JPS6316504A - Ceramic forming composition and semiconductor ceramic substrate, dielectric ceramic substrate and capacitor using the same - Google Patents

Ceramic forming composition and semiconductor ceramic substrate, dielectric ceramic substrate and capacitor using the same

Info

Publication number
JPS6316504A
JPS6316504A JP61158466A JP15846686A JPS6316504A JP S6316504 A JPS6316504 A JP S6316504A JP 61158466 A JP61158466 A JP 61158466A JP 15846686 A JP15846686 A JP 15846686A JP S6316504 A JPS6316504 A JP S6316504A
Authority
JP
Japan
Prior art keywords
ceramic
forming composition
mol
dielectric
mole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61158466A
Other languages
Japanese (ja)
Other versions
JP2576973B2 (en
Inventor
長野 正登
坂口 道明
熊谷 元男
圭一 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
NOF Corp
Original Assignee
Canon Inc
Nippon Oil and Fats Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc, Nippon Oil and Fats Co Ltd filed Critical Canon Inc
Priority to JP61158466A priority Critical patent/JP2576973B2/en
Publication of JPS6316504A publication Critical patent/JPS6316504A/en
Application granted granted Critical
Publication of JP2576973B2 publication Critical patent/JP2576973B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 [発明の利用分野] 本発明はセラミック形成組成物及びこれを用いた半導体
磁器基体、誘電体磁器基体並びにコンデンサーに関する
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a ceramic forming composition, a semiconductor ceramic substrate, a dielectric ceramic substrate, and a capacitor using the same.

[従来の技術] 結晶粒界に絶縁層を形成した半導体磁器は、一般に大き
な誘電率を有する。この様な半導体磁器を用いて大きな
容量を有するコンデンサーを構成し得ることが知られて
いる。従来、この種の半導体磁器としては、チタン酸バ
リウムを主体成分とする磁器が多用されていた。このも
のは、誘電率が20.000と大きいものの、誘電損失
(tanδ)が5〜6%(1kHz )と大きく、また
、誘電率の温度変化も+20℃を基準として一25〜+
85℃の範囲で±50%と大きいものである。
[Prior Art] Semiconductor ceramics in which an insulating layer is formed at grain boundaries generally have a large dielectric constant. It is known that a capacitor having a large capacity can be constructed using such semiconductor ceramics. Conventionally, as this type of semiconductor porcelain, porcelain whose main component is barium titanate has been frequently used. Although this material has a large dielectric constant of 20.000, the dielectric loss (tan δ) is large at 5 to 6% (1 kHz), and the temperature change in the dielectric constant is -25 to +25°C with reference to +20°C.
It is as large as ±50% in the range of 85°C.

一方、チタン酸バリウムのtanaA■電率の温度変化
を改良する磁器としてチタン酸ス)C7ンチウムを主体
成分とする磁器が知られており、例えば特開昭54−7
8498号に記載されている。
On the other hand, porcelain whose main component is titanium titanate is known as a porcelain that improves the temperature change in the electric conductivity of barium titanate.
No. 8498.

又、TiO251,50モル%及びSrO48.50モ
ル%から成る主成分にTaを添加せしめた磁器は、ta
n δが0.6%、−25〜+85℃の誘電率の温度変
化が10%以内と良好であるが、誘電率が30゜000
程度と低い。
In addition, porcelain in which Ta is added to the main components consisting of 51.50 mol% of TiO2 and 48.50 mol% of SrO is
n δ is 0.6%, and the temperature change in dielectric constant from -25 to +85°C is within 10%, which is good, but the dielectric constant is 30°000
The degree is low.

また、例えばTi02及びSrOから成る主成分にNb
を添加せしめた磁器は、誘電率が50.000以上でt
anδも1%以下と良好であるが、誘電率の温度変化が
一25〜+85℃の範囲で±13%を越える値となる。
In addition, for example, Nb is added to the main component consisting of Ti02 and SrO.
Porcelain doped with
An δ is also good at 1% or less, but the temperature change in dielectric constant exceeds ±13% in the range of -25 to +85°C.

