JPS63171349A - Heat-conductivity sensor - Google Patents

Heat-conductivity sensor

Info

Publication number
JPS63171349A
JPS63171349A JP266787A JP266787A JPS63171349A JP S63171349 A JPS63171349 A JP S63171349A JP 266787 A JP266787 A JP 266787A JP 266787 A JP266787 A JP 266787A JP S63171349 A JPS63171349 A JP S63171349A
Authority
JP
Japan
Prior art keywords
resistance
wire
heat
thermal conductivity
conductivity sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP266787A
Other languages
Japanese (ja)
Inventor
Hideyuki Ohashi
秀行 大橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP266787A priority Critical patent/JPS63171349A/en
Publication of JPS63171349A publication Critical patent/JPS63171349A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

PURPOSE:To measure heat conductivity with good accuracy, by inserting a heat generating wire having resistance temp. coefficient of 4X10<-4>/deg or less and a resistance wire having resistance temp. coefficient of 1.5X10<-3>/deg or more in a metal pipe and filling said pipe with a heat resistant electric insulating material. CONSTITUTION:A heat generating wire 2 composed of nickel-chromium having resistance temp. coefficient of 4X10<-4>/deg or less and a resistance wire 3 composed of a nickel wire having resistance temp. coefficient of 1.5X10<-3>/deg or more are inserted in a metal pipe 1 composed of stainless steel and two-pack type silicone RTV (room temp. curable) rubber having high heat conductivity being a heat resistant resin is allowed to fill the metal pipe 1 as a heat resistant electric insulating material 4. By using this heat conductivity sensor, heat conductivity can be measured with good accuracy.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、各種物質の熱伝導率や熱伝導率の変化を利用
して水分量を検知するなどの測定に用いる熱伝導率セン
サに関するものである。
[Detailed Description of the Invention] Industrial Application Field The present invention relates to a thermal conductivity sensor used for measurements such as detecting moisture content using the thermal conductivity of various substances and changes in thermal conductivity. .

従来の技術 熱伝導率の測定方法は1種々の方法が提案されている。Conventional technology Various methods have been proposed for measuring thermal conductivity.

その中で特に多用されているのは、平板比較法、平板直
接法、円筒法、カロリメータ法。
The most commonly used methods are the flat plate comparison method, the flat plate direct method, the cylindrical method, and the calorimeter method.

熱線法、フラッシュ法などであった。これらの方法は一
般に電気加熱やレーザ加熱による物体の温度変化を熱電
対などにより測定して熱伝導率を求める方法であった。
These methods included the hot wire method and flash method. These methods generally involve measuring the temperature change of an object due to electrical heating or laser heating using a thermocouple or the like to determine thermal conductivity.

発明が解決しようとする問題点 上記の従来の方法では、81!I定試料の形状に制限が
あったり、熱線を測定試料に埋め込んだりする必要があ
り、試料の調整に長時間を要したり、またレーザなどを
用いるなど、装置が大がかりであり、高価であるなどの
欠点を有していた。
Problems to be Solved by the Invention In the above conventional method, 81! There are restrictions on the shape of the fixed sample, it is necessary to embed a hot wire in the measurement sample, it takes a long time to prepare the sample, and the equipment is large-scale and expensive because it uses lasers, etc. It had drawbacks such as.

本発明は、このような複雑な測定を、特別な試料調整を
不要にして、簡便に熱伝導率を測定し得る熱伝導率セン
サを提供しようとするものである。
The present invention aims to provide a thermal conductivity sensor that can easily measure thermal conductivity in such a complicated measurement without requiring special sample preparation.

問題点を解決するための手段 上記の問題点を解決するために、本発明の熱伝導率セン
サは、金属パイプ内に、抵抗温度係数が4 X 10−
’ / deg以下の発熱線と抵抗温度係数が1.5X
IO−4/deg以上の抵抗線を挿入し、耐熱性電気絶
縁材を充填したものである。
Means for Solving the Problems In order to solve the above problems, the thermal conductivity sensor of the present invention has a temperature coefficient of resistance of 4 x 10-
' / deg or less heating wire and resistance temperature coefficient 1.5X
A resistance wire of IO-4/deg or higher is inserted and a heat-resistant electrical insulating material is filled.

