JPS6316450B2 - - Google Patents

Info

Publication number
JPS6316450B2
JPS6316450B2 JP57027365A JP2736582A JPS6316450B2 JP S6316450 B2 JPS6316450 B2 JP S6316450B2 JP 57027365 A JP57027365 A JP 57027365A JP 2736582 A JP2736582 A JP 2736582A JP S6316450 B2 JPS6316450 B2 JP S6316450B2
Authority
JP
Japan
Prior art keywords
sintered ore
temperature
layer
pallet frame
sintering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57027365A
Other languages
Japanese (ja)
Other versions
JPS58147525A (en
Inventor
Yoshio Shimozato
Shigeo Itano
Kimiaki Ootawa
Keizo Arai
Tomya Fukuda
Fumiaki Orimo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Nippon Steel Nisshin Co Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd, Nisshin Steel Co Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2736582A priority Critical patent/JPS58147525A/en
Publication of JPS58147525A publication Critical patent/JPS58147525A/en
Publication of JPS6316450B2 publication Critical patent/JPS6316450B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)

Description

【発明の詳細な説明】 本発明は、粉鉱石をドワイトロイト式焼結機で
連続的に焼結した後、該焼結鉱の顕熱を冷却機で
回収する方法に関し、特にドワイトロイト式焼結
機のグレードバーおよびパレツトフレームに移行
する焼結熱をも有効に回収する方法に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for continuously sintering fine ore in a Dwight-Royt sintering machine and then recovering the sensible heat of the sintered ore in a cooler. The present invention relates to a method for effectively recovering the sintering heat transferred to the grade bar and pallet frame of the sintering machine.

通常、焼結鉱の顕熱を回収する方法として、第
1図に示すような焼結機に付設された冷却機によ
り該顕熱を回収する方法が行われている。
Usually, as a method for recovering the sensible heat of sintered ore, a method is used in which the sensible heat is recovered using a cooler attached to a sintering machine as shown in FIG.

すなわち第1図において、左右両側のスプロケ
ツトS間に無限帯状に嵌装されたパレツトフレー
ムP列、その上部パレツトフレームP列の直下に
対向して配設されたウインドボツクスB列、これ
に接続した通風機構としてのダクトd、ダンパー
D、排ガスダクト22、集塵器2、ブロワ1、ス
タツク3、パレツトフレームPへ床敷鉱および焼
結用原料をそれぞれ供給するための床敷鉱供給機
4および原料供給機5、原料層表層への点火を行
う点火炉6、焼結反応を終えたパレツトフレーム
P内の内容物すなわち焼結鉱をパレツトフレーム
Pから取出す排鉱部7、パレツトフレームPから
排出された高温の焼結塊を破砕する熱間破砕機
8、シユート9、高温の焼結鉱を冷却するための
冷却用環状ホツパ10、該ホツパ10を保持する
回転テーブル11、該テーブル11の駆動機1
3、冷却空気供給フード12、冷却空気供給ブロ
ワ14、冷却空気ダクト15、高温空気収集用フ
ード16、ダクト17(以上9から17までの機
器を総称して冷却機Cという)、高温空気用集塵
器18、ボイラ19等から成る焼結機および冷却
機系統により次のような方法で焼結鉱顕熱が回収
される。
That is, in FIG. 1, there is a row of pallet frames P fitted in an endless strip between sprockets S on both the left and right sides, a row of wind boxes B arranged opposite to each other directly below the upper row of pallet frames P, and Duct d as a connected ventilation mechanism, damper D, exhaust gas duct 22, dust collector 2, blower 1, stack 3, bedding ore supply for supplying bedding ore and raw materials for sintering to pallet frame P, respectively. machine 4 and raw material feeder 5, an ignition furnace 6 that ignites the surface layer of the raw material layer, an ore discharge section 7 that takes out the contents of the pallet frame P after the sintering reaction, that is, sintered ore, from the pallet frame P. A hot crusher 8 for crushing the high temperature sintered lump discharged from the pallet frame P, a chute 9, an annular cooling hopper 10 for cooling the high temperature sintered ore, and a rotary table 11 for holding the hopper 10. , the driving machine 1 of the table 11
3. Cooling air supply hood 12, cooling air supply blower 14, cooling air duct 15, high temperature air collection hood 16, duct 17 (the above devices 9 to 17 are collectively referred to as cooler C), high temperature air collection Sensible heat of the sintered ore is recovered by the sintering machine and cooler system, which includes a duster 18, a boiler 19, etc., in the following manner.

