JPS63171623A - Removing method for nitrogen oxide - Google Patents

Removing method for nitrogen oxide

Info

Publication number
JPS63171623A
JPS63171623A JP61315176A JP31517686A JPS63171623A JP S63171623 A JPS63171623 A JP S63171623A JP 61315176 A JP61315176 A JP 61315176A JP 31517686 A JP31517686 A JP 31517686A JP S63171623 A JPS63171623 A JP S63171623A
Authority
JP
Japan
Prior art keywords
nox
contg
removal
gas
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61315176A
Other languages
Japanese (ja)
Other versions
JPH0653214B2 (en
Inventor
Satoshi Kadoya
聡 角屋
▲吉▼田 清英
Kiyohide Yoshida
Tatsuo Miyadera
宮寺 達雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Riken Corp
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Riken Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology, Riken Corp filed Critical Agency of Industrial Science and Technology
Priority to JP61315176A priority Critical patent/JPH0653214B2/en
Publication of JPS63171623A publication Critical patent/JPS63171623A/en
Publication of JPH0653214B2 publication Critical patent/JPH0653214B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To efficiently denitrate by brining a removing agent contg. carbon as the main component, one or more kind of alkali metal and one or more kind metal among transition metals contg. II B group metal and tin into contact with NOx contg. oxidizing gas. CONSTITUTION:A removing agent for NOx is produced by allowing a carbon such as an activated carbon to impregnate one or more kind of the alkali metal such as K or Cs and to impregnate one more kind metal among the transition metal contg. II B group metal such as Ni, Fe, Mn, Cu, Zn, Co or Ce and Sn. the NOx is removed by bringing the removing agent for NOx to contact with the waste gas contg. NOx and contg. the oxidizing gas such as O2 in the temp. range of 100-400 deg.C. The higher the temp. is risen up and the higher the concen tration of O2 rises up, the higher the ratio of removing NOx, becomes.

Description

【発明の詳細な説明】 イ、産業上の利用分野 本発明は窒素酸化物除去方法に関する。[Detailed description of the invention] B. Industrial application field The present invention relates to a method for removing nitrogen oxides.

口、従来技術 環境保全のため、廃ガス中に含まれるN01NO2等の
窒素酸化物は、大気中への排出に先立って窒素に還元し
、無害化する必要がある。
BACKGROUND OF THE INVENTION In order to preserve the environment, nitrogen oxides such as N01NO2 contained in waste gas must be reduced to nitrogen and rendered harmless before being discharged into the atmosphere.

窒素酸化物部を乾式で除去する方法としては、NH3、
CO% H2等による還元法が多用されてヤ いる。Co/H2による還元反応は、主に触媒として貴
金属を使用し、窒素酸化物の窒素への選択性が高い50
0℃近辺の高温域で行われる。また、低温で行うときは
アンモニアガスの必要がある。
As a dry method for removing nitrogen oxides, NH3,
Reduction methods such as CO% H2 are often used. The Co/H2 reduction reaction mainly uses noble metals as catalysts and has a high selectivity of nitrogen oxides to nitrogen.
It is carried out at a high temperature around 0℃. Additionally, ammonia gas is required when performing at low temperatures.

これらの方法では、更に廃ガス中に含まれる硫黄等が触
媒毒として作用し、被毒現象が起こって不活性になって
しまい、還元が十分には進行しないという欠点を有して
いる。
These methods also have the disadvantage that sulfur and the like contained in the waste gas act as catalyst poisons, resulting in a poisoning phenomenon and inactivity, resulting in insufficient reduction.

他方、窒素酸化物を活性炭に吸着させて廃ガス中から分
離する方法があるが、その吸着能が元々低いばかりでな
く、窒素酸化物の蓄積によって吸着能が著しく低下する
ので、多量の活性炭を必要とする。アルカリ金属を添加
した活性炭は、窒素酸化物の吸着、高温での窒素酸化物
の還元能力が改善されるが、低温での窒素酸化物の還元
能力が低い。
On the other hand, there is a method for separating nitrogen oxides from waste gas by adsorbing them on activated carbon, but not only is the adsorption capacity inherently low, but the adsorption capacity is significantly reduced by the accumulation of nitrogen oxides, so it is necessary to use a large amount of activated carbon. I need. Activated carbon added with alkali metal has improved adsorption of nitrogen oxides and ability to reduce nitrogen oxides at high temperatures, but has a low ability to reduce nitrogen oxides at low temperatures.

