JP2007175654A - Catalyst for deoxidizing nitrogen oxide selectively - Google Patents

Catalyst for deoxidizing nitrogen oxide selectively Download PDF

Info

Publication number
JP2007175654A
JP2007175654A JP2005379356A JP2005379356A JP2007175654A JP 2007175654 A JP2007175654 A JP 2007175654A JP 2005379356 A JP2005379356 A JP 2005379356A JP 2005379356 A JP2005379356 A JP 2005379356A JP 2007175654 A JP2007175654 A JP 2007175654A
Authority
JP
Japan
Prior art keywords
catalyst
group
iridium
silica
activity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005379356A
Other languages
Japanese (ja)
Inventor
Atsushi Takahashi
厚 高橋
Masaaki Haneda
政明 羽田
Tadahiro Fujitani
忠博 藤谷
Motoi Sasaki
基 佐々木
Hideaki Hamada
秀昭 浜田
Tamotsu Kobuchi
存 小渕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2005379356A priority Critical patent/JP2007175654A/en
Publication of JP2007175654A publication Critical patent/JP2007175654A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a catalyst exhibiting high activity stably over a long period of time under a wide reaction condition such as temperature and space velocity when used for deoxidizing NOx contained in exhaust gas in an oxygen-excess atmosphere by using CO. <P>SOLUTION: The catalyst for deoxidizing nitrogen oxides selectively in the presence of oxygen by using carbon monoxide is obtained by depositing iridium and one or more metals selected from metals of group I, group II, group III, group IX, group XI and group XII in the periodic table on a carrier consisting of tungsten oxide and silica. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、過剰酸素を含有する排ガス中の窒素酸化物を除去する触媒に関するものである。   The present invention relates to a catalyst for removing nitrogen oxides in exhaust gas containing excess oxygen.

燃焼器や種々のエンジン等の燃焼排ガス中には、酸化性の有害成分である窒素酸化物(NOx)が含まれている。これを、触媒を用いて還元して無害化するためには種々の還元剤が使用されるが、その中では排ガス中に含まれる還元剤と反応させることが、還元剤を別に供給する必要がなく望ましい方法であり、特に、ほとんどの排ガス中に含まれる一酸化炭素(CO)を用いることが実用的に好ましい。
しかしながら、燃焼排ガスのうち、ボイラー、リーンバーンエンジン、ディーゼルエンジン排ガス中のNOxを除去する場合、排ガス中には一酸化炭素(CO)と同時に過剰の酸素が含まれているため、このような条件においても選択的に一酸化炭素(CO)を用いてNOxを還元できる触媒が必要である。
Combustion exhaust gases from combustors and various engines contain nitrogen oxides (NOx) that are oxidative harmful components. Various reducing agents are used to reduce this using a catalyst and render it harmless. Among them, it is necessary to separately supply the reducing agent to react with the reducing agent contained in the exhaust gas. This is a desirable method, and in particular, it is practically preferable to use carbon monoxide (CO) contained in most exhaust gases.
However, when removing NOx from exhaust gas from boilers, lean burn engines, and diesel engines, exhaust gas contains excess oxygen at the same time as carbon monoxide (CO). Need a catalyst that can selectively reduce NOx using carbon monoxide (CO).

すなわち、酸素存在下、窒素酸化物(NOx)として一酸化窒素(NO)、還元剤として一酸化炭素(CO)を用いる場合には、化1に示す反応式(1)、(2)により進行すると推測される。   That is, in the presence of oxygen, when nitrogen monoxide (NO) is used as nitrogen oxide (NOx) and carbon monoxide (CO) is used as a reducing agent, the reaction proceeds according to the reaction formulas (1) and (2) shown in Chemical formula 1. I guess that.

(化1)
2NO+2CO → N+ 2CO2 (1)
O2 + 2CO → 2CO2 (2)
(Chemical formula 1)
2NO + 2CO → N 2 + 2CO 2 (1)
O 2 + 2CO → 2CO 2 (2)

式(1)により、NOを高い割合でNまで還元させるには、COがNOによってCO2まで酸化されることが必要であり、COの酸化が進行しなければ、NOのNへの還元も進行しない。一方、式(2)でCOの酸素による酸化が進むと、COは式(1)の反応に関与しなくなり、その結果としてNOのNへの還元率も低下する。したがって、NOを高い割合で還元するには、NOの還元剤であるCOが、高濃度で存在する酸素と式(2)により反応するよりも、低濃度で存在するNOと式(1)により選択的に反応する触媒機能が必要となる。 In order to reduce NO to N 2 at a high rate according to the formula (1), it is necessary that CO is oxidized to CO 2 by NO. If the oxidation of CO does not proceed, NO is converted to N 2 . Reduction does not proceed. On the other hand, when the oxidation of CO by oxygen proceeds in Formula (2), CO does not participate in the reaction of Formula (1), and as a result, the reduction rate of NO to N 2 also decreases. Therefore, in order to reduce NO at a high rate, CO, which is a reducing agent for NO, reacts with oxygen present at a high concentration by the formula (2), and by using NO and the formula (1) present at a low concentration. A catalytic function to react selectively is required.

これまで、COによるNOx選択還元にはイリジウムを含む触媒が活性を示すことが知られている。
例えば、SO1ppm以下の条件下に、NOx転化率が80%を超す触媒として、Ir/シリカライトを用いるもの(非特許文献1)が報告されているが、活性は不十分である。
また最近、酸素過剰雰囲気下、SOの存在下で良好な還元性能を発揮するイリジウム/シリカ触媒とロジウム/シリカ触媒(特許文献1)が開発されている。
これらの触媒は、いずれも、酸素1.3%の条件でも最大NOx転化率が65%と比較的高い活性を有するが、高濃度酸素雰囲気下で活性が著しく低下する。またSOが存在しない場合には活性が発現しないなどの欠点を有する。
Until now, it is known that a catalyst containing iridium exhibits activity for NOx selective reduction by CO.
For example, a catalyst using Ir / silicalite as a catalyst having a NOx conversion rate exceeding 80% under a condition of 1 ppm or less of SO 2 (Non-patent Document 1) has been reported, but the activity is insufficient.
Recently, an iridium / silica catalyst and a rhodium / silica catalyst (Patent Document 1) that exhibit good reduction performance in an oxygen-excess atmosphere and in the presence of SO 2 have been developed.
All of these catalysts have a relatively high activity with a maximum NOx conversion of 65% even under the condition of oxygen 1.3%, but the activity is remarkably reduced in a high concentration oxygen atmosphere. Further, when SO 2 is not present have the disadvantage of such activity is not exhibited.

イリジウム触媒では、他に酸化タングステンおよび酸化亜鉛(非特許文献2、3)などの金属酸化物に担持したものも報告されている。これらの触媒は、酸素2%の酸素過剰雰囲気下でも90%以上の高いNOx転化率を示すものの、空間速度が非常に低く、SOによる阻害も受けるため(非特許文献2)、実用条件下で性能を発揮するとは言い難い。
その他にも、Ir/WO-SiOを用いるもの(非特許文献4)では、空間速度数万h−1以上の条件でNOx転化率は80%を超すが、高い活性を示す温度域が50℃未満と狭く、広範囲な温度となる実用条件下では効果的なNOx除去が行えない可能性がある。
In addition, iridium catalysts supported on metal oxides such as tungsten oxide and zinc oxide (Non-patent Documents 2 and 3) have also been reported. Although these catalysts show a high NOx conversion rate of 90% or more even in an oxygen-excess atmosphere of 2% oxygen, the space velocity is very low and they are also inhibited by SO 2 (Non-patent Document 2). It is hard to say that the performance is exhibited.
In addition, in the case of using Ir / WO 3 —SiO 2 (Non-patent Document 4), the NOx conversion rate exceeds 80% under the condition of a space velocity of several tens of thousands h −1 , but the temperature range showing high activity is There is a possibility that effective NOx removal cannot be performed under practical conditions where the temperature is narrow and less than 50 ° C. and a wide range of temperatures.

