide fuel cell and anode for solid oxide fuel cell manufactured thereby
WO2004021491A1 (en) Bipolar plates with cooling channels
KR101210816B1 (en) Method for Preparing anode support for solid oxide fuel cells by high-frequency induction-heated sintering
JPH0131445B2 (en)
KR20180055115A (en) Method of fabricating porous structure
CN110078503B (en) Method for low-temperature sintering of 8YSZ electrolyte
CN107437645B (en) Method for manufacturing porous high-performance oxygen electrode of metal fuel cell
JPH1074529A (en) Fused carbonate type fuel cell and its manufacture
JP2002343374A (en) Separator for fuel cell, and manufacturing method of the same

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20031031

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040129

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040607

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060627

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070116

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070904