その上、アルカリ金属を添加した活性炭は10容積%以
上の酸素を含有する雰囲気中では、400℃以上で活性
炭の酸化による消耗が甚だしく、長時間の使用には耐え
ない゛。この中でも比較的高い窒素酸化物除去効果を示
すものは、300℃近傍で着火する虞れがあり、中には
200℃で着火するものもある。従って、比較的低温で
も窒素酸化物除去効果が高く、而も耐熱性、耐酸化性を
示す窒素酸化物除去剤の開発が望まれている。
Furthermore, in an atmosphere containing 10% by volume or more of oxygen, activated carbon to which alkali metals have been added is severely consumed by oxidation at temperatures above 400° C., and cannot withstand long-term use. Among these, those that exhibit a relatively high nitrogen oxide removal effect may ignite at around 300°C, and some may ignite at 200°C. Therefore, it is desired to develop a nitrogen oxide removing agent that is highly effective in removing nitrogen oxides even at relatively low temperatures and exhibits heat resistance and oxidation resistance.

ハ0発明の目的 本発明は、上記のような従来の触媒や吸着剤を使用して
の窒素酸化物除去方法が有する問題点を解消し、100
〜400℃のような低温域でも外部から還元ガスを供給
することなく酸化性ガス(例えば25容積%以下の酸素
)を含有するガス中の窒素酸化物を安定にかつ効率的に
除去する窒素酸化物除去方法を提供することを目的とし
ている。
Purpose of the Invention The present invention solves the problems of the conventional nitrogen oxide removal methods using catalysts and adsorbents as described above, and achieves 100%
Nitrogen oxidation that stably and efficiently removes nitrogen oxides from gases containing oxidizing gases (for example, 25% by volume or less oxygen) without supplying reducing gas from the outside, even in the low temperature range of ~400°C. The purpose is to provide a method for removing objects.

二1発明の構成 本発明は、炭素を主成分としかつアルカリ金属の1種又
は2種以上並びに周期表IIB属元素を含む遷移金属(
N iSF a SM n SCu SZ n 、G 
o、Ce、La、Th等)及び錫からなる群から選ばれ
た1種又は2種以上を含有する窒素酸化物除去剤を使用
し、酸化性ガスを含むガス中の窒素酸化物を除去する窒
素酸化物除去方法に係る。
21. Constitution of the Invention The present invention relates to a transition metal (
N iSF a SM n SCu SZ n ,G
Nitrogen oxides in gases containing oxidizing gases are removed using a nitrogen oxide remover containing one or more selected from the group consisting of (O, Ce, La, Th, etc.) and tin. It concerns a nitrogen oxide removal method.

上記炭素としては、黒鉛、石炭、木炭、微品質炭素或い
は炭素を主成分とする物質が含まれ、中でも微品質炭素
に属する活性炭が好ましい。
The above-mentioned carbon includes graphite, coal, charcoal, fine carbon, or a substance containing carbon as a main component, and activated carbon, which belongs to fine carbon, is particularly preferable.

ホ、実施例 以下、実施例を挙げて本発明の詳細な説明する。E, Example Hereinafter, the present invention will be explained in detail by giving Examples.

まず、炭素にアルカリ金属や遷移金属等を添加する方法
について説明する。
First, a method of adding an alkali metal, a transition metal, etc. to carbon will be explained.

炭素にアルカリ金属を添加するには、アルカリ金属の炭
酸塩、硝酸塩、酢酸塩、水酸化物等の溶液中に炭素を浸
漬する方法によることができる。
An alkali metal can be added to carbon by a method of immersing carbon in a solution of an alkali metal carbonate, nitrate, acetate, hydroxide, or the like.