以上のように、これまで知られている触媒は、すべて実用的な性能を有するとは言い難く、そのため、より高い活性、広い活性温度、実ガス条件下での高い耐久性を有する触媒の開発改良が望まれていた。
特開2004−73921号 ”Catalytic Activity of Ir for NO-COReaction in the Presence of SO2 and Excess Oxygen”, Masaru Ogura, Aya Kawamura, Masahiko Matsukata, Eiichi Kikuchi,Chem. Lett. 146-147 (2000) ”Selective Catalytic Reduction of NOby CO over Supported Iridium and Rhodium Catalysts”, Masahide Shimokawabe, Noriyoshi Umeda, Chem.Lett, 33, 534-535 (2004) ”Ir/WO3を用いたNO-CO反応に対するSO2の反応阻害と共存O2濃度の影響”, 新津 美裕,下川部 雅英,岩佐 信弘,荒井 正彦,第96回触媒討論会 2P25 (2005) ”Ir/WO3-SiO2上でのCOによるNO選択還元”, 篠原 智,難波 哲哉,内澤 潤子,大井 明彦,小渕 存,第96回触媒討論会 3G16(2005)
As described above, it is difficult to say that all the known catalysts have practical performance. Therefore, the development of a catalyst having higher activity, wider activation temperature, and higher durability under actual gas conditions. Improvement was desired.
Japanese Patent Application Laid-Open No. 2004-73921 “Catalytic Activity of Ir for NO-COReaction in the Presence of SO2 and Excess Oxygen”, Masaru Ogura, Aya Kawamura, Masahiko Matsukata, Eiichi Kikuchi, Chem. Lett. 146-147 (2000) “Selective Catalytic Reduction of NOby CO over Supported Iridium and Rhodium Catalysts”, Masahide Shimokawabe, Noriyoshi Umeda, Chem. Lett, 33, 534-535 (2004) "Effects of SO2 reaction inhibition and coexisting O2 concentration on NO-CO reaction using Ir / WO3", Mitsuhiro Niitsu, Masahide Shimokawabe, Nobuhiro Iwasa, Masahiko Arai, 96th Catalysis Conference 2P25 (2005) "Selective NO reduction by CO on Ir / WO3-SiO2", Satoshi Shinohara, Tetsuya Namba, Junko Uchizawa, Akihiko Oi, Susumu Komine, 96th Catalysis Conference 3G16 (2005)

本発明の課題は、酸素過剰雰囲気下、排ガス中に含まれるNOxをCOを用いて、幅広い、温度、空間速度等の反応条件において、高い活性を長期間に渡り安定に示す触媒を提供することである。   An object of the present invention is to provide a catalyst that stably exhibits high activity over a long period of time in a wide range of reaction conditions such as temperature and space velocity using CO as the NOx contained in exhaust gas in an oxygen-excess atmosphere. It is.

本発明者らは、従来技術に存在する問題を解決するために鋭意研究を重ねた結果、酸化タングステン(WO)とシリカ(SiO)からなる担体に、イリジウムと、活性助剤として周期律表第1,2,3,9,11及び12族金属のうち1種以上とを担持した触媒が、SO含有あるいは存在しないにかかわらず、幅広い温度範囲と空間速度条件で、NOxを酸素過剰雰囲気下でもCOによって効率よく選択的に長期間にわたり還元できることを見出した。
すなわち、NOxと還元剤としてのCOとの、より選択的な反応を促すために、本発明の周期律表第1,2,3,9,11及び12族金属から選ばれる1種以上の金属とイリジウムを、酸化タングステンおよびシリカからなる担体に担持した触媒を使用することが重要となるものである。そして、このことは、従来技術であるシリカを担体としてイリジウムと活性助剤を担持した触媒の性能と、酸化タングステンとシリカからなる担体にイリジウムを担持した触媒の性能を、単に組み合わせただけの効果とは明らかに異なるものである。
As a result of intensive studies to solve the problems existing in the prior art, the present inventors have found that a carrier composed of tungsten oxide (WO 3 ) and silica (SiO 2 ) has iridium and a periodic rule as an active assistant. Tables 1, 2 , 3, 9, 11, and 12 or more of the group 12 metal supported catalysts, NOx is oxygen-excessed over a wide temperature range and space velocity conditions, regardless of whether or not SO 2 is contained. We have found that CO can be efficiently and selectively reduced over a long period of time even in an atmosphere.
That is, in order to promote a more selective reaction between NOx and CO as a reducing agent, one or more metals selected from Group 1, 2, 3, 9, 11 and 12 metals of the periodic table of the present invention. It is important to use a catalyst in which iridium and iridium are supported on a support made of tungsten oxide and silica. This is because the performance of a catalyst in which iridium and an active aid are supported using silica as a support, and the performance of a catalyst in which iridium is supported on a support made of tungsten oxide and silica, are simply combined. Is clearly different.

本発明によると、以下の発明が提供される。
(1)酸素存在下で、一酸化炭素により窒素酸化物を選択的に還元する触媒であって、周期律表第1,2,3,9、11及び12族金属から選ばれる1種以上の金属とイリジウムを、酸化タングステンおよびシリカからなる担体に担持したことからなることを特徴とする還元触媒。
(2)前記酸化タングステン及びシリカからなる担体において、タングステンの含有量が1〜50wt%であることを特徴とする(1)の還元触媒。
(3)前記酸化タングステン及びシリカからなる担体に対する前記イリジウムの担持量が、0.1〜10wt%であることを特徴とする(1)又は(2)の還元触媒。
(4)前記周期律表第1,2,3,9,11及び12族金属から選ばれる1種以上の金属の担持量が、前記イリジウムの担持量に対して原子比で1/30〜10であることを特徴とする(1)ないし(4)のいずれかの還元触媒。
According to the present invention, the following inventions are provided.
(1) A catalyst that selectively reduces nitrogen oxides with carbon monoxide in the presence of oxygen, the catalyst comprising one or more metals selected from Group 1, 2, 3, 9, 11 and 12 metals of the periodic table A reduction catalyst comprising a metal and iridium supported on a carrier made of tungsten oxide and silica.
(2) The reduction catalyst according to (1), wherein the support comprising tungsten oxide and silica has a tungsten content of 1 to 50 wt%.
(3) The reduction catalyst according to (1) or (2), wherein the amount of the iridium supported on the carrier made of tungsten oxide and silica is 0.1 to 10 wt%.
(4) The loading amount of one or more metals selected from Group 1, 2, 3, 9, 11 and 12 metals of the periodic table is 1/30 to 10 in atomic ratio with respect to the loading amount of iridium. The reduction catalyst according to any one of (1) to (4), wherein

本発明により得られる触媒は、COによる窒素酸化物の選択的還元反応において、酸素過剰雰囲気下でSOを含有するもしくは存在しないに拘わらず、90%を超えるNOx転化率が得られるとともに、約50%を超えるNOx転化率が約100℃の広範な温度範囲にわたり得られ、かつ幅広い空間速度でも高い活性を発揮し、さらに高活性を長時間維持できる。 The catalyst obtained according to the present invention has a NOx conversion rate of more than 90% in a selective reduction reaction of nitrogen oxides with CO, regardless of whether or not SO 2 is contained in an oxygen-excess atmosphere, A NOx conversion rate exceeding 50% can be obtained over a wide temperature range of about 100 ° C., exhibits high activity even at a wide space velocity, and can maintain high activity for a long time.