[発明の解決すべき問題点] 本発明は、前記従来の問題点を解決し、誘電率が大きく
、且つ温度特性が良好であり、誘電損失の小さなコンデ
ンサーを構成することのできるでラミック形成組成物、
及びこれを用いた半導体磁器基体と誘電体磁器基体並び
にコンデンサーを提供すべくなされたものである。
[Problems to be Solved by the Invention] The present invention solves the above-mentioned conventional problems and provides a ramic-forming composition that has a large dielectric constant, good temperature characteristics, and can constitute a capacitor with small dielectric loss. thing,
The present invention has also been made to provide semiconductor ceramic substrates, dielectric ceramic substrates, and capacitors using the same.

[問題点を解決するための手段] 本発明によって提供されるセラミック形成組成物(以下
1本発明のセラミック形膚組成物という)は、TiO2
50,20〜53.50モル%及び 5r049.80
〜48.50モル%から成る主成分iooモル部に対し
、 MnO2 3.0〜5.0モル部、並びにWO。
[Means for Solving the Problems] The ceramic forming composition provided by the present invention (hereinafter referred to as the ceramic skin composition of the present invention) is composed of TiO2
50,20-53.50 mol% and 5r049.80
-48.50 mol % of the main component ioo mol parts: 3.0-5.0 mol parts MnO2 and WO.

0.05〜0.30モル部が含有されていることを特徴
とするものである。
It is characterized by containing 0.05 to 0.30 mole parts.

本発明によって提供される半導体磁器基体(以下、本発
明の半導体磁器基体という)は、本発明のセラミック形
成組成物の焼成体から成ることを特徴とするものである
The semiconductor ceramic substrate provided by the present invention (hereinafter referred to as the semiconductor ceramic substrate of the present invention) is characterized by being composed of a fired body of the ceramic forming composition of the present invention.

本発明によって提供される誘電体磁器基体(以下1本発
明の誘電体磁器基体という)は、本発明のセラミック形
成組成物の焼成体から成る半導体磁器の結晶粒界に絶縁
層が存在していることを特徴とするものである。
The dielectric porcelain substrate provided by the present invention (hereinafter referred to as the dielectric porcelain substrate of the present invention) has an insulating layer at the grain boundaries of the semiconductor porcelain made of the fired body of the ceramic forming composition of the present invention. It is characterized by this.

本発明によって提供されるコンデンサー(以下、本発明
のコンデンサーといら)は、一対の電極と;該電極に挟
持された本発明のセラミック形成組成物の焼成体から成
る半導体磁器の結晶粒界に絶縁層が存在している誘電体
磁器と;を有していることを特徴とするものである。
The capacitor provided by the present invention (hereinafter referred to as the capacitor of the present invention) is insulated at the grain boundaries of a semiconductor porcelain comprising a pair of electrodes; and a fired body of the ceramic forming composition of the present invention sandwiched between the electrodes. It is characterized by having a layer of dielectric ceramic;

本発明のセラミック形成組成物には、前記TiQ 2 
 、 SrO、MnO2及びWO3以外の成分として5
i02が含有され得る。 SiO□の好適な含量は、前
記TiO□50.20〜53.50モル%及びSrO4
9,80〜48.50モル%から成る主成分100モル
部に対して0.01〜2.00モル部である。
The ceramic forming composition of the present invention includes the TiQ 2
, 5 as components other than SrO, MnO2 and WO3
i02 may be included. A suitable content of SiO□ is 50.20 to 53.50 mol% of the TiO□ and SrO4
The amount is 0.01 to 2.00 mol parts per 100 mol parts of the main component consisting of 9.80 to 48.50 mol%.

以下、本発明の構成について更に詳しく説明する。Hereinafter, the configuration of the present invention will be explained in more detail.