更に遷移金属等を添加するには、遷移金属等の酢酸塩、
炭酸塩、硝酸塩、水酸化物等の溶液中にアルカリ金属を
担持させた炭素を浸漬してから乾燥する。また、フェロ
シアン化アルカリ等の溶液に炭素を浸漬し、乾燥する方
法によることもできる。
To further add transition metals, etc., acetates of transition metals, etc.
Carbon supporting an alkali metal is immersed in a solution of carbonate, nitrate, hydroxide, etc. and then dried. Alternatively, carbon may be immersed in a solution such as an alkali ferrocyanide and then dried.

上記のようにして製作した除去剤は、使用に先立ち、使
用温度とガス中の酸化性ガス含有量に通した除去剤に調
整するのが望ましい。また、廃ガス中の酸素濃度や温度
が低いとき(例えば200℃以下)は、窒素、ヘリウム
のような不活性ガス雰囲気中又は100 Torr程度
の減圧酸素雰囲気中で100℃以上の温度で熱処理する
ことにより、除去剤の除去効果を高めることができる。
It is desirable that the remover prepared as described above be adjusted to the operating temperature and oxidizing gas content in the gas before use. In addition, when the oxygen concentration or temperature in the waste gas is low (for example, 200°C or lower), heat treatment is performed at a temperature of 100°C or higher in an inert gas atmosphere such as nitrogen or helium, or in a reduced pressure oxygen atmosphere of about 100 Torr. By doing so, the removal effect of the removal agent can be enhanced.

また、着火し易い除去剤を廃ガス中の酸素濃度や温度が
高いときに使用する場合は空気中で100℃以上400
℃以下にゆっくり昇温しで徐々に除去剤の安定化を図っ
たり、アルカリ金属の添加量を減らすことにより安定し
た除去剤に調製できる。更に、熱安定性向上のためにア
ルミナやチタニア等の耐熱性物質と複合化してから前記
のような処理を施すことも有効である。このような使用
条件に適した除去剤の調製により、25容積%以下の酸
素を含む廃ガスの処理を400℃に迄高めて行うことが
可能になる。
In addition, when using a remover that easily ignites when the oxygen concentration or temperature in the waste gas is high, it should be
A stable removing agent can be prepared by gradually increasing the temperature below ℃ to gradually stabilize the removing agent, or by reducing the amount of alkali metal added. Furthermore, in order to improve thermal stability, it is also effective to compound the material with a heat-resistant material such as alumina or titania and then perform the above-described treatment. By preparing a removal agent suitable for such usage conditions, it becomes possible to treat waste gas containing 25% by volume or less of oxygen at temperatures as high as 400°C.

実JJL上 市販の活性炭に、カリウム次いでセリウム、マンガンを
含浸させた除去剤を用意した。この除去剤は、K2CO
3の溶液に活性炭を浸漬し乾燥した物をセリウム、マン
ガンの酢酸溶液に浸漬してから再び空気中で乾燥して製
造した。以下、このような除去剤をC/ K / Ce
 / M nのように表す。
A remover was prepared by impregnating commercially available activated carbon with potassium, cerium, and manganese. This remover is K2CO
Activated carbon was dipped in the solution of 3 and dried, dipped in an acetic acid solution of cerium and manganese, and then dried again in the air. Hereinafter, such a remover will be referred to as C/K/Ce
/ M n.

上記のようにして製造した除去剤を石英管容器に装填し
、酸素的100 Torr中、400℃で12時間以上
処理した。
The remover produced as described above was loaded into a quartz tube container and treated at 400° C. for 12 hours or more in an oxygen atmosphere of 100 Torr.

この除去剤12ffl(見掛は容積)を内径25日の石
英管内にガラスウールを用いて固定し、室温でNO30
0容積ppm 、Co zlO容積%、H2O10容積
%、酸素5容積%、残部実質的に窒素からなるガスを通
じた後、除去剤充填層へのガス流量を21/l1inに
弱整した。その後所定の反応温度迄昇温し、ガス中のN
O濃度変化を化学発光法NOx分析計を用いて測定した
12ffl (apparent volume) of this remover was fixed in a quartz tube with an inner diameter of 25 days using glass wool, and NO30 was added at room temperature.
After passing a gas consisting of 0 ppm by volume, % by volume of CozlO, 10% by volume of H2O, 5% by volume of oxygen, and the remainder substantially nitrogen, the gas flow rate to the removal agent packed bed was adjusted slightly to 21/l1 inch. After that, the temperature is raised to a predetermined reaction temperature, and the N in the gas is
Changes in O concentration were measured using a chemiluminescent NOx analyzer.