本発明の触媒は、周期律表第1,2,3,9,11及び12族金属のうち1種以上とイリジウムを酸化タングステンおよびシリカからなる担体に担持した触媒である。
本発明触媒の構成主成分であるシリカ(SiO)は、耐熱、耐水性に優れた金属酸化物であり、合成は従来公知の方法により行われる。
The catalyst of the present invention is a catalyst in which one or more of the metals in Groups 1, 2, 3, 9, 11, and 12 of the periodic table and iridium are supported on a carrier made of tungsten oxide and silica.
Silica (SiO 2 ), which is a constituent component of the catalyst of the present invention, is a metal oxide excellent in heat resistance and water resistance, and synthesis is performed by a conventionally known method.

本件発明における担体を構成する1成分であるシリカそのものは、COを還元剤に使用してもNOx還元活性を全く示さない。また、該シリカにイリジウムあるいはイリジウムと活性助剤を担持した触媒では、SO存在下でのみNOx還元活性を示すものの、活性温度域が狭い上に活性劣化も著しい。さらに、酸化タングステン(WO)とシリカからなる担体にイリジウムを担持した触媒も、NOx還元活性は示すものの、活性温度域が狭く、活性の劣化も著しい。
これに対し、本発明の、酸化タングステン(WO)とシリカ(SiO)を複合化し、イリジウム(Ir)と、周期律表第1,2,3,9,11及び12族金属のうち1種以上を担持した触媒は、幅広い温度及び高い空間速度で、SOが含有あるいは存在しない場合でも、長期間にわたり著しく高いNOx除去性能を維持する。このような特異的な活性は、酸化タングステンとシリカとからなる担体に、イリジウム及び周期律表第1,2,3,9,11及び12族金属のうち1種以上が組み合わさることによって始めて発現するものである。
Silica itself, which is one component constituting the carrier in the present invention, shows no NOx reduction activity even when CO is used as a reducing agent. Further, a catalyst in which iridium or iridium and an active assistant are supported on the silica exhibits NOx reduction activity only in the presence of SO 2 , but the activation temperature range is narrow and the activity deterioration is remarkable. Further, a catalyst in which iridium is supported on a support made of tungsten oxide (WO 3 ) and silica also shows NOx reduction activity, but has a narrow activation temperature range and significant deterioration in activity.
On the other hand, tungsten oxide (WO 3 ) and silica (SiO 2 ) of the present invention are composited, and iridium (Ir) is selected from 1st, 2nd, 3rd, 9th, 11th and 12th metals in the periodic table. Catalysts loaded with more than a species maintain a significantly higher NOx removal performance over a long period of time, over a wide range of temperatures and high space velocities, even when SO 2 is not present or present. Such a specific activity is manifested only when a carrier composed of tungsten oxide and silica is combined with one or more of iridium and Group 1, 2, 3, 9, 11 and 12 metals of the periodic table. To do.

上記の周期律表第1族金属としては、Li,Na,K,Cs等があげられ、周期律表第2族金属としてはMg,Ca,Ba,Sr等があげられ、周期律表第3族金属としてはLa,Sc,Y,Ce,Pr,Eu等があげられ、周期律表第9族金属としてはCo,Rh等があげられ、周期律表第11族金属としてはCu,Ag,Auがあげられ、周期律表第12族金属としてはZn等があげられる。   Examples of the Periodic Table Group 1 metal include Li, Na, K, and Cs. Examples of the Periodic Table Group 2 metal include Mg, Ca, Ba, and Sr. Group metals include La, Sc, Y, Ce, Pr, Eu, etc., Group 9 metals of the periodic table include Co, Rh, etc., Group 11 metals of the periodic table include Cu, Ag, Au is exemplified, and the group 12 metal of the periodic table includes Zn and the like.

上記WO含有量は、WO-SiO重量に対して1〜50重量%、好ましくは10重量%である。上記Irの含有量は、0.1〜10wt%、好ましくは0.5〜5wt%である。
周期律表第1,2,3,9、11及び12族金属のうち1種以上の金属の含有量として、Ir含有量に対して原子比で1/30〜10、好ましくは1/20〜1の広範囲で効果を示す。
The content of WO 3 is 1 to 50% by weight, preferably 10% by weight, based on 2 % by weight of WO 3 —SiO 2 . The content of Ir is 0.1 to 10 wt%, preferably 0.5 to 5 wt%.
As content of 1 or more types of metals among 1st, 2nd, 3rd, 9th, 11th and 12th group metals of periodic table, 1 / 30-10 by atomic ratio with respect to Ir content, Preferably 1/20 1 shows a wide range of effects.

酸化タングステンとシリカからなる担体を調製する方法は、タングステン化合物の水溶液にシリカを浸漬する含浸法や、シリカ化合物ならびにタングステン化合物の混合溶液を用いるゾルゲル法等で行うことができる。特に、含浸法の場合は、タングステン化合物のクエン酸およびリンゴ酸水溶液を用いることが好ましい。たとえば、タングステン化合物のクエン酸水溶液にシリカを浸漬し、乾燥した後、空気中で焼成することにより、酸化タングステンとシリカの複合担体が得られる。複合担体では、シリカ上にタングステンが酸化物の状態で層状に存在する。   The carrier comprising tungsten oxide and silica can be prepared by an impregnation method in which silica is immersed in an aqueous solution of a tungsten compound, a sol-gel method using a mixed solution of a silica compound and a tungsten compound, or the like. In particular, in the case of the impregnation method, it is preferable to use a citric acid and malic acid aqueous solution of a tungsten compound. For example, a composite carrier of tungsten oxide and silica can be obtained by immersing silica in an aqueous citric acid solution of a tungsten compound, drying it, and firing in air. In the composite carrier, tungsten is present in a layered form on the silica in an oxide state.

イリジウム(Ir)の担持方法は、前記の手順に従って調製したWO-SiO担体に、イリジウム(Ir)の化合物からなる水溶液を含浸する方法等が採用される。担体にイリジウム(Ir)化合物を含浸させた後、乾燥、焼成する。このときのIr化合物は、水に可溶であればどのようなものでもよいが、通常は、残存陰イオンを空気中の焼成処理により比較的低温で分解できる六塩化イリジウム酸等が用いられる。
周期律表第1,2,3,9,11及び12族金属のうち1種以上の金属を担持する際も、イリジウムの場合と同様の方法が採用され、同様に水に可溶な化合物であれば特に限定するものではないが、上記のように残存陰イオンを空気中の焼成処理によって比較的低温で分解除去できる金属硝酸塩化合物が好ましく用いられる。
As a method for supporting iridium (Ir), a method of impregnating an aqueous solution composed of a compound of iridium (Ir) into a WO 3 —SiO 2 carrier prepared according to the above procedure is employed. The carrier is impregnated with an iridium (Ir) compound, and then dried and fired. The Ir compound at this time may be any compound as long as it is soluble in water, but usually hexachloroiridium acid or the like capable of decomposing residual anions at a relatively low temperature by a firing treatment in air is used.
The same method as in the case of iridium is adopted when supporting one or more metals among the metals in Groups 1, 2, 3, 9, 11 and 12 of the periodic table, and it is also a water-soluble compound. Although there is no particular limitation as long as it is present, a metal nitrate compound capable of decomposing and removing residual anions at a relatively low temperature by firing in air as described above is preferably used.