本発明の熱伝導率センサは、熱的性質の測定上高温とな
り、被測定物質によっては耐食性が必要なため、金属パ
イプの材料としてステンレス鋼または耐食耐熱超合金を
用いることが好ましい。この金属パイプは、被測定物質
中へのセンサの挿入を容易にする役割を兼ねている。
Since the thermal conductivity sensor of the present invention reaches high temperatures when measuring thermal properties and requires corrosion resistance depending on the substance to be measured, it is preferable to use stainless steel or a corrosion-resistant and heat-resistant superalloy as the material for the metal pipe. This metal pipe also serves to facilitate insertion of the sensor into the substance to be measured.

金属パイプの内部には、熱量を供給する目的の発熱線と
温度変化を測定する目的の抵抗線を、耐熱性電気絶縁材
を介在させて配置する。
Inside the metal pipe, a heat-generating wire for supplying heat and a resistance wire for measuring temperature changes are placed with a heat-resistant electrical insulating material interposed therebetween.

発熱線は一定の熱量を供給することが必要であるので、
温度による電気抵抗の変化が小さい抵抗温度係数が4 
X 10−’ / deg以下のものを用いることが必
要である。特に抵抗温度係数が小さく、かつ耐熱性がす
ぐれた鉄−クロム第1種(F CHWl)、鉄−クロム
第2種(FCHW2)、ニッケル−クロム第1種(NC
HW1)、ニッケル−クロム第2種(NCHW2)など
が適している。
Since the heating wire needs to supply a certain amount of heat,
The temperature coefficient of resistance is 4, which means that the electrical resistance changes little due to temperature.
It is necessary to use one with a value of X 10-'/deg or less. In particular, iron-chromium type 1 (F CHWl), iron-chromium type 2 (FCHW2), and nickel-chromium type 1 (NC) have a small temperature coefficient of resistance and excellent heat resistance.
HW1), nickel-chromium type 2 (NCHW2), etc. are suitable.

抵抗線は、温度変化を精度良く測定するため、温度によ
る電気抵抗の変化が大きく抵抗温度係数が大きいことが
必要であるので、抵抗温度係数が1.5X10−3/d
og以上のものを用いることが必要である。抵抗線は、
さらに、抵抗率が高く、耐熱性に優れ、かつ材質が安定
で均一であるなどの特性を具備していることが望ましく
、以上の特性上から、ステンレス鋼線、タングステン線
、モリブデン線、ニッケル線、鉄・ニッケル線、白金線
などが適している。
In order to accurately measure temperature changes, a resistance wire needs to have a large resistance temperature coefficient because its electrical resistance changes greatly with temperature, so the resistance wire should have a resistance temperature coefficient of 1.5
It is necessary to use og or higher. The resistance line is
Furthermore, it is desirable that the material has characteristics such as high resistivity, excellent heat resistance, and stable and uniform material.From the above characteristics, stainless steel wire, tungsten wire, molybdenum wire, nickel wire , iron/nickel wire, platinum wire, etc. are suitable.

耐熱性電気絶縁材は、熱伝導率が高く、耐熱性に優れ、
絶縁抵抗が高く、充填性に優れ、かつ安価であることが
必要であり、シリコーン樹脂またはエポキシ樹脂などの
耐熱樹脂もしくは酸化マグネシウムが適している。耐熱
樹脂では、特に熱伝導率が5X10’″’cal/cm
・sec−deg以上のシリコーン樹脂が適当である。
Heat-resistant electrical insulation materials have high thermal conductivity and excellent heat resistance.
It needs to have high insulation resistance, excellent filling properties, and low cost, and heat-resistant resins such as silicone resins or epoxy resins, or magnesium oxide are suitable. In particular, heat-resistant resin has a thermal conductivity of 5X10''''cal/cm.
- Silicone resin with a sec-deg or higher is suitable.

また酸化マグネシウムは不純物の増加とともに絶縁抵抗
が低下するため、純度が90%以上のものが望ましい。
Further, since the insulation resistance of magnesium oxide decreases as impurities increase, it is desirable that the purity is 90% or more.

以上の構成から成る熱伝導率センサによる測定は、安定
な電源と抵抗計があれば基本的に可能であるが、実際に
はマルチメータとマイクロコンピュータを接続して抵抗
の変化を短時間に非定常状態で測定することにより行な
われる。
Measurement using the thermal conductivity sensor with the above configuration is basically possible as long as you have a stable power source and a resistance meter, but in reality, it is possible to connect a multimeter and a microcomputer to quickly measure resistance changes. This is done by measuring in steady state.