第1図に反応温度を200℃、220℃、250℃とし
、50時間反応させたときのNo除去率を示す。
Fig. 1 shows the No removal rate when the reaction temperature was set to 200°C, 220°C, and 250°C and the reaction was carried out for 50 hours.

No除去率は、反応開始後1.5〜2.5時間経過後は
略一定の値が維持されていた。第2図及び第3図は、反
応温度を200℃、220℃とした場合の反応時間とN
o除去率との関係を例示したもので、本例によるNo除
去法によれば、長時間安定した除去率が維持されること
が理解できよう、また、第1図から解るように、本例で
使用した除去剤は、還元ガスの供給を必要とせず、20
0℃、空間速度(還元剤充填容積基準) 10000 
hr’の条件下で、酸素を含有するガス中のNOの除去
率的30%を50時間もの長時間に亘って維持している
。この除去剤は、反応温度を上げると除去効果が増大し
、反応温度250℃で44%のNo除去率を示した。
The No removal rate was maintained at a substantially constant value 1.5 to 2.5 hours after the start of the reaction. Figures 2 and 3 show the reaction time and N at reaction temperatures of 200°C and 220°C.
This is an example of the relationship between the No removal rate and the No removal rate according to this example.It can be understood that the No removal method according to this example maintains a stable removal rate for a long time. The remover used in
0°C, space velocity (based on reducing agent filling volume) 10000
Under conditions of hr', a removal rate of 30% of NO in oxygen-containing gas was maintained for as long as 50 hours. The removal effect of this remover increased as the reaction temperature was raised, and showed a No removal rate of 44% at a reaction temperature of 250°C.

裏11重 部記実施例1に於けると同様にして、C/に/Sn除去
剤を製造し、同様の処理を施した。
Back page 11 A C/N/Sn removing agent was produced in the same manner as in Example 1 and subjected to the same treatment.

このC/に/Sn除去剤を使用して、前記実施例1に於
けると同様の試験を行った。この例でも前記実施例1に
於けると同様に、1.5〜2.5時間経過後は略一定の
No除去率を示した。
Using this C/ni/Sn removing agent, the same test as in Example 1 was conducted. Similarly to Example 1, this example also showed a substantially constant No removal rate after 1.5 to 2.5 hours.

50時間経過時点での反応温度とNo除去率との関係は
、第1図中に併記しである。この例でも、反応温度25
0℃でも安定なNo除去効果を示している。
The relationship between the reaction temperature and the No removal rate after 50 hours is also shown in FIG. In this example as well, the reaction temperature is 25
It shows a stable No removal effect even at 0°C.

スJu1灸 前記実施例1に於けると同様にしてC/に/Cu/Mn
除去剤を製造し、同様の処理を施した。
Su Ju1 moxibustion C/ni/Cu/Mn in the same manner as in Example 1 above.
A removal agent was prepared and subjected to the same treatment.

このC/ K / Cu / M n除去剤を使用し、
反応温度を200℃とし、ガス中の酸素濃度を2〜9容
積%の間で変化させ、その他は前記実施例1に於けると
同様の試験を行った。
Using this C/K/Cu/Mn remover,
The same test as in Example 1 was conducted except that the reaction temperature was 200° C. and the oxygen concentration in the gas was varied between 2 and 9% by volume.

試験結果は第4図に示す通りである。The test results are shown in Figure 4.

C/ K / Cu / M n除去剤では、ガスの酸
素濃度が高くなる程No除去率が高くなることが解る。
It can be seen that with the C/K/Cu/Mn removal agent, the higher the oxygen concentration of the gas, the higher the No removal rate.