いずれの場合も、含浸は、室温〜100℃で、1〜24時間で行い、通常は、室温で1〜3時間行う。含浸後は、通常は、乾燥した後、空気中で焼成する。空気中の焼成は、約300〜900℃、好ましくは約400〜700℃で、約1〜10時間で行い、低温、短時間であると、化合物の分解が十分に進行せず、高温、長時間であると、含有成分の凝集やシンタリングが起きて、触媒の活性が低下してしまう。焼成後には、Irや周期律表第1,2,3,9,11及び12族金属のうち1種以上の金属は、主にシリカ上の酸化タングステンの層の上に酸化物として存在すると考えられる。
Irと、活性助剤として機能する周期律表第1,2,3,9,11及び12族金属のうち1種以上の金属の酸化タングステンとシリカの複合担体への担持順序は特に限定するものでなく、Irを先に担持し、それを焼成した後に活性助剤を追加担持する方法、Irと活性助剤を同時に担持する方法等があげられる。
In any case, the impregnation is performed at room temperature to 100 ° C. for 1 to 24 hours, and usually at room temperature for 1 to 3 hours. After impregnation, it is usually dried and then fired in air. Firing in air is performed at about 300 to 900 ° C., preferably about 400 to 700 ° C., for about 1 to 10 hours. When the temperature is low and the time is short, the decomposition of the compound does not proceed sufficiently, and the If it is time, aggregation of components and sintering occur, and the activity of the catalyst is reduced. After firing, one or more of Ir and Group 1, 2, 3, 9, 11 and 12 metals are considered to be present mainly as oxides on the tungsten oxide layer on silica. It is done.
The order in which Ir and one or more metals of the periodic table functioning as active aids of metals 1, 2, 3, 9, 11 and 12 are supported on the composite carrier of tungsten oxide and silica is particularly limited. In addition, there are a method in which Ir is supported first, an active assistant is additionally supported after firing it, a method in which Ir and an active assistant are simultaneously supported, and the like.

本発明の触媒は、粉状、粒状、ペレット状、ハニカム状等、種々の形状で使用することができる。
本発明の触媒は、使用前に、約400〜800℃、好ましくは約500〜700℃で、約5〜20%の水素を含むガスで約1〜3時間還元処理を行う。
The catalyst of the present invention can be used in various shapes such as powder, granules, pellets, and honeycombs.
Prior to use, the catalyst of the present invention is subjected to reduction treatment at about 400 to 800 ° C., preferably about 500 to 700 ° C., with a gas containing about 5 to 20% hydrogen for about 1 to 3 hours.

本発明において、処理の対象となるNOx含有ガスは、ディーゼル車や定置式ディーゼル機関等のディーゼル排ガス、リーンバーンガソリン車等の排ガスをはじめ、各種燃焼設備等の排ガスをあげることができる。
これら排ガス中のNOxの除去は、上記した本発明の触媒を用いて、該触媒に、酸素を含む酸化雰囲気中、COの存在下で、排ガスを接触させることにより行う。
ここで、酸化雰囲気とは、排ガス中に含まれるCOを、完全に酸化してCOに変換するのに必要な酸素量よりも過剰な酸素が含まれる雰囲気である。
上記のCOは、排ガス中に残存するものであり、COの量は特に制限されない。ただし、必要な理論量より過剰とした方が還元反応はより進行されるので、一般には、過剰に存在させるのが好ましい。COを還元剤とする場合、NOxの還元除去に必要な理論量の約2倍〜14倍量(NO500ppmに対して1000〜7000ppm)の過剰、好ましくは約4〜10倍量の過剰とするのが適している。
In the present invention, the NOx-containing gas to be treated can include diesel exhaust gas from a diesel vehicle or a stationary diesel engine, exhaust gas from a lean burn gasoline vehicle, and exhaust gas from various combustion facilities.
The removal of NOx in the exhaust gas is performed by using the above-described catalyst of the present invention and bringing the exhaust gas into contact with the catalyst in an oxidizing atmosphere containing oxygen in the presence of CO.
Here, the oxidizing atmosphere is an atmosphere that contains oxygen in excess of the amount of oxygen necessary to completely oxidize CO contained in the exhaust gas and convert it into CO 2 .
The above CO remains in the exhaust gas, and the amount of CO is not particularly limited. However, since the reduction reaction proceeds more when the amount is larger than the required theoretical amount, it is generally preferable that the amount be excessive. When CO is used as the reducing agent, the excess is about 2 to 14 times the theoretical amount necessary for NOx reduction and removal (1000 to 7000 ppm relative to NO500 ppm), preferably about 4 to 10 times the excess. Is suitable.

本発明において、SO濃度は特に制限されない。本発明の触媒は、SO濃度が0ppm〜20ppmの範囲で、その活性を全く低下させることがない。 このことは、本発明の触媒が、SOの含有もしくは存在しないことにかかわらず燃焼排ガスのNOx処理に対応可能であることを意味しており、さらに耐SO性を有することを示している。 In the present invention, the SO 2 concentration is not particularly limited. The catalyst of the present invention, SO 2 concentration in the range of 0Ppm~20ppm, not reduced at all its activity. This catalyst of the present invention, it means that the NOx treatment of the combustion exhaust gas regardless of that it does not contain or presence of SO 2 is adaptable, indicating that further has a resistance to SO 2 resistance .

本発明の触媒を用いたNOxの還元除去は、上記の触媒を配置した反応器を用意し、SOの含有する、もしくは存在しない酸化雰囲気中で、COを存在させて、NOx含有排ガスを通過させることにより行う。このときの反応温度は、一般には、約100〜800℃、好ましくは約200〜600℃である。反応圧力は特に制限されず、加圧下でも減圧下でも反応は進行するが、通常の排気圧で排ガスを触媒層へ導入し、反応を進行させるのが簡便である。
空間速度は特に制限しないが、約10,000〜500,000h−1、好ましくは約40,000〜300,000h−1である。
以下、本発明の実施例を説明する。
For NOx reduction using the catalyst of the present invention, a reactor equipped with the above catalyst is prepared, and CO is present in an oxidizing atmosphere containing or not containing SO 2 and passes through the NOx-containing exhaust gas. To do. The reaction temperature at this time is generally about 100 to 800 ° C, preferably about 200 to 600 ° C. The reaction pressure is not particularly limited, and the reaction proceeds either under pressure or under reduced pressure, but it is convenient to introduce the exhaust gas into the catalyst layer at a normal exhaust pressure to advance the reaction.
The space velocity is not particularly limited, but is about 10,000 to 500,000 h −1 , preferably about 40,000 to 300,000 h −1 .
Examples of the present invention will be described below.