先ず、床敷鉱供給機4および原料供給機5から
図面右方に移行するパレツトフレームP内に床敷
鉱およびその上に原料が連続的に供給され、点火
炉6直下を通過する際に原料層表面に着火され、
図面右方へ移行する間にウインドボツクスBおよ
びこれに接続された通風機構によりパレツトフレ
ームP上方より燃焼用および冷却用空気が吸引さ
れ下向の通風となつて原料の乾燥、焼結反応およ
び焼結塊の冷却を順次原料層の下方へ進行させて
パレツトフレームP内のグレードバー上の床敷鉱
層に到達し、さらにパレツトフレームPが図面右
方に移行するに伴い下向きの排風温度がほぼピー
クに到達した後、排鉱部7にて焼結鉱が排出され
る。
First, bedding ore and raw materials are continuously supplied from the bedding ore feeder 4 and the raw material feeder 5 into the pallet frame P moving to the right in the drawing, and as it passes directly under the ignition furnace 6. The surface of the raw material layer is ignited,
While moving to the right in the drawing, combustion and cooling air is sucked in from above the pallet frame P by the wind box B and the ventilation mechanism connected thereto, and becomes a downward draft to dry the raw materials, cause the sintering reaction, and The cooling of the sintered lump progresses sequentially below the raw material layer and reaches the bedding ore layer on the grade bar in the pallet frame P, and as the pallet frame P moves to the right in the drawing, the downward exhaust air is released. After the temperature almost reaches its peak, the sintered ore is discharged at the ore discharge section 7.

この間の温度状況を第2図に示す。 The temperature situation during this time is shown in Figure 2.

第2図において、T1はグレードバー面から110
mm位置の層内温度を、T2はグレードバー面から
75mm位置の層内温度を、T3はグレードバー面の
温度を、T4は下向き排風温度をそれぞれ示す。
すなわち、焼結反応の終期が近づくと排風温度
T4が上昇を始め、この温度がピークになる時期
を通常焼結反応が完全に終了すると見なし、この
時期〔第2図中イの時期〕に焼結鉱を排鉱する。
この時間にはグレードバー温度T3は約700℃にな
つている。また、この時期における焼結層内の温
度分布は、その一例を第3図に示すように、平均
約330℃(第3図は、層厚280mmの焼結鍋試験結果
であり、平均温度は実際のものより低くなつてい
る。実際には通常450〜600℃程度である)である
ので、排出された焼結鉱は冷却が施される。
In Figure 2, T 1 is 110 from the grade bar surface.
The temperature in the layer at the mm position is T 2 from the grade bar surface.
T 3 indicates the temperature in the layer at the 75mm position, T 3 indicates the temperature on the grade bar surface, and T 4 indicates the downward exhaust air temperature.
In other words, as the end of the sintering reaction approaches, the exhaust air temperature decreases.
The time when T 4 starts to rise and this temperature reaches its peak is usually regarded as the complete completion of the sintering reaction, and the sintered ore is discharged at this time [time A in Figure 2].
At this time, the grade bar temperature T 3 has reached approximately 700°C. In addition, the temperature distribution within the sintered layer during this period is an average of approximately 330°C, as shown in Figure 3. The temperature is lower than the actual temperature (in reality, it is usually about 450 to 600°C), so the discharged sintered ore is cooled.