本発明のセラミック形成用組成物において、主成分であ
るTi02とSrOは、固溶体等の複合酸化物、TiO
□、 SrO夫々の単独酸化物、あるいはこれらの混合
物として組成物中に存在し得る。組成物中におけるTi
O2とSrOの量比を、Ti07 50゜20 〜53
.50モル%に対しSrO49.80〜46.5’3モ
ル%としたのは、Ti02の量が多くなると、即ちSr
Oの量が少なくなると、所望する誘電体磁器の誘電率が
低下し、誘電損失と誘電率の温度変化が大きくなり、し
かも磁器の絶縁抵抗が減少する。 Ti02の量が少な
くなると、即ちSrOの量が多くなると、所望する誘電
体磁器の誘電率が低下し、誘電率の温度変化が大きくな
る。本発明組成物中におけるTiO2とSrOの量比は
、これらの誘電率、誘電損失、誘電率の温度変化、磁器
の絶縁抵抗、半導体化能といった所望特性をバランス良
く最適に発現させるために決定される。
In the composition for forming ceramics of the present invention, the main components Ti02 and SrO are mixed with a composite oxide such as a solid solution, TiO2
□, SrO may be present in the composition as a single oxide, or as a mixture thereof. Ti in the composition
The amount ratio of O2 and SrO is Ti07 50°20 ~ 53
.. The reason for setting SrO49.80 to 46.5'3 mol% to 50 mol% is that as the amount of Ti02 increases, that is, SrO
When the amount of O decreases, the dielectric constant of the desired dielectric ceramic decreases, the dielectric loss and the temperature change in the dielectric constant increase, and the insulation resistance of the ceramic decreases. When the amount of Ti02 decreases, that is, when the amount of SrO increases, the dielectric constant of the desired dielectric ceramic decreases, and the temperature change in the dielectric constant increases. The quantitative ratio of TiO2 and SrO in the composition of the present invention is determined in order to optimally express desired properties such as dielectric constant, dielectric loss, temperature change in dielectric constant, insulation resistance of ceramics, and semiconductor ability in a well-balanced manner. Ru.

本発明のセラミック形成組成物においてMnO2は磁器
を形成するための焼結助剤の役割を有するものであり、
その使用量を前記↑10□及びSrOから成る主成分1
00モル部に対して3.0モル部以上に限定したのは、
MnO2が3.0モル部未満であると所望する誘電体磁
器の誘電率が低下すると共に誘電率の温度変化が大きく
なるからである。前記Ti02及びSrOから成る主成
分100モル部に対して5.0モル部以下に限定したの
は、MnO2が5.0モル部を越えると誘電損失の増加
が顕著となるためである。なお、このMnO7に関し、
本発明は、特開昭54−78498号に記載された磁器
組成物に比べて使用量が多いので粒界面の改良効果が大
きいなど、非常に良好である。
In the ceramic forming composition of the present invention, MnO2 has the role of a sintering aid for forming porcelain,
The amount used is the main component 1 consisting of the above ↑10□ and SrO.
00 mole parts is limited to 3.0 mole parts or more because
This is because if MnO2 is less than 3.0 mol parts, the dielectric constant of the desired dielectric ceramic will decrease and the temperature change in the dielectric constant will increase. The reason why the amount of MnO2 is limited to 5.0 mol parts or less per 100 mol parts of the main component consisting of Ti02 and SrO is that if MnO2 exceeds 5.0 mol parts, the increase in dielectric loss becomes significant. Regarding this MnO7,
The present invention is very good in that it uses a larger amount than the porcelain composition described in JP-A-54-78498, so the effect of improving grain boundaries is greater.

次に1本発明のセラミック形成組成物において、WO3
は磁器の半導体化に効果を有するものであり、その使用
量を前記TiO2及びSrOから成る主成分100モル
部に対して0.05モル部以上に限定したのは、X11
03が0.05モル部未満であると磁器の半導体化が不
十分となり、誘電率が低下するためである。前記Tin
 2及びSrOから成る主成分100モル部に対して0
.3モル部以下に限定したのは、誓03が0.3モル部
を越えると誘電率が低下し、誘電損失が大きくなるため
である。
Next, in one ceramic forming composition of the present invention, WO3
is effective in converting ceramics into semiconductors, and the reason why its usage was limited to 0.05 mol parts or more per 100 mol parts of the main components consisting of TiO2 and SrO was because X11
This is because if the amount of 03 is less than 0.05 mole part, the semiconducting of the ceramic will be insufficient and the dielectric constant will decrease. Said Tin
0 per 100 mol parts of the main component consisting of 2 and SrO
.. The reason why the content is limited to 3 parts by mole or less is because if O3 exceeds 0.3 parts by mole, the dielectric constant decreases and dielectric loss increases.

また、本発明のセラミック形成組成物に所望により加え
られる成分であるSiO□は半導体磁器の粒界面改良剤
としての作用を有するものである。
Further, SiO□, which is a component optionally added to the ceramic forming composition of the present invention, functions as a grain interface improving agent for semiconductor ceramics.