作用 熱伝導率の測定の原理は以下の通りである。ある温度T
0の無限物質中にある線熱源から、単位時間、単位長さ
当りに一定の発熱量qがある場合の線熱源の温度Tは(
1)式で示される。
The principle of measuring the working thermal conductivity is as follows. a certain temperature T
When a linear heat source in an infinite material with zero has a constant calorific value q per unit time and unit length, the temperature T of the linear heat source is (
1) It is shown by the formula.

T−To=q/ (4sλ)(d+1n(t+to))
 −・・a)ただし、Tは時間tにおける線熱源の温度
、λは物質の熱伝導率、toは補正項、dは定数である
T-To=q/ (4sλ) (d+1n(t+to))
-...a) However, T is the temperature of the linear heat source at time t, λ is the thermal conductivity of the material, to is the correction term, and d is a constant.

同様に発熱を停止して冷却されるときの線熱源の温度は
(2)式で示される。
Similarly, the temperature of the linear heat source when it stops generating heat and is cooled is expressed by equation (2).

T−T、=ct/(4%λ)−(d+tn(t+t、)
)−q/(4πλ)・(d+1n(t−t、+to))
 ・=(2)ただし、t□は発熱を停止した時間である
T-T, = ct/(4%λ)-(d+tn(t+t,)
)-q/(4πλ)・(d+1n(t-t,+to))
・=(2) However, t□ is the time when heat generation stopped.

熱伝導率の異なる無限物質AおよびBが同じ温度T、に
あるとき、両物質中の線熱源から同時に同熱量9の発熱
があると1両線熱源の温度変化の比は(3)式で表わさ
れる。
When infinite substances A and B with different thermal conductivities are at the same temperature T, and the same amount of heat 9 is generated simultaneously from linear heat sources in both substances, the ratio of temperature changes of both linear heat sources is given by equation (3). expressed.

ただし、T^およびTBは、それぞれ時間tにおける物
[AおよびB中の線熱源の温度、λ^およびλBは、そ
れぞれ物質AおよびBの熱伝導率を表わす。
where T^ and TB are the temperatures of the linear heat sources in the objects [A and B, respectively, at time t, and λ^ and λB represent the thermal conductivities of the substances A and B, respectively.

同様に発熱を停止して冷却されるときの両線熱源の温度
変化の比は(4)式で表わされ、(3)式と等しくなる
Similarly, the ratio of temperature changes of both wire heat sources when heat generation is stopped and cooled is expressed by equation (4), which is equal to equation (3).

・・・(4) したがって、いずれの場合も物質Aの熱伝導率は(5)
式で表゛わされる。
...(4) Therefore, in either case, the thermal conductivity of substance A is (5)
It is expressed by the formula.

λA=λB工[≦1・・・(5)  、T^−T。λA=λB engineering [≦1...(5), T^-T.

したがって、熱伝導率既知の物質と比較するか。Therefore, do you compare the thermal conductivity of a substance with known properties?

あるいはあらかじめ熱伝導率既知の物質を測定して温度
変化と時間の関係を調べておくことにより。
Alternatively, by measuring a substance with known thermal conductivity in advance and investigating the relationship between temperature change and time.

未知物質の熱伝導率を決定することができる。The thermal conductivity of unknown substances can be determined.

以上のように本発明の熱伝導率センサを用いることによ
り、特別な試料調整も行なうことなく。
By using the thermal conductivity sensor of the present invention as described above, no special sample preparation is required.

センサを挿入するだけで、上記原理に基づき簡便に熱伝
導率を測定することができる。
Just by inserting a sensor, thermal conductivity can be easily measured based on the above principle.

また、あらかじめ、ある物質の水分量既知の試料の熱伝
導率を調べておくことにより、その物質の水分センサと
して使用することも可能である。
Furthermore, by examining the thermal conductivity of a sample of a substance whose moisture content is known in advance, it is also possible to use it as a moisture sensor for that substance.

実施例 以下1本発明の実施例について図面に基づいて説明する
EMBODIMENTS Below, one embodiment of the present invention will be described based on the drawings.