次に、この冷却方法を第1図に戻つて説明す
る。排鉱部7にて排出された焼結鉱は、熱間破砕
機8にて適当な大きさに破砕され冷却し易くなつ
てシユート9から冷却機Cの環状ホツパ10に移
送される。該ホツパ10には常温の空気が冷却空
気ダクト15およびホツパ10と一体になつた冷
却空気供給フード12を介して供給され、ホツパ
10内の高温焼結鉱を順次冷却する。このホツパ
10は回転テーブル11に乗つて水平方向に回転
運動をしているため、ホツパ10の1ケ所に装入
された高温焼結鉱はホツパ10内に環状に配給さ
れ、かつ一定区間回転運動する間に冷却用空気に
より冷却され、ホツパ10の排出孔から排出され
る。
Next, this cooling method will be explained with reference to FIG. 1 again. The sintered ore discharged from the ore discharge section 7 is crushed into an appropriate size by a hot crusher 8 to be easily cooled, and then transferred from a chute 9 to an annular hopper 10 of a cooler C. Air at room temperature is supplied to the hopper 10 through a cooling air duct 15 and a cooling air supply hood 12 integrated with the hopper 10, and the high temperature sintered ore in the hopper 10 is sequentially cooled. Since this hopper 10 is mounted on a rotary table 11 and rotates in the horizontal direction, the high-temperature sintered ore charged into one location of the hopper 10 is distributed in a ring shape within the hopper 10 and rotates over a certain period. During this time, it is cooled by cooling air and discharged from the discharge hole of the hopper 10.

一方、冷却用空気は、ホツパ10の内側壁下部
から侵入してホツパ10内の焼結鉱充填層中を通
過する間に焼結鉱と熱交換し、高温の空気とな
り、高温空気収集用フード16で収集され、ダク
ト17および集塵器18を経てボイラ19に送ら
れ、低圧のスチームを製造すること等で熱回収が
行われる。
On the other hand, the cooling air enters from the lower part of the inner wall of the hopper 10 and exchanges heat with the sinter while passing through the sintered ore packed bed in the hopper 10, becoming high-temperature air. 16 and sent to a boiler 19 via a duct 17 and a dust collector 18, where heat is recovered by producing low-pressure steam or the like.

しかし、このような焼結鉱顕熱の回収方法で
は、冷却機Cから回収される高温空気の温度は約
200℃と比較的低いので、上記のように低圧スチ
ームを製造するにとどまつている。この理由は、
冷却機Cに装入される焼結鉱の温度が低いためで
あり、これは焼結鉱が焼結機から排鉱される迄
に、焼結層中で生じるコークスの燃焼熱が下向き
の通風に乗つて床敷鉱層、グレードバー、パレツ
トフレームを介して下方のウインドボツクスBに
相当量逃げてしまうからであり、第2図に示す排
風温度T4、グレード面温度T3の状況から明らか
である。
However, in this method of recovering sensible heat from sintered ore, the temperature of the high-temperature air recovered from cooler C is approximately
Since the temperature is relatively low at 200°C, it is limited to producing low-pressure steam as described above. The reason for this is
This is because the temperature of the sintered ore charged into cooler C is low, and this is because the combustion heat of coke generated in the sintered layer is absorbed by the downward draft until the sintered ore is discharged from the sintering machine. This is because a considerable amount of the waste escapes into the wind box B below via the bedding ore layer, grade bar, and pallet frame. Considering the conditions of exhaust air temperature T 4 and grade surface temperature T 3 shown in Figure 2, it is obvious.

このように、焼結鉱の排鉱時点で、特にグレー
ドバーが高温(700〜1000℃)になることは、冷
却機Cに移送できる焼結鉱顕熱の減少を来たす欠
点のみならず、高温のグレードバーおよびパレツ
トフレームが焼結機ストランド下側をUターンす
ることによる作業環境の悪化を招く欠点がある。
In this way, the high temperature (700 to 1000°C) of the grade bar at the time of sinter discharge is not only disadvantageous in that it reduces the sensible heat of the sintered ore that can be transferred to cooler C, but also The disadvantage is that the grade bar and pallet frame make a U-turn under the sintering machine strand, which worsens the working environment.

本発明は、このような欠点を解消するためにな
されたもので、その要旨とするところは、オフス
トランドクーリング型式のドワイトロイド式焼結
機において、焼結終期又は焼結完了後の焼結鉱塊
層の下方、すなわちパレツトフレーム下面のグレ
ードバー側から、その表層面に向つて空気を導入
することにより、グレードバーおよびパレツトフ
レームに移行していた熱を焼結鉱塊層中に再度移
させ、この状態の焼結鉱塊層を排出させ、冷却機
に移送させて顕熱を回収することにある。
The present invention has been made to eliminate these drawbacks, and its gist is that in an off-strand cooling type Dwight Lloyd sintering machine, sintered ore is removed at the end of sintering or after completion of sintering. By introducing air from below the lump layer, that is, from the grade bar side on the lower surface of the pallet frame, toward the surface layer, the heat that had been transferred to the grade bar and pallet frame is transferred back into the sintered ore lump layer. The sintered ore lump layer in this state is discharged and transferred to a cooler to recover sensible heat.