この粒界面改良剤とは、半導体磁器の表面に結晶粒界へ
の拡散成分となる添加剤を添布した後、空気等の酸化雰
囲気中で焼成し、結晶粒界に添加剤を拡散させる際に、
該添加剤の粒界面への拡散を均一にすることにより、所
望する誘電体磁器の誘電率の向ヒ、並びに特性の安定化
、誘電損失の低下に寄与する。但し、この様な効果を期
待して、SiO2を使用する場合に、SiO2の使用量
が前記Ti02及びSrOから成る主成分100モル部
に対し0.01モル部未満であると効果が十分に発現さ
れず、2.00モル部を越えると結晶粒界の絶縁層の厚
みが増し所望する誘電体磁器の誘電率が低下し、好まし
くない、 SiO2の使用量のより好ましくは、前記T
iO2及びSrOから成る主成分100モル部に対し0
.20〜2.00モル部である。
This grain interface improver is a process in which an additive that becomes a diffusion component to the grain boundaries is added to the surface of semiconductor porcelain, and then fired in an oxidizing atmosphere such as air to diffuse the additive into the grain boundaries. To,
Uniform diffusion of the additive to the grain interface contributes to increasing the dielectric constant of the desired dielectric ceramic, stabilizing the characteristics, and reducing dielectric loss. However, when using SiO2 in anticipation of such an effect, the effect can be fully expressed if the amount of SiO2 used is less than 0.01 mole part per 100 mole parts of the main component consisting of Ti02 and SrO. If the amount exceeds 2.00 mol parts, the thickness of the insulating layer at the grain boundary increases and the dielectric constant of the desired dielectric ceramic decreases, which is undesirable.
0 per 100 mol parts of the main component consisting of iO2 and SrO
.. It is 20 to 2.00 mole parts.

この様に構成される本発明のセラミツ形成組成物を用い
て本発明の半導体磁器基体を得るには、本発明のセラミ
ック形成組成物の成形体(圧粉体)を調製し、これを焼
成する方法が一般的である0例えば、TiO2、SrO
、MnO7 、 WO3及び所望に応じて加えられるS
iO2の各成分を含む原料粉末にポリビニルアルコール
などのバインダーを加え造粒を行ないプレス成形にて成
形体(圧粉体)を得る0次いで、この成形体からバイン
ダーを除くため酸化雰囲気中600−1200℃〒仮焼
する。この仮焼体を、次いで水素と窒素の混合ガス、水
素とアルゴンの混合ガス等の還元雰囲気あるいは窒素、
アルゴン等の中性雰囲気中、より好ましくは還元雰囲気
中、望ましくは1320℃〜1450℃で焼成して半導
体磁器基体を得る。
In order to obtain the semiconductor ceramic substrate of the present invention using the ceramic-forming composition of the present invention configured as described above, a molded body (green compact) of the ceramic-forming composition of the present invention is prepared and then fired. The method is common 0 e.g. TiO2, SrO
, MnO7, WO3 and optionally S
A binder such as polyvinyl alcohol is added to the raw material powder containing each component of iO2, granulation is performed, and a compact is obtained by press molding.Next, in order to remove the binder from this compact, it is heated at 600 to 1200 in an oxidizing atmosphere. ℃〒Calcinate. This calcined body is then heated in a reducing atmosphere such as a mixed gas of hydrogen and nitrogen, a mixed gas of hydrogen and argon, or nitrogen.
A semiconductor ceramic substrate is obtained by firing in a neutral atmosphere such as argon, more preferably in a reducing atmosphere, preferably at 1320°C to 1450°C.

また、例えば前述した方法により得られる本発明のセラ
ミック形成組成物を用いた半導体磁器の結晶粒界に絶縁
層を形成することにより1本発明の絶縁体磁器基体を得
ることができる。絶縁層の形成方法としては、結晶粒界
への拡散成分となる添加剤を半導体磁器基体の表面に塗
布して焼成する方法が挙げられる。焼成は酸化雰囲気中
で1100〜1300℃で行なうのが望ましい。
Furthermore, the insulating ceramic substrate of the present invention can be obtained by forming an insulating layer at the grain boundaries of semiconductor ceramic using the ceramic forming composition of the present invention obtained by the method described above, for example. An example of a method for forming the insulating layer is a method in which an additive that becomes a component diffusing into grain boundaries is applied to the surface of a semiconductor ceramic substrate and then fired. The firing is preferably carried out at 1100 to 1300°C in an oxidizing atmosphere.