ガス中の酸素濃度に対するこのような傾向は、本発明に
基づく窒素酸化物除去方法に使用する除去剤に共通して
見られる傾向である。
Such a tendency with respect to the oxygen concentration in the gas is a tendency that is commonly observed in the removal agents used in the nitrogen oxide removal method based on the present invention.

次星週工 前記実施例1に於けると同様にしてC/ Cs /Z 
n / Ce除去剤を調製した。この除去剤を300℃
以上でも使用するため、廃ガス導入前に空気中で室温か
ら200℃までゆっくり昇温し、除去剤の安定化を図っ
た。この除去剤を用いて、200〜350℃の廃ガス温
度領域で前記実施例1と同様のNo除去効果を調べた。
C/Cs/Z in the same manner as in Example 1 above
An n/Ce removal agent was prepared. This remover was heated to 300°C.
In order to use the above, the temperature was slowly raised from room temperature to 200° C. in air before introducing the waste gas to stabilize the removal agent. Using this removing agent, the same No removal effect as in Example 1 was investigated in the exhaust gas temperature range of 200 to 350°C.

第5図は20時間後での反応温度とNo除去率との関係
を示している。
FIG. 5 shows the relationship between reaction temperature and No removal rate after 20 hours.

この除去剤は、前記実施例1で述べた活性化処理後を施
すことにより、200℃では約30%のN。
By applying the activation treatment described in Example 1, this removing agent contains about 30% N at 200°C.

除去率を示すが、安定化処理すると第5図に見られるよ
うに約25%まで特性は低下する。然し300℃以上で
も除去剤は着火なく働き、300℃で30%以上、35
0℃で50%のNo除去率を示す、この安定化処理とし
ては、酸素ガス及び/又は他の酸化性ガスを用いても良
い。
The removal rate is shown, but when the stabilization treatment is performed, the characteristics decrease to about 25% as seen in FIG. However, the remover works without ignition even at temperatures above 300℃, and the
Oxygen gas and/or other oxidizing gases may be used for this stabilization treatment, which exhibits a 50% No removal rate at 0°C.

1薔週工 前記実施例1に於けると同様にして調製したC/ Cs
 / Z n / Ceを、r−AlzOs (20重
量%)と水ガラスを結合剤として複合化して除去剤を調
製した。この除去剤を前記実施例4と同様の安定化処理
を行い、200〜380℃での廃ガス中のNo除去効果
を調べた。第5図には前記実施例1と同様の廃ガス組成
の時の空間速度10.000hr’でのNo除去率が併
記しである* A l 203との複合化により、No
除去効果も大きな低下が見られず、380℃でも除去剤
の使用が可能だった。また、結合剤としては、アルミナ
セメントなどの水硬性結合剤でも優れた除去効果を示す
1. C/Cs prepared in the same manner as in Example 1 above.
/Zn/Ce was composited with r-AlzOs (20% by weight) and water glass as a binder to prepare a removal agent. This removal agent was subjected to the same stabilization treatment as in Example 4, and the effect of removing No from waste gas at 200 to 380°C was investigated. Fig. 5 also shows the No removal rate at a space velocity of 10.000 hr' with the same exhaust gas composition as in Example 1.* By combining with Al 203, No.
There was no significant decrease in the removal effect, and the removal agent could be used even at 380°C. Furthermore, as a binder, hydraulic binders such as alumina cement also exhibit excellent removal effects.

なお、本発明にあって、窒素酸化物を除去すべきガス中
に含まれる酸化性ガスは、上記の酸素に限られるもので
はなく、本発明に基づく方法によれば、例えばH2O2
等が含有されているガス中の窒素酸化物も同様に有効に
除去できる。
In addition, in the present invention, the oxidizing gas contained in the gas from which nitrogen oxides are to be removed is not limited to the above-mentioned oxygen, and according to the method based on the present invention, for example, H2O2
Nitrogen oxides in gases containing nitrogen oxides and the like can also be effectively removed.