水50gにクエン酸3gを溶かした溶液にパラタングステン酸アンモニウムを1.24g入れ室温にて溶かし溶液Aを調製した。次に溶液Aに、WOとSiO重量比が1:9となるように分量を調節してシリカ粒(富士シリシア化学社製商品名“CARIACT G-10”300m/g <比表面積>)を混合した。その後、この混合溶液を90℃以下で蒸発乾固させ、110℃、空気中で一晩乾燥し、500℃で4時間焼成することで、WO重量が10重量%のWO-SiOを得た。
得られた10重量%WO-SiO、2gに対してIr重量が5重量%となるよう濃度を調整した塩化イリジウム酸水溶液4gを含浸し、110℃空気中で一晩乾燥し、その後、600℃で6時間焼成することで、Ir/WO-SiOを得た。
得られたIr/WO-SiO、1gに対し、Ba/Ir原子比が1/10となるように濃度を調整した硝酸バリウム水溶液2gを含浸し、110℃空気中で一晩乾燥し、その後、600℃で6時間焼成することにより、周期律表第2族金属であるバリウムとイリジウムを、酸化タングステン及びシリカからなる担体に担持した触媒(Ba/Ir/WO-SiO)を得た。
A solution A was prepared by adding 1.24 g of ammonium paratungstate to a solution of 3 g of citric acid in 50 g of water and dissolving at room temperature. Next, the amount of silica particles (trade name “CARIACT G-10” manufactured by Fuji Silysia Chemical Co., Ltd., 300 m 2 / g <specific surface area>) was adjusted in the solution A so that the weight ratio of WO 3 and SiO 2 was 1: 9. ) Were mixed. Thereafter, this mixed solution is evaporated to dryness at 90 ° C. or less, dried in air at 110 ° C. overnight, and baked at 500 ° C. for 4 hours, thereby converting WO 3 -SiO 2 having a WO 3 weight of 10% by weight. Obtained.
Impregnated with 4 g of 10% by weight of WO 3 —SiO 2 , 4 g of chloroiridium acid aqueous solution whose concentration was adjusted so that Ir weight was 5% by weight, and dried in air at 110 ° C. overnight. by calcining 6 hours at 600 ° C., to obtain a Ir / WO 3 -SiO 2.
The obtained Ir / WO 3 —SiO 2 , 1 g, was impregnated with 2 g of an aqueous barium nitrate solution adjusted to have a Ba / Ir atomic ratio of 1/10, and dried in air at 110 ° C. overnight. Thereafter, obtained by baking for 6 hours at 600 ° C., barium and iridium are periodic table group 2 metal, supported on a carrier consisting of tungsten oxide and silica in the catalyst (Ba / Ir / WO 3 -SiO 2) It was.

上記のようにして得られた本発明の触媒0.004gを常圧流通式反応装置に充填した。触媒床温度を測定するための熱電対を触媒床中心付近に配置した。
触媒は反応前に10%H/H気流中、600℃、2時間還元を施した。500ppm NO、3000ppm CO、5%O、6%HO、1ppmSOを含むHe希釈混合ガスの模擬排ガスを反応ガスとし、流量90ml/min(SV約75000h−1に相当)で触媒床に流通し、その生成ガスを、ガスクロマトグラフ(CO,CO2,N,NO分析)で分析した。
活性評価は、次式に示すNO転化率により行い、その結果を表1に示した。
NO転化率 = [2×(N濃度+NO濃度)/NO入口濃度]×100 (%)
0.004 g of the catalyst of the present invention obtained as described above was charged into a normal pressure flow reactor. A thermocouple for measuring the catalyst bed temperature was placed near the center of the catalyst bed.
During 10% H 2 / H e stream before the catalytic reaction, 600 ° C., subjected to 2 hours reduction. 500ppm NO, 3000ppm CO, 5% O 2, 6% H 2 O, and the reaction gas simulated exhaust gas of He diluent gas mixture containing 1ppmSO 2, the catalyst bed at a flow rate of 90 ml / min (corresponding to SV about 75000h -1) distribution, and the generated gas was analyzed by gas chromatograph (CO, CO2, N 2, N 2 O analysis).
The activity was evaluated based on the NO conversion rate shown in the following formula, and the results are shown in Table 1.
NO conversion rate = [2 × (N 2 concentration + N 2 O concentration) / NO inlet concentration] × 100 (%)

実施例1において、イリジウム担持量を2重量%とした以外は、実施例1と同様にしてNOの還元反応を行い、その結果を表1に示した。   In Example 1, the NO reduction reaction was performed in the same manner as in Example 1 except that the amount of iridium supported was 2% by weight. The results are shown in Table 1.

実施例1において、イリジウム担持量を0.5重量%とした以外は、実施例1と同様にしてNOの還元反応を行い、その結果を表1に示した。   In Example 1, NO reduction reaction was performed in the same manner as in Example 1 except that the amount of iridium supported was 0.5% by weight. The results are shown in Table 1.

実施例1において、バリウム担持量をイリジウム担持量に対して原子比が1/20とした以外は、実施例1と同様にしてNOの還元反応を行い、その結果を表1に示した。   In Example 1, the reduction reaction of NO was performed in the same manner as in Example 1 except that the atomic ratio of the barium supported amount was 1/20 with respect to the iridium supported amount. The results are shown in Table 1.

実施例1において、バリウム担持量をイリジウム担持量に対して原子比が1/5とした以外は、実施例1と同様にしてNOの還元反応を行い、その結果を表1に示した。   In Example 1, the NO reduction reaction was performed in the same manner as in Example 1 except that the atomic ratio of the barium supported amount to the iridium supported amount was 1/5. The results are shown in Table 1.

実施例1において、バリウム担持量をイリジウム担持量に対して原子比が1/1とした以外は、実施例1と同様にしてNOの還元反応を行い、その結果を表1に示した。   In Example 1, NO reduction reaction was carried out in the same manner as in Example 1 except that the atomic ratio of the barium supported amount was 1/1 with respect to the iridium supported amount. The results are shown in Table 1.

比較例1Comparative Example 1

実施例1において、硝酸バリウムを使用しない以外は、実施例1と同様にしてNOの還元反応を行い、その結果を表1に示した。   In Example 1, a reduction reaction of NO was performed in the same manner as in Example 1 except that barium nitrate was not used. The results are shown in Table 1.

比較例2Comparative Example 2

実施例1において、担体としてシリカのみを使用する以外は、実施例1と同様にしてNOの還元反応を行い、その結果を表1に示した。   In Example 1, a NO reduction reaction was performed in the same manner as in Example 1 except that only silica was used as the support. The results are shown in Table 1.

Figure 2007175654
Figure 2007175654

表1から明らかなように、実施例1の本発明の触媒活性は、比較例1ならびに比較例2に示す従来技術の触媒の活性に比べて広い温度範囲にわたって著しく高いことがわかる。このことは、本発明の触媒性能が従来技術である比較例1と比較例2を単に組み合わせただけのものではないことを示している。
本発明の触媒では、Ir担持量が大きいほど、特に低温にて高い活性を示すことがわかる。また、Ba/Ir原子比が1/20〜1/1に至るまで著しく高い活性が得られ、特に実施例5においては最大NOx転化率が94%に達し、約50%以上の転化率が得られる温度領域が約100℃(260〜360℃)と非常に広く、比較例1の約20℃(280〜300℃)と比べると約5倍、比較例2と比べても約3倍にまで拡大している。
以上のことから、WO-SiO担体とIrとBaが組み合わさることにより、広範な温度域で非常に高い活性を持つこれまでにない触媒性能が現れることがわかった。
As is apparent from Table 1, the catalytic activity of the present invention in Example 1 is remarkably high over a wide temperature range as compared with the activities of the prior art catalysts shown in Comparative Example 1 and Comparative Example 2. This indicates that the catalyst performance of the present invention is not merely a combination of Comparative Example 1 and Comparative Example 2 which are conventional techniques.
In the catalyst of the present invention, it can be seen that the greater the amount of Ir supported, the higher the activity especially at low temperatures. In addition, remarkably high activity was obtained until the Ba / Ir atomic ratio reached 1/20 to 1/1. In particular, in Example 5, the maximum NOx conversion reached 94%, and a conversion of about 50% or more was obtained. The temperature range is as wide as about 100 ° C. (260 to 360 ° C.), about 5 times compared to about 20 ° C. (280 to 300 ° C.) of Comparative Example 1, and about 3 times compared to Comparative Example 2. It is expanding.
From the above, it was found that unprecedented catalytic performance with very high activity in a wide temperature range appears by combining the WO 3 —SiO 2 carrier, Ir and Ba.