添加剤としては、半導体磁器の結晶粒界に絶縁層を形成
するための従来公知の添加剤の何れをも使用することが
できる0例えば、鉄、コバルト、ビスマス、バナジウム
、クロム、鉛等の酸化物のほか、特に本発明において好
適に用いられるのは、酸化ホウ素及び酸化ナトリ゛ウム
であり、これらを用いた場合本発明の目的とする誘電体
磁器の誘電率、温度特性、並びに誘電損失の改良効果に
関して良好な結果が得られる。添加剤は、焼成の結果と
してこれら酸化物の形態をとればよく、半導体磁器表面
に供給するときは、例えば酸化物、窒化物、炭酸塩等の
形態でよい。
As the additive, any of the conventionally known additives for forming an insulating layer at the grain boundaries of semiconductor porcelain can be used. For example, oxidation of iron, cobalt, bismuth, vanadium, chromium, lead, etc. Boron oxide and sodium oxide are particularly preferably used in the present invention, and when these are used, the dielectric constant, temperature characteristics, and dielectric loss of the dielectric ceramic, which are the objects of the present invention, can be improved. Good results are obtained regarding the improvement effect. The additive may be in the form of these oxides as a result of firing, and when supplied to the surface of the semiconductor ceramic, it may be in the form of, for example, oxides, nitrides, carbonates, etc.

更に、例えば前述した方法により得られる本発明のセラ
ミック形成組成物を用いた誘電体磁器を一対の電極に挟
持することにより、本発明のコンデンサーを構成するこ
とができる。
Furthermore, the capacitor of the present invention can be constructed by sandwiching a dielectric ceramic using the ceramic forming composition of the present invention obtained by the method described above between a pair of electrodes.

第1図及び第2図には、本発明のコンデンサーの一例が
示されている。第1図はコンデンサーの模式的斜視図、
第2図は模式的切断面部分図である。
1 and 2 show an example of the capacitor of the present invention. Figure 1 is a schematic perspective view of a capacitor.
FIG. 2 is a schematic partial cross-sectional view.

図に示したコンデンサーは、例えば円板状の誘電体磁器
層12の上下の面に、夫々A見、Au。
The capacitor shown in the figure has, for example, a disc-shaped dielectric ceramic layer 12 with A and Au layers on the upper and lower surfaces, respectively.

Ag、Ni等で構成される電極11(図には、上面の電
極しか示されてない)が設けられて構成されている。誘
電体磁器層12は、半導体磁器の結晶粒22の多数を粒
界に形成された絶縁層21を介在した形で含有している
An electrode 11 (only the top electrode is shown in the figure) made of Ag, Ni, etc. is provided. The dielectric ceramic layer 12 contains a large number of semiconductor ceramic crystal grains 22 with an insulating layer 21 formed at the grain boundaries interposed therebetween.

結晶粒22の大きさは、要求される電気的特性と構成材
料の配合量、焼成条件等によって適宜決定されるが、通
常の場合、1糾m”100gm、好ましくは2g、m〜
80 gmとされるのが望ましい。
The size of the crystal grains 22 is appropriately determined depending on the required electrical properties, the amount of constituent materials, the firing conditions, etc., but in normal cases it is 100 gm, preferably 2 g, m~
Preferably, it is 80 gm.

[実施例] 以下に具体的実施例を示して、本発明を更に詳しく説明
する。
[Example] The present invention will be explained in more detail by showing specific examples below.

実施例1 第1表に示す組成比率の半導体磁器が得られるように、
Ti02  、 WO3、5iO1、SrO9MnO2
の各原料を秤取し、湿式ボールミルで12時間粉砕混合
を行なった。このものを乾燥後少量のポリビニルアルコ
ールをバインダーとして加え24〜80メツシユに造粒
し油圧プレスによって直径20mm、厚さ0.8■の円
板に成型した0次いで、この成形円板を大気中950℃
で1時間仮焼してバインダーを燃焼させた。これを室温
まで冷却後、水素10容量%、窒素90容量%からなる
還元雰囲気中で1400℃で4時間焼成した。
Example 1 In order to obtain semiconductor porcelain having the composition ratio shown in Table 1,
Ti02, WO3, 5iO1, SrO9MnO2
Each of the raw materials was weighed out and pulverized and mixed in a wet ball mill for 12 hours. After drying, a small amount of polyvinyl alcohol was added as a binder, and the mixture was granulated into 24 to 80 meshes, and then molded into a disc with a diameter of 20 mm and a thickness of 0.8 cm using a hydraulic press. ℃
The binder was burned by calcination for 1 hour. After cooling this to room temperature, it was fired at 1400° C. for 4 hours in a reducing atmosphere consisting of 10% by volume hydrogen and 90% by volume nitrogen.