以下、図面を参照して本発明方法を詳細に説明
する。
Hereinafter, the method of the present invention will be explained in detail with reference to the drawings.

先ず、第2図により従来法と本発明法を比較し
て説明する。
First, the conventional method and the method of the present invention will be compared and explained with reference to FIG.

従来法においては、前述の通り、パレツトフレ
ーム内原料層表面に点火された後、焼結反応が次
第に原料層下方に進行し、原料層全体の焼結反応
が終期に近づくに伴つて下向きの排風温度T4
上昇を開始し、ピークになる付近を焼結反応完了
期と見なし、図中イの時期で焼結鉱塊層をパレツ
トフレームから排出している。この時期の焼結鉱
塊層内の温度分布は第3図に示した通りであり、
顕熱回収上余り好ましい高温度とはなつていな
い。
In the conventional method, as mentioned above, after the surface of the raw material layer in the pallet frame is ignited, the sintering reaction gradually progresses below the raw material layer, and as the sintering reaction of the entire raw material layer approaches its final stage, The time when the exhaust air temperature T 4 starts to rise and reaches its peak is regarded as the completion stage of the sintering reaction, and the sintered ore lump layer is discharged from the pallet frame at the time indicated by A in the figure. The temperature distribution within the sintered ore lump layer during this period is as shown in Figure 3.
The high temperature is not very desirable in terms of sensible heat recovery.

ところが、この時期でのグレードバーの温度
T3は、未だ約700℃と高温で、かつ該グレードバ
ーを支えているパレツトフレームも約300〜400℃
と高温となつており、この両者は重量も大きいた
め大きな顕熱を保有していることになる。そこ
で、本発明では、この大きな顕熱を焼結鉱塊層に
押戻して、焼結鉱塊層を従来法のものより高温に
し、大きな顕熱を保有させた状態で排出させ、冷
却機に移送させてこの大きな顕熱を回収するもの
である。
However, the temperature of the grade bar at this time
T3 is still at a high temperature of approximately 700℃, and the pallet frame supporting the grade bar is also at a temperature of approximately 300 to 400℃.
This means that both of them have a large amount of sensible heat due to their large weight. Therefore, in the present invention, this large sensible heat is pushed back into the sintered ore lump layer, making the sintered ore lump layer higher temperature than that of the conventional method, and discharged while retaining a large sensible heat, and the cooling machine This large amount of sensible heat is recovered by transporting it.

すなわち、本発明では、第2図において、従来
法での焼結鉱塊層排出期イの直後に、焼結鉱塊層
の下方すなわちパレツトフレーム下面のグレード
バー側から、その表層面に向つて空気を導入し、
ハの時期までこの空気導入を続行する。なお、イ
からロ迄の時期は、通風方向逆転に伴う下向き通
風区間と上向通風区間とのガス流通を抑制する関
係上、シールプレートを設ける必要がある時期を
示している。
That is, in the present invention, in FIG. 2, immediately after the discharge period A of the sintered ore lump layer in the conventional method, from below the sintered ore lump layer, that is, from the grade bar side on the lower surface of the pallet frame, toward the surface layer surface. and introduce air,
Continue this air introduction until the time of Ha. Note that the periods A to B indicate the times when it is necessary to provide a seal plate in order to suppress gas flow between the downward ventilation section and the upward ventilation section due to the reversal of the ventilation direction.