また、この窒素酸化物除去剤は、窒素酸化物の除去のほ
かに、硫黄酸化物の除去にも有効である。
Further, this nitrogen oxide removing agent is effective not only for removing nitrogen oxides but also for removing sulfur oxides.

へ0発明の作用効果 以上説明したように、本発明に基づく窒素酸化除去方法
は、低温でも窒素酸化物を長時間安定して効果的に除去
でき、環境保全土掻めて有効である。この特異な効果は
、アルカリ金属担持の炭素による窒素酸化物の吸着、分
解作用が、他の金属との相乗効果により、更に強められ
ているものと考えられる。
Functions and Effects of the Invention As explained above, the nitrogen oxidation removal method based on the present invention can stably and effectively remove nitrogen oxides for a long time even at low temperatures, and is effective in preserving the environment. This unique effect is thought to be due to the synergistic effect of the adsorption and decomposition of nitrogen oxides by the alkali metal-supported carbon with other metals.

本発明に基づく除去剤の安定化処理では酸素化合物が高
温では分解して除去剤表面に安定な表面酸化物を形成す
る。一般にこの酸化物が増すと、窒素酸化物の分解速度
は低下し、高温或いは高酸素温度下でも上記の分解によ
る急激な発熱が抑えられる。従って、この酸化物のコン
トロールによって使用条件に適した除去剤が調製可能で
ある。
In the stabilization treatment of the remover according to the present invention, oxygen compounds decompose at high temperatures to form stable surface oxides on the remover surface. Generally, as the amount of this oxide increases, the rate of decomposition of nitrogen oxides decreases, and rapid heat generation due to the above decomposition is suppressed even under high temperature or high oxygen temperature. Therefore, by controlling this oxide, it is possible to prepare a remover suitable for the usage conditions.

【図面の簡単な説明】[Brief explanation of the drawing]

図面はいずれも本発明の実施例を示すものであて、 第1図は反応温度とNo除去率との関係を示すグラフ、 第2図及び第3図は反応時間とNo除去率との関係を示
すグラフ、 第4図はガス中の酸素濃度とNo除去率との関係を示す
グラフ、 第5図は反応温度とNo除去率との他の関係を示すグラ
フ である。
The drawings all show examples of the present invention. Figure 1 is a graph showing the relationship between reaction temperature and No removal rate, and Figures 2 and 3 are graphs showing the relationship between reaction time and No removal rate. FIG. 4 is a graph showing the relationship between the oxygen concentration in the gas and the No removal rate, and FIG. 5 is a graph showing another relationship between the reaction temperature and the No removal rate.

Claims (1)

【特許請求の範囲】[Claims] 1.炭素を主成分としかつアルカリ金属の1種又は2種
以上並びに周期律表IIB属元素を含む遷移金属及び錫か
らなる群から選ばれた1種又は2種以上を含有する窒素
酸化物除去剤を使用し、酸化性ガスを含むガス中の窒素
酸化物を除去する窒素酸化物除去方法。
1. A nitrogen oxide remover containing carbon as a main component and one or more alkali metals, one or more transition metals including elements of group IIB of the periodic table, and tin. A method for removing nitrogen oxides from gases containing oxidizing gases.
JP61315176A 1986-12-30 1986-12-30 Nitrogen oxide removal method Expired - Lifetime JPH0653214B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61315176A JPH0653214B2 (en) 1986-12-30 1986-12-30 Nitrogen oxide removal method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61315176A JPH0653214B2 (en) 1986-12-30 1986-12-30 Nitrogen oxide removal method

Publications (2)

Publication Number Publication Date
JPS63171623A true JPS63171623A (en) 1988-07-15
JPH0653214B2 JPH0653214B2 (en) 1994-07-20

Family

ID=18062336

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61315176A Expired - Lifetime JPH0653214B2 (en) 1986-12-30 1986-12-30 Nitrogen oxide removal method

Country Status (1)