こうして得られた半導体磁器に、重量比がエチルアルコ
ール:B2O3又はNa20 = l O: 1となる
懸濁液にドブ浸は後、1250℃、0.5時間、酸化雰
囲気にて焼成して結晶粒界に絶縁層を形成した。
The semiconductor porcelain thus obtained was immersed in a suspension of ethyl alcohol: B2O3 or Na20 = 1 O: 1 by weight, and then fired at 1250°C for 0.5 hours in an oxidizing atmosphere to form crystal grains. An insulating layer was formed in the field.

かくして得られた誘電体磁器の円板(試料NO。The thus obtained dielectric porcelain disk (sample no.

1〜25)の両面に銀ペーストを塗布し、850℃、3
0分焼付して電極を形成しコンデンサを作製した。
Apply silver paste to both sides of 1 to 25) and heat at 850℃ for 3
After baking for 0 minutes, electrodes were formed and a capacitor was manufactured.

こうして得られたコンデンサーを構成する誘電体磁器の
誘電率(ε)、誘電損失(tan δ)、絶縁抵抗(I
R)および誘電率の温度特性(25℃を基準とする一2
5℃、+85℃における温度変化率)を測定し、その結
果を第2表に示した。測定条件は25℃、周波数1 k
Hzである。なお表1.2中の木は本発明の範囲外にあ
る試料である。 第1表、第2表に示される通り本発明
のコンデンサー用のセラミック形成組成物を用いた誘電
体磁器は、従来のものと比較して、誘電率が75000
〜119000以上と高(tanδが1%以内であり絶
縁抵抗4000MΩ以上あり25℃基準の一25℃〜8
5℃の誘電率の温度変化率が±10%以内であり極めて
良好な特性を示した。
The dielectric constant (ε), dielectric loss (tan δ), and insulation resistance (I
R) and temperature characteristics of dielectric constant (25°C as standard)
The temperature change rate at 5° C. and +85° C.) was measured, and the results are shown in Table 2. Measurement conditions are 25℃, frequency 1k
It is Hz. Note that the trees in Table 1.2 are samples outside the scope of the present invention. As shown in Tables 1 and 2, the dielectric ceramic using the ceramic forming composition for capacitors of the present invention has a dielectric constant of 75,000 compared to the conventional one.
- High at 119,000 or more (tan δ is within 1%, insulation resistance is 4,000 MΩ or more, 25°C standard - 25°C - 8
The temperature change rate of dielectric constant at 5° C. was within ±10%, showing extremely good characteristics.

第   1   表 (*は本発明範囲外、以下の頁の表において同じ)第 
 1  表(つづき) 第  2  表 第  2  表(つづき) [発明の効果] 前記実施例から明らかな様に、本発明のセラミック形成
組成物によれば、誘電率(ε)が75,000以上と高
く、誘電損失(tanδ)1%以下、′絶縁抵抗400
0MΩ以上といった高特性にもかかわらず、誘電率の温
度変化が一25℃〜+85℃において±10%以内と良
好な高特性の誘電体磁器を構成することができる。
Table 1 (* indicates outside the scope of the present invention; the same applies to the tables on the following pages)
1 Table (Continued) Table 2 Table 2 (Continued) [Effects of the Invention] As is clear from the above examples, the ceramic forming composition of the present invention has a dielectric constant (ε) of 75,000 or more. High dielectric loss (tan δ) 1% or less, insulation resistance 400
In spite of the high characteristics of 0 MΩ or more, it is possible to construct a dielectric ceramic with excellent characteristics such that the temperature change in the dielectric constant is within ±10% from 125° C. to +85° C.