この空気導入により、グレードバーおよびパレ
ツトフレームの熱は、図に示すような温度経過
(図にはグレードバーの温度T3のみ示し、パレツ
トフレームの温度は示していない)をたどり、焼
結鉱塊層に移行し、本発明の排出時期ハにおいて
は第4図にその一例を示すような層内温度分布を
有した状態となる。この排出時期での焼結鉱塊層
の平均温度は約420℃(なお、第4図も、前記し
た第3図と同様、層厚さ280mmの焼結鍋試験結果
であり、平均温度は実際のものより低くなつてい
る)で、従来法の約330℃に比し20%余り高い状
態となつている。なお、第2図も第3,4図と同
様、層厚さ280mmでの焼結鍋試験に基づくもので、
実機ベースにおいては従来法および本発明法とも
に第2〜4図に示すデータより高くなるが、従来
法と本発明法との比較においては、排出時の焼結
鉱塊層の平均温度は本発明法の方が従来法よりも
20%余り常に高く、冷却機での回収熱量は大にな
り、かつ該回収熱は発電にまで利用できるものと
なる。
Due to this air introduction, the heat in the grade bar and pallet frame follows the temperature course shown in the figure (the figure only shows the temperature T3 of the grade bar, and the temperature of the pallet frame is not shown), and the temperature of the pallet frame is not shown. It moves to the ore lump layer, and at the discharge time C of the present invention, the temperature distribution within the layer is as shown in FIG. 4, an example of which is shown. The average temperature of the sintered ore lump layer at this discharge time is approximately 420℃ (Figure 4, like Figure 3 above, is the result of a sintering ladle test with a layer thickness of 280 mm, and the average temperature is actually ), which is about 20% higher than the conventional method's temperature of about 330°C. In addition, like Figures 3 and 4, Figure 2 is based on a sintering pot test with a layer thickness of 280 mm.
On an actual machine basis, both the conventional method and the method of the present invention are higher than the data shown in Figures 2 to 4, but when comparing the conventional method and the method of the present invention, the average temperature of the sintered ore lump layer during discharge is higher than that of the present invention. method is better than the conventional method.
It is always higher than 20%, and the amount of heat recovered by the cooler becomes large, and the recovered heat can even be used for power generation.

なお、本発明法において、焼結終了後に上向き
通風を実施する時期は、グレードバーおよびパレ
ツトフレーム温度が一定水準迄低下する間で充分
であり、それ以上上向き通風を施せば、上向き通
風に乗つて焼結鉱塊層内の熱が層外に逃散するの
で好ましくない。焼結鍋試験の結果からは、2分
間前後が望ましいといえる。
In addition, in the method of the present invention, the timing for performing upward ventilation after the completion of sintering is sufficient until the temperature of the grade bar and pallet frame has decreased to a certain level; This is not preferable because the heat within the sintered ore lump layer escapes to the outside of the layer. From the results of the sintering pot test, it can be said that around 2 minutes is desirable.

更に、第5図に示すように、本発明法によれば
焼結鉱成品としての還元粉化率が従来法に比し約
1%改善されるという派生効果をも奏し得る。な
お、還元粉化率とは、次工程で行われる高炉中で
のコークスから発生するCOによる焼結鉱の還元
の際に、焼結鉱が粉化する割合のことで、該粉化
率が高いと高炉内の通気性が悪化し操業不能にな
るので、焼結鉱の品質の評価指数となるものであ
る。ここでは、粒度10〜15mmの焼結鉱をCO―N2
混合ガスで還元率25%迄還元した後、ふるい分け
を行つて3mm以下の粉粒子の全体試料量に対する
比率で表わした。
Furthermore, as shown in FIG. 5, the method of the present invention has the additional effect that the reduction and powdering rate of the sintered ore product is improved by about 1% compared to the conventional method. Note that the reduction pulverization rate refers to the rate at which sinter is pulverized when sintered ore is reduced by CO generated from coke in a blast furnace in the next process, and the pulverization rate is If it is too high, the permeability inside the blast furnace will deteriorate, making it impossible to operate, so it serves as an evaluation index for the quality of sintered ore. Here, sintered ore with a particle size of 10 to 15 mm is used as CO- N2
After reduction with mixed gas to a reduction rate of 25%, sieving was performed and the ratio of powder particles of 3 mm or less to the total amount of sample was expressed.