Country Link
JP (1) JPH0653214B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63242347A (en) * 1987-03-31 1988-10-07 Riken Corp Nitrogen dioxide removing agent and method therefor
US5108977A (en) * 1987-03-31 1992-04-28 Kabushiki Kaisha Riken Catalyst for cleaning exhaust gas
US6224839B1 (en) * 2000-02-03 2001-05-01 The Ohio State University Method for the treatment of activated carbonaceous material containing alkali/alkaline earth metals for the reduction of NOx from flue gas
US7618606B2 (en) 2003-02-06 2009-11-17 The Ohio State University Separation of carbon dioxide (CO2) from gas mixtures
US7678351B2 (en) 2005-03-17 2010-03-16 The Ohio State University High temperature CO2 capture using engineered eggshells: a route to carbon management
US7837975B2 (en) 2006-09-25 2010-11-23 The Ohio State University High purity, high pressure hydrogen production with in-situ CO2 and sulfur capture in a single stage reactor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62193633A (en) * 1986-02-21 1987-08-25 Riken Corp Reducing agent for nitrogen oxide

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62193633A (en) * 1986-02-21 1987-08-25 Riken Corp Reducing agent for nitrogen oxide

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63242347A (en) * 1987-03-31 1988-10-07 Riken Corp Nitrogen dioxide removing agent and method therefor
US5108977A (en) * 1987-03-31 1992-04-28 Kabushiki Kaisha Riken Catalyst for cleaning exhaust gas
US6224839B1 (en) * 2000-02-03 2001-05-01 The Ohio State University Method for the treatment of activated carbonaceous material containing alkali/alkaline earth metals for the reduction of NOx from flue gas
US7618606B2 (en) 2003-02-06 2009-11-17 The Ohio State University Separation of carbon dioxide (CO2) from gas mixtures
US8226917B2 (en) 2003-02-06 2012-07-24 The Ohio State University Separation of carbon dioxide from gas mixtures by calcium based reaction separation
US7678351B2 (en) 2005-03-17 2010-03-16 The Ohio State University High temperature CO2 capture using engineered eggshells: a route to carbon management
US7837975B2 (en) 2006-09-25 2010-11-23 The Ohio State University High purity, high pressure hydrogen production with in-situ CO2 and sulfur capture in a single stage reactor

Also Published As

Publication number Publication date
JPH0653214B2 (en) 1994-07-20

Similar Documents

Publication Publication Date Title
JP4025945B2 (en) Methane-containing exhaust gas purification catalyst and methane-containing exhaust gas purification method
JPS63171623A (en) Removing method for nitrogen oxide
JPH03109944A (en) Co oxidative catalyst composition
JP2007038155A (en) Catalyst for selective reduction nitrogen oxide by carbon monoxide and its preparing method
JP4054933B2 (en) Methane-containing exhaust gas purification method and methane-containing exhaust gas purification device
JP4656352B2 (en) Room temperature catalyst
JP3843520B2 (en) Low temperature denitration catalyst, production method thereof, and low temperature denitration method
JP2007175654A (en) Catalyst for deoxidizing nitrogen oxide selectively
JPH05111618A (en) Removing method of carbon monoxide
JPS63287552A (en) Nitrogen oxide remover
JPH0583303B2 (en)
JP4779620B2 (en) How to use room temperature NOx adsorbent
JP4171849B2 (en) Hydrocarbon-containing exhaust gas purification catalyst and hydrocarbon-containing exhaust gas purification method
JPS62193633A (en) Reducing agent for nitrogen oxide
JP2781518B2 (en) NO remover
JP2961249B2 (en) Method for oxidizing and removing carbon fine particles in exhaust gas of diesel engine and catalyst used therefor
JPH0222702B2 (en)
JP4025942B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
JP4025946B2 (en) Production method of hydrocarbon removal catalyst in methane-containing exhaust gas
JP3382361B2 (en) Nitrogen oxide purification method
JPH10305229A (en) Catalyst for removing nitrogen oxide and removing method of nitrogen oxide
JPS58207947A (en) Catalyst for oxidizing carbon monoxide
JP4051514B2 (en) Combustion exhaust gas purification method and combustion exhaust gas purification device
JPH06201B2 (en) Nitrogen dioxide reducing agent and method for reducing nitrogen dioxide
JPS6072977A (en) Oxidizing agent for carbon monoxide