硝酸バリウムを硝酸リチウムに代えた以外は、実施例1と同様にしてNOの還元反応を行い、その結果を表2に示した。
このとき触媒に対するイリジウム(Ir)の担持量は5.0重量%、 周期律表第1族金属であるリチウム(Li)の担持量はイリジウム(Ir)の担持量に対して原子比で1/10であった。
The NO reduction reaction was carried out in the same manner as in Example 1 except that barium nitrate was replaced with lithium nitrate. The results are shown in Table 2.
At this time, the supported amount of iridium (Ir) with respect to the catalyst is 5.0% by weight, and the supported amount of lithium (Li), which is a Group 1 metal of the periodic table, is 1 / in atomic ratio with respect to the supported amount of iridium (Ir). 10.

硝酸バリウムを硝酸カリウムに代えた以外は、実施例1と同様にしてNOの還元反応を行い、その結果を表2に示した。
このとき触媒に対するイリジウム(Ir)の担持量は5.0重量%、周期律表第1族金属であるカリウム( K)の担持量はイリジウム(Ir)の担持量に対して原子比で1/10であった。
The NO reduction reaction was performed in the same manner as in Example 1 except that barium nitrate was replaced with potassium nitrate. The results are shown in Table 2.
At this time, the supported amount of iridium (Ir) on the catalyst is 5.0% by weight, and the supported amount of potassium (K) which is a Group 1 metal of the periodic table is 1 / in atomic ratio with respect to the supported amount of iridium (Ir). 10.

硝酸バリウムを硝酸カルシウムに代えた以外は、実施例1と同様にしてNOの還元反応を行い、その結果を表2に示した。
このとき触媒に対するイリジウム(Ir)の担持量は5.0重量%、周期律表第2族金属であるカルシウム(Ca)の担持量はイリジウム(Ir)の担持量に対して原子比で1/10であった。
NO was reduced in the same manner as in Example 1 except that barium nitrate was replaced with calcium nitrate. The results are shown in Table 2.
At this time, the supported amount of iridium (Ir) with respect to the catalyst is 5.0% by weight, and the supported amount of calcium (Ca) which is a Group 2 metal of the periodic table is 1 / in atomic ratio with respect to the supported amount of iridium (Ir). 10.

硝酸バリウムを硝酸ランタンに代えた以外は、実施例1と同様にしてNOの還元反応を行い、その結果を表2に示した。
このとき触媒に対するイリジウム(Ir)の担持量は5.0重量%、周期律表第3族金属であるランタン(La)の担持量はイリジウム(Ir)の担持量に対して原子比で1/10であった。
The NO reduction reaction was carried out in the same manner as in Example 1 except that barium nitrate was replaced with lanthanum nitrate. The results are shown in Table 2.
At this time, the supported amount of iridium (Ir) on the catalyst is 5.0% by weight, and the supported amount of lanthanum (La), which is a Group 3 metal of the periodic table, is 1 / in atomic ratio with respect to the supported amount of iridium (Ir). 10.

硝酸バリウムを酢酸コバルトに代えた以外は、実施例1と同様にしてNOの還元反応を行い、その結果を表2に示した。
このとき触媒に対するイリジウム(Ir)の担持量は5.0重量%、周期律表第9族金属であるコバルト(Co)の担持量はイリジウム(Ir)の担持量に対して原子比で1/10であった。
The NO reduction reaction was performed in the same manner as in Example 1 except that barium nitrate was replaced with cobalt acetate. The results are shown in Table 2.
At this time, the supported amount of iridium (Ir) with respect to the catalyst is 5.0% by weight, and the supported amount of cobalt (Co) which is a Group 9 metal of the periodic table is 1 / in atomic ratio with respect to the supported amount of iridium (Ir). 10.

硝酸バリウムを塩化金酸に代えた以外は、実施例1と同様にしてNOの還元反応を行い、その結果を表2に示した。
このとき触媒に対するイリジウム(Ir)の担持量は5.0重量%、周期律表第11族金属である金(Au)の担持量はイリジウム(Ir)の担持量に対して原子比で1/10であった。
NO was reduced in the same manner as in Example 1 except that barium nitrate was replaced with chloroauric acid, and the results are shown in Table 2.
At this time, the supported amount of iridium (Ir) on the catalyst is 5.0% by weight, and the supported amount of gold (Au) which is a Group 11 metal of the periodic table is 1 / in atomic ratio with respect to the supported amount of iridium (Ir). 10.

硝酸バリウムを硝酸亜鉛に代えた以外は、実施例1と同様にしてNOの還元反応を行い、その結果を表2に示した。
このとき触媒に対するイリジウム(Ir)の担持量は5.0重量%、周期律表第12族金属である亜鉛(Zn)の担持量はイリジウム(Ir)の担持量に対して原子比で1/10であった。
The NO reduction reaction was carried out in the same manner as in Example 1 except that barium nitrate was replaced with zinc nitrate. The results are shown in Table 2.
At this time, the supported amount of iridium (Ir) on the catalyst is 5.0% by weight, and the supported amount of zinc (Zn), which is a Group 12 metal of the periodic table, is 1 / at atomic ratio relative to the supported amount of iridium (Ir). 10.

Figure 2007175654
Figure 2007175654

表2から、WO-SiO担体にIrを担持した触媒にLi,K,Ca,Ba,La,Co,Au,Zn等の金属を加えることで、加えない場合よりも活性が向上することがわかる。
このことから、高いNOx除去活性を得るためには、周期律表第1,2,3,9,11及び12族金属のいずれか1種以上を添加すればよく、特に広い温度範囲で高い触媒性能を発揮するには、周期律表第2族金属の添加が好ましいことがわかる。
From Table 2, the activity is improved by adding a metal such as Li, K, Ca, Ba, La, Co, Au, and Zn to the catalyst having Ir supported on the WO 3 —SiO 2 carrier, compared to the case where it is not added. I understand.
For this reason, in order to obtain a high NOx removal activity, it is only necessary to add one or more of Periodic Table Nos. 1, 2, 3, 9, 11, and Group 12 metals, and a high catalyst particularly in a wide temperature range. It can be seen that the addition of a Group 2 metal of the periodic table is preferable for exhibiting performance.

原料ガスにSOを使用しない以外は、実施例5と同様にしてNOの還元反応を行い、その結果を表3に示した。 The NO reduction reaction was performed in the same manner as in Example 5 except that SO 2 was not used as the source gas. The results are shown in Table 3.

原料ガスのSO濃度を20ppmとした以外は、実施例5と同様にしてNOの還元反応を行い、その結果を表3に示した。 The NO reduction reaction was carried out in the same manner as in Example 5 except that the SO 2 concentration of the source gas was 20 ppm, and the results are shown in Table 3.

比較例3Comparative Example 3

原料ガスにSOを使用しない以外は、比較例1と同様にしてNOの還元反応を行い、その結果を表3に示した。 The NO reduction reaction was performed in the same manner as in Comparative Example 1 except that SO 2 was not used as the source gas. The results are shown in Table 3.

比較例4Comparative Example 4

原料ガスにSOを使用しない以外は、比較例2と同様にしてNOの還元反応を行い、その結果を表3に示した。 The NO reduction reaction was performed in the same manner as in Comparative Example 2 except that SO 2 was not used as the source gas. The results are shown in Table 3.