第1図は本発明の一実施例の熱伝導率センサの縦断面図
であり、第2図は第1図の1−1線断面図である。第1
図〜第2図において、1はステンレス鋼(SUS316
L)から成る金属パイプである。金属パイプ1の内部に
は、直径0.05m5のNCHWIから成る発熱線2と
直径0.05mmのニッケル線から成る抵抗線3を挿入
し、耐熱性電気絶縁材4として耐熱樹脂である高熱伝導
率(3,5X 10−’cal/cIl−5ec−de
g)の2液型シリコーンRTV (室温硬化)ゴムを充
填した。金属パイプ1の先端laは、ステンレス鋼(S
US316L)から成る金属で封止した。他端1bから
は、発熱線2および抵抗線3にそれぞれ溶接したターミ
ナル5を取り出し、リード線6と接続した後、金属パイ
プ1の端部1bから、シリコーンゴムモールド7で一体
化し、密封した。
FIG. 1 is a longitudinal sectional view of a thermal conductivity sensor according to an embodiment of the present invention, and FIG. 2 is a sectional view taken along the line 1-1 in FIG. 1st
In Figures to Figure 2, 1 is made of stainless steel (SUS316
It is a metal pipe consisting of L). Inside the metal pipe 1, a heating wire 2 made of NCHWI with a diameter of 0.05 m5 and a resistance wire 3 made of a nickel wire with a diameter of 0.05 mm are inserted. (3,5X 10-'cal/cIl-5ec-de
g) two-component silicone RTV (room temperature curing) rubber was filled. The tip la of the metal pipe 1 is made of stainless steel (S
It was sealed with a metal consisting of US316L). From the other end 1b, the terminal 5 welded to the heat generating wire 2 and the resistance wire 3 was taken out and connected to the lead wire 6, and then integrated with the silicone rubber mold 7 from the end 1b of the metal pipe 1 and sealed.

以上のようにして作製した熱伝導率センサを。Thermal conductivity sensor fabricated as described above.

0〜100℃の水中に入れて抵抗計で精密に抵抗を測定
し、抵抗線の温度と抵抗の関係を精密に求めた。この熱
伝導率センサを用いて、室温(20℃)の水およびエタ
ノール中での発熱線2の一定の発熱量に対する温度変化
を測定し、水中での温度変化をY軸に、エタノール中で
の温度変化をX軸にとり、グラフ化すると第3図のよう
になった。第3図のグラフの傾きは0.297となり、
水の熱伝導率を1.45 X 1O−3cal/cm・
sec−dagとすると、エタノールの熱伝導牢番ね5
)式から4,30 X 10−”cal/cmasec
−degとなり、すでに知られている値と良い一致を示
した。このときのセンサの温度変化は、水中で0.51
℃、エタノール中で1.71℃とわずかであった。また
発熱時と冷却時も良い一致を示した。
The wire was placed in water at a temperature of 0 to 100° C., and its resistance was precisely measured using a resistance meter, to precisely determine the relationship between the temperature and resistance of the resistance wire. Using this thermal conductivity sensor, measure the temperature change for a constant calorific value of the exothermic wire 2 in water and ethanol at room temperature (20°C). When the temperature change is plotted on the X-axis and graphed, the result is as shown in Figure 3. The slope of the graph in Figure 3 is 0.297,
The thermal conductivity of water is 1.45 x 1O-3cal/cm・
If it is sec-dag, then the heat conduction number of ethanol is 5
) from the formula 4,30 x 10-”cal/cmasec
-deg, showing good agreement with already known values. The temperature change of the sensor at this time is 0.51 in water.
℃, 1.71℃ in ethanol. Good agreement was also shown during heating and cooling.

また、上記実施例の熱伝導率センサで用いた耐熱性電気
絶縁材4である2液型シリコーンRTVゴムに代えて、
純度97%の酸化マグネシウムを充填し、得られた熱伝
導率センサを用いて上記実施例と同様の手順によりエタ
ノールの熱伝導率を測定した。その結果発熱線2の水中
での温度変化とエタノール中での温度変化の関係は、上
記実施例と同様にグラフの傾きが0.297で、水の熱
伝導率を1.45 X 10−”cal/c−・sec
−degとして(5)式から求めたエタノールの熱伝導
率は、 4.30 X 1O−3cal/cm・sec
−degであり、上記実施例の結果と一致した。
In addition, instead of the two-component silicone RTV rubber that is the heat-resistant electrical insulating material 4 used in the thermal conductivity sensor of the above embodiment,
It was filled with magnesium oxide having a purity of 97%, and the thermal conductivity of ethanol was measured using the obtained thermal conductivity sensor according to the same procedure as in the above example. As a result, the relationship between the temperature change of exothermic line 2 in water and the temperature change in ethanol is that the slope of the graph is 0.297 as in the above example, and the thermal conductivity of water is 1.45 x 10-" cal/c-・sec
The thermal conductivity of ethanol calculated from equation (5) as −deg is 4.30 × 1O−3 cal/cm・sec
-deg, which coincided with the results of the above example.

このときのセンサの温度変化は、水中で0.45℃。The temperature change of the sensor at this time was 0.45°C underwater.

エタノール中で1.50℃とわずかであった。The temperature in ethanol was only 1.50°C.

以上のようにして、液体のほか粉体などの固体、肉やパ
ンなどの調理物などに、この熱伝導率センサを挿入する
ことにより、周囲に大きな変化を与えることなく、簡便
に、しかも精度良く熱伝導率を測定することができた。
In the above manner, by inserting this thermal conductivity sensor into liquids, solids such as powder, cooked foods such as meat and bread, etc., it is possible to easily and accurately perform the thermal conductivity sensor without causing any major changes to the surroundings. The thermal conductivity could be measured well.

発明の効果 上記のように、本発明の熱伝導率センサによれば、金属
パイプ内に、抵抗温度係数が4X10−4/deg以下
の発熱線と抵抗温度係数が1.5 X 10”″3/d
og以上の抵抗線を挿入し、耐熱性電気絶縁材を充填し
たので、被測定物質中へ容易に挿入でき、わずかな温度
変化で精度良く熱伝導率を測定することができ、さらに
金属パイプの材料を選択することにより耐熱性、耐食性
に優れた熱伝導率センサが得られ、またある物質の水分
既知の試料の熱伝導率をあらかじめ調べておこくとによ
り、水分センサとしても用いることができるなど、その
実用的価値はきわめて大きい。
Effects of the Invention As described above, according to the thermal conductivity sensor of the present invention, there is a heating wire with a temperature coefficient of resistance of 4X10-4/deg or less and a temperature coefficient of resistance of 1.5X10''3 in the metal pipe. /d
By inserting a resistance wire with a resistance of more than 0.3 oz and filling it with a heat-resistant electrical insulating material, it can be easily inserted into the substance being measured, and thermal conductivity can be measured with high accuracy even with slight temperature changes. By selecting the material, a thermal conductivity sensor with excellent heat resistance and corrosion resistance can be obtained, and it can also be used as a moisture sensor by checking the thermal conductivity of a sample of a substance with known moisture content in advance. Its practical value is extremely large.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す熱伝導率センサの縦断
面図、第2図は第1図の1−1線断面図。 第3図は第1図に示す本発明の一実施例を用いて熱伝導
率を測定したときの水−エタノールの温度変化の関係を
示す図である。 1・・・金属パイプ、2・・・発熱線、3・・・抵抗線
、4・・・耐熱性電気絶縁材。 代理人   森  本  義  弘 第1図
FIG. 1 is a longitudinal sectional view of a thermal conductivity sensor showing an embodiment of the present invention, and FIG. 2 is a sectional view taken along line 1-1 in FIG. FIG. 3 is a diagram showing the relationship between water and ethanol temperature changes when thermal conductivity is measured using the embodiment of the present invention shown in FIG. 1...Metal pipe, 2...Heating wire, 3...Resistance wire, 4...Heat-resistant electrical insulation material. Agent Yoshihiro MorimotoFigure 1

Claims (1)