第6図は、本発明法の一実施態様例を示す図
で、図中1〜22、d,B〜D,P,Sは第1図
のものと同一機能の機器を示し、本発明ではこの
従来の焼結機のパレツト群Pの直後にシールプレ
ート25を設け、更にシールプレート25の直後
に上向きの通風が可能なウインドボツクスBを設
ける。つまりパレツト群Pは、従来のものに比
し、シールプレート25と上向き通風区間部(2
ウインドボツクス分)が延長された形となる。
FIG. 6 is a diagram showing an example of an embodiment of the method of the present invention, in which 1 to 22, d, B to D, P, and S indicate equipment having the same functions as those in FIG. A seal plate 25 is provided immediately after the pallet group P of this conventional sintering machine, and a window box B that allows upward ventilation is further provided immediately after the seal plate 25. In other words, compared to the conventional pallet group P, the seal plate 25 and the upward ventilation section (2
Wind box) is extended.

23は空気を供給する上向き通風用ブロワ、2
4はダクトである。なお、シールプレート25は
下向き通風部と上向き通風部とのガス流通を抑制
するものであり、約1.5m長さで、シール効果
(ガス流通抑制効果)が得られる。
23 is an upward ventilation blower that supplies air;
4 is a duct. The seal plate 25 is for suppressing gas flow between the downward ventilation section and the upward ventilation section, and has a length of about 1.5 m, so that a sealing effect (gas flow suppression effect) can be obtained.

このような構成の装置において、上向き通風部
の通風条件として、通常の空気をグレート単位面
積当り3500Nm3/m2.hで、2ウインドボツクス
分上向きに流通させた後、冷却機Cに排出したと
ころ、焼結鉱成品の品質の指標となる還元粉化率
は36%で、従来のものの37%に比し1%改善さ
れ、また冷却機Cでの焼結鉱からの熱回収量も、
従来のものに比して20%も向上した。
In a device with such a configuration, the ventilation conditions for the upward ventilation section are such that normal air is supplied at a rate of 3500Nm 3 /m 2 per unit area of the grate. After flowing upward for 2 wind boxes at h, the sintered ore product was discharged into cooler C, and the reduction powdering rate, which is an indicator of the quality of the sintered ore product, was 36%, compared to 37% for the conventional product. % improved, and the amount of heat recovered from sintered ore in cooler C was also improved.
This is a 20% improvement over the previous model.

なお、冷却機Cとしては第1図と同様のパン型
の一パス式のものを示しているが、二パス式のも
のを用いることもできる。
Although the cooling device C is a bread-shaped one-pass type similar to that shown in FIG. 1, a two-pass type can also be used.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来法の説明図、第2図は従来法と本
発明法との比較を説明するための点火から排鉱に
至る迄の各部の温度状況を示す図表、第3図は従
来法における排鉱時期の焼結鉱塊層内温度分布を
示す図表、第4図は本発明法における排鉱時期の
焼結鉱塊層内温度分布を示す図表、第5図は従来
法および本発明法による成品焼結鉱の還元粉化率
の比較を示す図表、第6図は本発明法の一実施態
様例を示す図である。
Figure 1 is an explanatory diagram of the conventional method, Figure 2 is a chart showing the temperature status of each part from ignition to ore discharge to explain the comparison between the conventional method and the method of the present invention, and Figure 3 is a diagram of the conventional method. Figure 4 is a chart showing the temperature distribution in the sintered ore lump layer at the time of ore discharge in the method of the present invention, and Figure 5 is a chart showing the temperature distribution in the sintered ore lump layer at the time of ore discharge in the method of the present invention. FIG. 6 is a diagram showing a comparison of reduction and powdering rates of finished sintered ore produced by the method, and FIG. 6 is a diagram showing an example of an embodiment of the method of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 1 ドワイトロイト式焼結機において、パレツト
フレーム内の原料層表層に点火後、下向き通風を
与えて焼結反応を進行させ、その焼結反応の末期
過程以降に、パレツトフレーム内の内容物、グレ
ードバーおよびパレツトフレームに対して上向き
通風を与え、グレードバーおよびパレツトフレー
ムの熱をパレツトフレーム内の焼結鉱塊層に戻
し、該焼結鉱塊層を排出した後、冷却機に搬送
し、該焼結鉱塊層の顕熱を回収することを特徴と
する焼結鉱の顕熱回収方法。
1 In a Dwight-Royt type sintering machine, after igniting the surface layer of the raw material layer in the pallet frame, downward ventilation is applied to advance the sintering reaction, and after the final stage of the sintering reaction, the contents in the pallet frame are , provide upward ventilation to the grade bar and pallet frame, return the heat of the grade bar and pallet frame to the sintered ore lump layer in the pallet frame, and after discharging the sintered ore lump layer, a cooling machine A method for recovering sensible heat from sintered ore, comprising transporting the sintered ore to a layer of sintered ore and recovering sensible heat from the sintered ore lump layer.
JP2736582A 1982-02-24 1982-02-24 Method for recovering sensible heat from sintered ore Granted JPS58147525A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2736582A JPS58147525A (en) 1982-02-24 1982-02-24 Method for recovering sensible heat from sintered ore

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2736582A JPS58147525A (en) 1982-02-24 1982-02-24 Method for recovering sensible heat from sintered ore

Publications (2)

Publication Number Publication Date
JPS58147525A JPS58147525A (en) 1983-09-02
JPS6316450B2 true JPS6316450B2 (en) 1988-04-08

Family

ID=12219018

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2736582A Granted JPS58147525A (en) 1982-02-24 1982-02-24 Method for recovering sensible heat from sintered ore

Country Status (1)

Country Link
JP (1) JPS58147525A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55122833A (en) * 1979-03-13 1980-09-20 Kawasaki Steel Corp Sintering machine operating method
JPS5677345A (en) * 1979-11-28 1981-06-25 Mitsubishi Heavy Ind Ltd Fine ore sintering method and apparatus
JPS56105435A (en) * 1980-01-23 1981-08-21 Mitsubishi Heavy Ind Ltd Recovery of waste heat in sintering plant
JPS56122833A (en) * 1980-03-03 1981-09-26 Toray Ind Inc Modification of polyamide

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55122833A (en) * 1979-03-13 1980-09-20 Kawasaki Steel Corp Sintering machine operating method
JPS5677345A (en) * 1979-11-28 1981-06-25 Mitsubishi Heavy Ind Ltd Fine ore sintering method and apparatus
JPS56105435A (en) * 1980-01-23 1981-08-21 Mitsubishi Heavy Ind Ltd Recovery of waste heat in sintering plant
JPS56122833A (en) * 1980-03-03 1981-09-26 Toray Ind Inc Modification of polyamide

Also Published As

Publication number Publication date
JPS58147525A (en) 1983-09-02

Similar Documents

Publication Publication Date Title
US2750273A (en) Method of heat hardening iron ore pellets containing fuel
JP2009208081A (en) Regeneration apparatus for casting sand
CN108267013A (en) A kind of sinter cooling and afterheat utilizing system and hypoxemia complete alternation cooling means
CN206959601U (en) A kind of sintering deposit cooling and afterheat utilizing system
CA1118401A (en) Process and apparatus for recovering heat from finely to coarsely divided material having high temperature
JPS6316450B2 (en)
JP2000226618A (en) Method for recovering exhaust heat in cooler for sintered ore and cooler for sintered ore
JPS6316451B2 (en)
CN207113623U (en) Vertical sinter cooler with chute feeder
CN207247920U (en) Vertical sinter cooler with revolving top
JPS5925011B2 (en) Sinter cooling equipment
JPS62247035A (en) Blast furnace for sintered ore
JPS6231268B2 (en)
JPS624443B2 (en)
TWI823628B (en) Control method of sintering machine
JPS584918Y2 (en) Sintered ore cooling equipment
JPS61279636A (en) Charging apparatus of sintered ore cooling machine
SU840173A1 (en) Method of combination cooling of sinter
JP2622483B2 (en) Quicklime production method in sintering machine
JPH07258755A (en) Production of sintered ore
JPH07286216A (en) Sintering method by waste gas circulation and waste gas circulation equipment
JPS5920737B2 (en) Method for producing sintered ore
JP2005281810A (en) Method and apparatus for feeding sintered ore to moving trough type cooling machine
JPS6184333A (en) Vertical sintering machine
JPS6123727A (en) Method for supplying ore to cooling machine for sintered ore and device therefor