Figure 2007175654
Figure 2007175654

表3から明らかなように、SOが高濃度で存在しても、存在しなくても活性はほとんど変わらず、高い活性を示す。従って、本発明の触媒はSOが含有する、もしくは存在しないにかかわらず非常に高いNOx除去活性を示すことがわかった。一方、Ir/WO-SiO触媒では、SOが存在しない場合でもNOx除去活性は最大でも50%程度である。またIr/SiOにBaを添加した触媒に至ってはSOが存在しない場合には活性が発現しない。すなわち、活性助剤の添加は、SO共存下でのみ有効である。したがって、本発明のWO-SiO担体とIrとBa添加の組み合わせは、従来技術からは予測することのできない触媒性能を生み出すことがわかった。 As apparent from Table 3, even if SO 2 is present in high concentrations, the activity hardly changes even in the absence, exhibits high activity. Therefore, it was found that the catalyst of the present invention exhibits a very high NOx removal activity regardless of whether SO 2 is contained or absent. On the other hand, with the Ir / WO 3 —SiO 2 catalyst, the NOx removal activity is about 50% at the maximum even in the absence of SO 2 . In addition, the catalyst obtained by adding Ba to Ir / SiO 2 exhibits no activity in the absence of SO 2 . That is, the addition of the active auxiliary is effective only in the presence of SO 2 . Thus, it has been found that the combination of the WO 3 —SiO 2 support of the present invention and the addition of Ir and Ba produces catalyst performance that cannot be predicted from the prior art.

触媒量を0.01g (SV約300,000h−1に相当)とした以外は、実施例1と同様にしてNOの還元反応を行い、その結果を表4に示した。 The NO reduction reaction was performed in the same manner as in Example 1 except that the amount of catalyst was 0.01 g (corresponding to SV of about 300,000 h −1 ). The results are shown in Table 4.

Figure 2007175654
Figure 2007175654

表4から本発明の触媒は、SVが75,000〜300,000h−1という幅広い処理ガス量の条件下でも効果的に機能することがわかる。 From Table 4, it can be seen that the catalyst of the present invention functions effectively even under a wide range of processing gas amounts of SV of 75,000 to 300,000 h −1 .

WO-SiOに塩化イリジウム酸と硝酸バリウムを同時に含浸した以外は、実施例1と同様にしてNOの還元反応を行い、その結果を表5に示した。 The NO reduction reaction was carried out in the same manner as in Example 1 except that WO 3 -SiO 2 was simultaneously impregnated with iridium chloride and barium nitrate. The results are shown in Table 5.

Figure 2007175654
Figure 2007175654

表5の結果から、調製法としては、Irの化合物を含浸し、乾燥、焼成した後にバリウム化合物を含浸しても、Irの化合物とバリウム化合物を同時に含浸しても、どちらでも最大NOx転化率が80%以上と高い活性を示すことがわかる。   From the results shown in Table 5, the maximum NOx conversion rate can be obtained by either impregnating the Ir compound, drying and calcining, then impregnating the barium compound, or impregnating the Ir compound and the barium compound simultaneously. As can be seen from FIG.

原料ガスのCO濃度を1000ppmとした以外は、実施例5と同様にしてNOの還元反応を行い、その結果を表6に示した。   The NO reduction reaction was performed in the same manner as in Example 5 except that the CO concentration of the source gas was set to 1000 ppm. The results are shown in Table 6.

原料ガスのCO濃度を5000ppmとした以外は、実施例5と同様にしてNOの還元反応を行い、その結果を表6に示した。   The NO reduction reaction was performed in the same manner as in Example 5 except that the CO concentration of the raw material gas was set to 5000 ppm. The results are shown in Table 6.

Figure 2007175654
Figure 2007175654

表6から、CO濃度が1000ppmでは活性が著しく低下することから、原料ガス中のCO濃度は少なくとも1000ppmより高い濃度で使用することが望ましいことが分かった。   From Table 6, it was found that the CO concentration in the raw material gas is desirably higher than at least 1000 ppm because the activity is remarkably lowered when the CO concentration is 1000 ppm.

実施例1で調製した触媒について、活性の安定性を調べるため、反応時間100時間相当の活性劣化試験を行った。100時間相当後の触媒活性維持率を(試験終了時のNO転化率)/(試験開始直後のNO転化率)(%)として表7に示す。   The catalyst prepared in Example 1 was subjected to an activity deterioration test corresponding to a reaction time of 100 hours in order to examine the stability of the activity. Table 7 shows the catalyst activity retention ratio after 100 hours, as (NO conversion ratio at the end of the test) / (NO conversion ratio immediately after the start of the test) (%).

比較例5Comparative Example 5

比較例1で調製した触媒について、活性の安定性を調べるため、反応時間100時間相当のaging試験を行った。100時間相当後の触媒活性維持率を(試験終了時のNO転化率)/(試験開始直後のNO転化率)(%)として表7に示す。   The catalyst prepared in Comparative Example 1 was subjected to an aging test corresponding to a reaction time of 100 hours in order to examine the stability of activity. The catalyst activity retention after 100 hours is shown in Table 7 as (NO conversion at the end of the test) / (NO conversion immediately after the start of the test) (%).

比較例6Comparative Example 6

比較例2で調製した触媒について、活性の安定性を調べるため、反応時間100時間相当のaging試験を行った。100時間相当後の触媒活性維持率を(試験終了時のNO転化率)/(試験開始直後のNO転化率)(%)として表7に示す。   The catalyst prepared in Comparative Example 2 was subjected to an aging test corresponding to a reaction time of 100 hours in order to examine the stability of activity. Table 7 shows the catalyst activity retention ratio after 100 hours, as (NO conversion ratio at the end of the test) / (NO conversion ratio immediately after the start of the test) (%).

Figure 2007175654
Figure 2007175654

表7から、本発明の触媒は、従来技術のIr/WO-SO触媒、Ba/Ir/SO触媒に比べて明らかに長時間にわたり高い触媒性能を発揮できることがわかる。従って、WO-SO担体とIrとBa添加を組み合わせることが、触媒活性の高さという点ばかりでなく触媒性能の安定性という点でもこれまでにない効果をもたらすことがわかった。 From Table 7, it can be seen that the catalyst of the present invention can clearly exhibit high catalytic performance over a long period of time as compared with the prior art Ir / WO 3 -SO 2 catalyst and Ba / Ir / SO 2 catalyst. Therefore, it has been found that combining the WO 3 —SO 2 carrier with the addition of Ir and Ba brings about an unprecedented effect not only in terms of high catalyst activity but also in terms of stability of catalyst performance.

産業上の利用の可能性Industrial applicability

本発明の触媒は、過剰酸素を含む排ガス中のNOxの低減に有効な活性を示すものであり、排ガス規制強化が進められつつあるディーゼル車あるいはディーゼル車と同じく排ガス中に酸素が存在しNOxの還元無害化が難しいリーンバーンガソリン車、さらには燃焼器の排ガス処理技術として利用されることが期待される。
The catalyst of the present invention exhibits an effective activity for reducing NOx in exhaust gas containing excess oxygen, and there is oxygen in the exhaust gas as in the case of diesel vehicles or diesel vehicles whose exhaust gas regulations are being strengthened. It is expected to be used as a lean burn gasoline vehicle that is difficult to reduce and detoxify, and as an exhaust gas treatment technology for combustors.