この様に、本発明のセラミック形成組成物、半導体磁器
基体、誘電体磁器基体は、高性能のコンデンサーを構成
し得る。
In this way, the ceramic forming composition, semiconductor ceramic substrate, and dielectric ceramic substrate of the present invention can constitute a high performance capacitor.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明のコンデンサーの一例を示した模式的斜
視図、第2図はその模式的切断面部分図である。 12・・・誘電体磁器 11・・・電極。 代理人 弁理士 山 下 穣 平 第1図 第2図
FIG. 1 is a schematic perspective view showing an example of the capacitor of the present invention, and FIG. 2 is a schematic cross-sectional partial view thereof. 12... Dielectric ceramic 11... Electrode. Agent Patent Attorney Johei Yamashita Figure 1 Figure 2

Claims (8)

【特許請求の範囲】[Claims] (1)TiO_250.20〜53.50モル%及びS
rO49.80〜46.50モル%から成る主成分10
0モル部に対し、MnO_23.0〜5.0モル部、並
びにWO_30.05〜0.30モル部が含有されてい
ることを特徴とするセラミック形成組成物。
(1) TiO_250.20-53.50 mol% and S
Main component 10 consisting of rO49.80-46.50 mol%
A ceramic-forming composition characterized in that 23.0 to 5.0 mole parts of MnO and 30.05 to 0.30 mole parts of WO are contained relative to 0 mole part.
(2)セラミック形成組成物の主成分100モル部に対
し、更にSiO_20.01〜2.00モル部が含有さ
れている特許請求の範囲第(1)項記載のセラミック形
成組成物。
(2) The ceramic-forming composition according to claim (1), further containing 20.01 to 2.00 mole parts of SiO with respect to 100 mole parts of the main component of the ceramic-forming composition.
(3)TiO_250.20〜53.50モル%及びS
rO49.80〜48.50モル%から成る主成分10
0モル部に対し、MnO_23.0〜5.0モル部、並
びにWO_30.05〜0.30部が含有されているセ
ラミック形成組成物の焼成体から成ることを特徴とする
半導体磁器基体。
(3) TiO_250.20-53.50 mol% and S
Main component 10 consisting of rO49.80-48.50 mol%
A semiconductor ceramic substrate comprising a fired body of a ceramic forming composition containing 23.0 to 5.0 mole parts of MnO and 30.05 to 0.30 parts of WO based on 0 mole part.
(4)セラミック形成組成物の主成分100モル部に対
し、更にSiO_20.01〜2.00モル部が含有さ
れている特許請求の範囲第(3)項記載の半導体磁器基
体。
(4) The semiconductor ceramic substrate according to claim (3), further containing 20.01 to 2.00 mole parts of SiO with respect to 100 mole parts of the main component of the ceramic forming composition.
(5)TiO_250.20〜53.50モル%及びS
rO49.80〜46.50モル%から成る主成分10
0モル部に対し、MnO_23.0〜5.0モル部、並
びにWO_30.05〜0.30モル部が含有されてい
るセラミック形成組成物の焼成体から成る半導体磁器の
結晶粒界に絶縁層が存在していることを特徴とする誘電
体磁器基体。
(5) TiO_250.20-53.50 mol% and S
Main component 10 consisting of rO49.80-46.50 mol%
An insulating layer is formed at the grain boundaries of a semiconductor ceramic made of a fired body of a ceramic forming composition containing 0 mole part of MnO_23.0 to 5.0 mole part and WO_30.05 to 0.30 mole part. A dielectric ceramic substrate characterized by the presence of a dielectric ceramic substrate.
(6)セラミック形成組成物の主成分100モル部に対
し、更にSiO_20.01〜2.00モル部が含有さ
れている特許請求の範囲第(5)項記載の誘電導体磁器
体。
(6) The dielectric conductor ceramic body according to claim (5), further containing 20.01 to 2.00 mole parts of SiO with respect to 100 mole parts of the main component of the ceramic forming composition.
(7)一対の電極と;該電極に挟持され、 TiO_250.20〜53.50モル%及びSrO4
3.80〜46.50モル%から成る主成分100モル
部に対し、MnO_23.0〜5.0モル部、並びにW
O_30.05〜0.30モル部が含有されているセラ
ミック形成組成物の焼成体から成る半導体磁器の結晶粒
界に絶縁層が存在している誘電体磁器と;を有している
ことを特徴とするコンデンサー。
(7) a pair of electrodes; sandwiched between the electrodes, TiO_250.20 to 53.50 mol% and SrO4
MnO_23.0 to 5.0 mol parts and W
A dielectric porcelain in which an insulating layer is present at the grain boundaries of a semiconductor porcelain made of a fired body of a ceramic-forming composition containing 0.05 to 0.30 mol parts of O_30. capacitor.
(8)セラミック形成組成物の主成分100モル部に対
し、更にSiO_20、01〜2.00モル部が含有さ
れている特許請求の範囲第(7)項記載のコンデンサー
(8) The capacitor according to claim (7), further comprising 01 to 2.00 mole parts of SiO_20, based on 100 mole parts of the main component of the ceramic forming composition.
JP61158466A 1986-07-05 1986-07-05 Ceramic forming composition and semiconductor and dielectric ceramic substrates and capacitors using the same Expired - Fee Related JP2576973B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61158466A JP2576973B2 (en) 1986-07-05 1986-07-05 Ceramic forming composition and semiconductor and dielectric ceramic substrates and capacitors using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61158466A JP2576973B2 (en) 1986-07-05 1986-07-05 Ceramic forming composition and semiconductor and dielectric ceramic substrates and capacitors using the same