【特許請求の範囲】 1、金属パイプ内に、抵抗温度係数が4×10^−^4
/deg以下の発熱線と抵抗温度係数が1.5×10^
−^3/deg以上の抵抗線を挿入し、耐熱性電気絶縁
材を充填したことを特徴とする熱伝導率センサ。 2、金属パイプは、ステンレス鋼製または耐熱耐食超合
金製である特許請求の範囲第1項記載の熱伝導率センサ
。 3、抵抗温度係数が4×10^−^4/deg以下の発
熱線として、鉄−クロム第1種(FCHW1)、鉄−ク
ロム第2種(FCHW2)、ニッケル−クロム第1種(
NCHW1)、またはニッケル−クロム第2種(NCH
W2)である特許請求の範囲第1項記載の熱伝導率セン
サ。 4、抵抗温度係数が1.5×10^−^3/deg以上
の抵抗線は、ステンレス鋼線、タングステン線、モリブ
デン線、ニッケル線、鉄・ニッケル線、または白金線で
ある特許請求の範囲第1項記載の熱伝導率センサ。 5、耐熱性電気絶縁材は耐熱樹脂または純度が90%以
上の酸化マグネシウムである特許請求の範囲第1項記載
の熱伝導率センサ。 6、耐熱樹脂は、シリコーン樹脂またはエポキシ樹脂で
ある特許請求の範囲第5項記載の熱伝導率センサ。
[Claims] 1. Inside the metal pipe, the temperature coefficient of resistance is 4×10^-^4
The heating wire below /deg and the temperature coefficient of resistance are 1.5 x 10^
A thermal conductivity sensor characterized by inserting a resistance wire of -^3/deg or more and filling it with a heat-resistant electrical insulating material. 2. The thermal conductivity sensor according to claim 1, wherein the metal pipe is made of stainless steel or a heat-resistant and corrosion-resistant superalloy. 3. As heating wires with a temperature coefficient of resistance of 4 x 10^-^4/deg or less, iron-chromium type 1 (FCHW1), iron-chromium type 2 (FCHW2), nickel-chromium type 1 (
NCHW1) or nickel-chromium type 2 (NCH
W2) The thermal conductivity sensor according to claim 1. 4. Claims that the resistance wire with a temperature coefficient of resistance of 1.5 x 10^-^3/deg or more is a stainless steel wire, a tungsten wire, a molybdenum wire, a nickel wire, an iron-nickel wire, or a platinum wire. The thermal conductivity sensor according to item 1. 5. The thermal conductivity sensor according to claim 1, wherein the heat-resistant electrical insulating material is a heat-resistant resin or magnesium oxide with a purity of 90% or more. 6. The thermal conductivity sensor according to claim 5, wherein the heat-resistant resin is a silicone resin or an epoxy resin.
JP266787A 1987-01-08 1987-01-08 Heat-conductivity sensor Pending JPS63171349A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP266787A JPS63171349A (en) 1987-01-08 1987-01-08 Heat-conductivity sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP266787A JPS63171349A (en) 1987-01-08 1987-01-08 Heat-conductivity sensor

Publications (1)

Publication Number Publication Date
JPS63171349A true JPS63171349A (en) 1988-07-15

Family

ID=11535663

Family Applications (1)

Application Number Title Priority Date Filing Date
JP266787A Pending JPS63171349A (en) 1987-01-08 1987-01-08 Heat-conductivity sensor

Country Status (1)

Country Link
JP (1) JPS63171349A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101852752A (en) * 2010-06-10 2010-10-06 上海理工大学 Device and method for measuring heat conductivity of poor heat conductive materials

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101852752A (en) * 2010-06-10 2010-10-06 上海理工大学 Device and method for measuring heat conductivity of poor heat conductive materials

Similar Documents

Publication Publication Date Title
RU2757064C1 (en) Heat flow sensor with increased heat exchange
CN101320007A (en) Material thermal conductivity measurement apparatus by probe method
Assael et al. Measurement of the thermal conductivity of stainless steel AISI 304L up to 550 K
JPS5822973B2 (en) Red bean sprouts
CA2011659C (en) Measuring sensor for fluid state determination and method for measurement using such sensor
CN102597754A (en) Hydrogen chlorine level detector
Kallaher et al. An apparatus for concurrent measurement of thermoelectric material parameters
CN109613051B (en) Device and method for measuring Seebeck coefficient of material by using contrast method
Jekel et al. The thermodynamic properties of high temperature aqueous solutions. VIII. Standard partial molal heat capacities of gadolinium chloride from 0 to 100°
CN111947882A (en) Transient heat flow sensor and testing method thereof
CN109655485B (en) A method of specific heat of liquid is measured using null method
Salim Thermal conductivity measurements using the transient hot-wire method: a review
CN110073187A (en) Temperature sensor
Assael et al. An improved application of the transient hot-wire technique for the absolute accurate measurement of the thermal conductivity of Pyroceram 9606 up to 420 K
JPH03225268A (en) Direct heating type calorimetric instrument
Perkins et al. Thermal conductivity of saturated liquid toluene by use of anodized tantalum hot wires at high temperatures
Decker et al. Melting and high-temperature electrical resistance of gold under pressure
CN201222042Y (en) Apparatus for measuring material thermal conductivity parameter
JPS63171349A (en) Heat-conductivity sensor
Marchã et al. Development and test results of a calorimetric technique for solar thermal testing loops, enabling mass flow and Cp measurements independent from fluid properties of the HTF used
Assael et al. A transient hot-wire instrument for the measurement of the thermal conductivity of solids up to 590 K
CN101493432A (en) Method for measuring thermal conductivity coefficient of solid material
JPS63171348A (en) Heat conductivity sensor
RU2633405C1 (en) Device for measuring thermal conductivity
CN218297437U (en) High-precision calibration device for short thermocouple