Claims (4)

酸素存在下で、一酸化炭素により窒素酸化物を選択的に還元する触媒であって、周期律表第1,2,3,9,11及び12族金属から選ばれる1種以上の金属とイリジウムを、酸化タングステン及びシリカからなる担体に担持したことからなることを特徴とする還元触媒。   A catalyst for selectively reducing nitrogen oxides with carbon monoxide in the presence of oxygen, wherein one or more metals selected from Group 1, 2, 3, 9, 11 and 12 metals of the periodic table and iridium A reduction catalyst characterized in that is supported on a carrier made of tungsten oxide and silica. 前記酸化タングステン及びシリカからなる担体において、タングステンの含有量が1〜50重量%であることを特徴とする請求項1に記載の還元触媒。   2. The reduction catalyst according to claim 1, wherein in the support made of tungsten oxide and silica, the content of tungsten is 1 to 50% by weight. 前記酸化タングステン及びシリカからなる担体に対する前記イリジウムの担持量が、0.1〜10重量%であることを特徴とする請求項1又は2に記載の還元触媒。   The reduction catalyst according to claim 1 or 2, wherein an amount of the iridium supported on the support made of tungsten oxide and silica is 0.1 to 10% by weight. 前記周期律表第1,2,3,9,11及び12族金属から選ばれる1種以上の金属の担持量が、前記イリジウムの担持量に対して原子比で1/30〜10であることを特徴とする請求項1ないし3のいずれか1項に記載の還元触媒。
The loading amount of one or more metals selected from Group 1, 2, 3, 9, 11 and 12 metals of the periodic table is 1/30 to 10 in atomic ratio with respect to the loading amount of iridium. The reduction catalyst according to any one of claims 1 to 3, wherein:
JP2005379356A 2005-12-28 2005-12-28 Catalyst for deoxidizing nitrogen oxide selectively Pending JP2007175654A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005379356A JP2007175654A (en) 2005-12-28 2005-12-28 Catalyst for deoxidizing nitrogen oxide selectively

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005379356A JP2007175654A (en) 2005-12-28 2005-12-28 Catalyst for deoxidizing nitrogen oxide selectively

Publications (1)

Publication Number Publication Date
JP2007175654A true JP2007175654A (en) 2007-07-12

Family

ID=38301365

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005379356A Pending JP2007175654A (en) 2005-12-28 2005-12-28 Catalyst for deoxidizing nitrogen oxide selectively

Country Status (1)

Country Link
JP (1) JP2007175654A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009061394A (en) * 2007-09-06 2009-03-26 National Institute Of Advanced Industrial & Technology Catalytic reduction removal method of nitrogen oxide in exhaust gas
JP2010203328A (en) * 2009-03-04 2010-09-16 Babcock Hitachi Kk Exhaust emission control device for thermal engine, exhaust emission control method and nox elimination catalyst
JP2011220213A (en) * 2010-04-08 2011-11-04 Hitachi Constr Mach Co Ltd Exhaust emission control system in internal combustion engine of construction machine
CN115487798A (en) * 2022-09-14 2022-12-20 福州大学 Preparation method and application of assistant-promoted Ru-based nanocluster catalyst

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07246337A (en) * 1994-03-10 1995-09-26 N E Chemcat Corp Catalyst for purification of exhaust gas and method for purifying the same
JPH1094730A (en) * 1996-07-31 1998-04-14 N E Chemcat Corp Exhaust gas purifying catalyst and exhaust gas purifying method
JP2001113170A (en) * 1999-08-12 2001-04-24 Nippon Shokubai Co Ltd Method for manufacturing for denitration catalyst
JP2004073921A (en) * 2002-08-12 2004-03-11 Cosmo Oil Co Ltd Catalyst for catalytically reducing and removing nitrogen oxide
JP2007038155A (en) * 2005-08-04 2007-02-15 National Institute Of Advanced Industrial & Technology Catalyst for selective reduction nitrogen oxide by carbon monoxide and its preparing method
JP2007170323A (en) * 2005-12-26 2007-07-05 National Institute Of Advanced Industrial & Technology Exhaust emission control device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07246337A (en) * 1994-03-10 1995-09-26 N E Chemcat Corp Catalyst for purification of exhaust gas and method for purifying the same
JPH1094730A (en) * 1996-07-31 1998-04-14 N E Chemcat Corp Exhaust gas purifying catalyst and exhaust gas purifying method
JP2001113170A (en) * 1999-08-12 2001-04-24 Nippon Shokubai Co Ltd Method for manufacturing for denitration catalyst
JP2004073921A (en) * 2002-08-12 2004-03-11 Cosmo Oil Co Ltd Catalyst for catalytically reducing and removing nitrogen oxide
JP2007038155A (en) * 2005-08-04 2007-02-15 National Institute Of Advanced Industrial & Technology Catalyst for selective reduction nitrogen oxide by carbon monoxide and its preparing method
JP2007170323A (en) * 2005-12-26 2007-07-05 National Institute Of Advanced Industrial & Technology Exhaust emission control device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009061394A (en) * 2007-09-06 2009-03-26 National Institute Of Advanced Industrial & Technology Catalytic reduction removal method of nitrogen oxide in exhaust gas
JP2010203328A (en) * 2009-03-04 2010-09-16 Babcock Hitachi Kk Exhaust emission control device for thermal engine, exhaust emission control method and nox elimination catalyst
JP2011220213A (en) * 2010-04-08 2011-11-04 Hitachi Constr Mach Co Ltd Exhaust emission control system in internal combustion engine of construction machine
CN115487798A (en) * 2022-09-14 2022-12-20 福州大学 Preparation method and application of assistant-promoted Ru-based nanocluster catalyst
CN115487798B (en) * 2022-09-14 2024-04-05 福州大学 Preparation method and application of Ru-based nanocluster catalyst promoted by aid

Similar Documents

Publication Publication Date Title
JP5875586B2 (en) Catalyst for removing nitrogen oxides from diesel engine exhaust
JP4447687B2 (en) Storage materials for sulfur oxides, their production and use
EP1356864A1 (en) Platinum-group-metal free catalytic washcoats for particulate exhaust gas filter applications
EP0222497A2 (en) Method of simultaneous oxidation of carbon monoxide and unburned fuel in methanol-fueled vehicle exhaust
JP4429950B2 (en) Catalyst for removing oxidation of methane from combustion exhaust gas and exhaust gas purification method
JPH02233144A (en) Automobile exhaust gas catalyser
JP3436427B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
JP2007175654A (en) Catalyst for deoxidizing nitrogen oxide selectively
JP4512691B2 (en) Catalyst for selective reduction of nitrogen oxides by carbon monoxide and its preparation
JP2002143683A (en) Catalyst for purification of exhaust gas and method for manufacturing the same
JPH07829A (en) Non-metal catalyst system for lean-burn engine
JP2003236343A (en) Method for decontaminating exhaust gas and apparatus for denitration at low temperature
JPH10109032A (en) Exhaust gas purification catalyst for internal combustion engine
JP2001058130A (en) Catalyst for nitrogen oxide decomposition
JP3861489B2 (en) Exhaust gas purification catalyst and method for producing the same
JP3417702B2 (en) Nitrogen oxide storage composition and exhaust gas purification method
JPH05277376A (en) Nox removing catalyst and nox removing method utilizing the catalyst
JPH06126177A (en) Catalyst for removing nitrous oxide in exhaust gas
JP4016193B2 (en) Denitration catalyst
JP2010112292A (en) Catalyst for exhaust emission control
EP1514599A1 (en) Catalyst and method for clarifying exhaust gas
JPH0557191A (en) Catalyst for purifying exhaust gas of diesel engine
JP3302036B2 (en) Nitrogen oxide removal method
JP4822049B2 (en) Exhaust gas purification catalyst and exhaust gas purification method using the same
JP2004322077A (en) Exhaust gas clarification catalyst and exhaust gas clarification method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080327

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100802

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100810

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101214