Publications (2)

Publication Number Publication Date
JPS6316504A true JPS6316504A (en) 1988-01-23
JP2576973B2 JP2576973B2 (en) 1997-01-29

Family

ID=15672355

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61158466A Expired - Fee Related JP2576973B2 (en) 1986-07-05 1986-07-05 Ceramic forming composition and semiconductor and dielectric ceramic substrates and capacitors using the same

Country Status (1)

Country Link
JP (1) JP2576973B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01266260A (en) * 1988-04-18 1989-10-24 Toray Ind Inc Water-absorptive cloth and production thereof
JPH04241160A (en) * 1990-07-02 1992-08-28 Polyfelt Gmbh Method for producing needle span bond cloth

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5727001A (en) * 1980-07-25 1982-02-13 Tdk Electronics Co Ltd Voltage nonlinear resistance element
JPS632310A (en) * 1986-06-23 1988-01-07 和久 茂 Grain boundary insulating type semiconductor porcelain compound

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5727001A (en) * 1980-07-25 1982-02-13 Tdk Electronics Co Ltd Voltage nonlinear resistance element
JPS632310A (en) * 1986-06-23 1988-01-07 和久 茂 Grain boundary insulating type semiconductor porcelain compound

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01266260A (en) * 1988-04-18 1989-10-24 Toray Ind Inc Water-absorptive cloth and production thereof
JPH04241160A (en) * 1990-07-02 1992-08-28 Polyfelt Gmbh Method for producing needle span bond cloth

Also Published As

Publication number Publication date
JP2576973B2 (en) 1997-01-29

Similar Documents

Publication Publication Date Title
US4027209A (en) Ceramic capacitor having a silver doped dielectric of (Pb,La)(Zr,Ti)O3
JPS6257245B2 (en)
JPH0226775B2 (en)
JPH0552602B2 (en)
JPS6316504A (en) Ceramic forming composition and semiconductor ceramic substrate, dielectric ceramic substrate and capacitor using the same
JP2614228B2 (en) Ceramic forming composition, semiconductor porcelain base and dielectric porcelain base using the same, and capacitor
JPH11340090A (en) Manufacture of grain boundary insulated multilayer ceramic capacitor
JPS623569B2 (en)
JPH0557229B2 (en)
JPS6120084B2 (en)
JP3179830B2 (en) Dielectric porcelain composition
JP2956131B2 (en) Strontium titanate-based semiconductor porcelain and method of manufacturing the same
JPS6032344B2 (en) Grain boundary insulated semiconductor porcelain capacitor material
JP2605314B2 (en) Semiconductor porcelain material
JPS6224385B2 (en)
JPS6317256A (en) Ceramic forming composition and semiconductor substrate, dielectric ceramic substrate and capacitor using same
JPH0521266A (en) Method of manufacturing grain boundary insulated semiconductor porcelain matter
JPS6032752Y2 (en) composite parts
JPS61240622A (en) Semiconductor ceramic composition and semiconductor ceramicsand capacitor using the same
JP2853040B2 (en) Electrode paste for grain boundary insulated semiconductor ceramic capacitors
JPS58209807A (en) Dielectric porcelain composition
JPS6029211B2 (en) Manufacturing method of semiconductor ceramic capacitor
JP2984115B2 (en) Manufacturing method of grain boundary insulated semiconductor porcelain capacitor
JPH032814B2 (en)
JP2734888B2 (en) Method for producing semiconductor porcelain composition

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees