JPS58147525A - Method for recovering sensible heat from sintered ore - Google Patents

Method for recovering sensible heat from sintered ore

Info

Publication number
JPS58147525A
JPS58147525A JP2736582A JP2736582A JPS58147525A JP S58147525 A JPS58147525 A JP S58147525A JP 2736582 A JP2736582 A JP 2736582A JP 2736582 A JP2736582 A JP 2736582A JP S58147525 A JPS58147525 A JP S58147525A
Authority
JP
Japan
Prior art keywords
layer
sintered ore
sintering
ore
pallet frame
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2736582A
Other languages
Japanese (ja)
Other versions
JPS6316450B2 (en
Inventor
Yoshio Shimozato
下里 省夫
Shigeo Itano
板野 重夫
Kimiaki Otawa
大多和 公昭
Keizo Arai
荒井 敬三
Tomiya Fukuda
福田 富也
Fumiaki Orimo
下茂 文秋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Nippon Steel Nisshin Co Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd, Nisshin Steel Co Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2736582A priority Critical patent/JPS58147525A/en
Publication of JPS58147525A publication Critical patent/JPS58147525A/en
Publication of JPS6316450B2 publication Critical patent/JPS6316450B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)

Abstract

PURPOSE:To recover a large quantity of sensible heat from a layer of discharged lump sintered ore by introducing air into a layer of lump sintered ore from the bottom toward the surface layer at the end of sintering or after completing sintering to return heat transferred to grate bars and a pallet frame to the ore layer. CONSTITUTION:The surface of a starting material layer in the pallet frame P of a Dwight-Lloyd type sintering machine is fired with the firing furnace 6, and the sintering reaction of the starting material layer is allowed to proceed by downward draft with wind boxes B and a draft mechanism connected to the boxes B. At the end of the sintering or after completing the sintering, air is introduced into a layer of lump sintered ore from the bottom, that is, from the side of grate bars under the frame P toward the surface layer to return heat transferred to the bars and the frame P to the ore layer. The sintered ore is then discharged from the ore discharging part 7, crushed with a crusher 8, and conveyed to a cooler G to recover sensible heat from the sintered ore.

Description

【発明の詳細な説明】 本発明rユ、粉鉱石をドワイトロイト式焼結機で連続的
に焼結した後、該焼結鉱の顕熱を冷却機で回収する方法
に関し、特にドワイトロイト式焼結機のグレードバーお
よびパレットフレームに移行する焼結熱tも有効に回収
する方法に関すaものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of continuously sintering fine ore in a Dwight-Royt type sintering machine and then recovering the sensible heat of the sintered ore with a cooler. This article also relates to a method for effectively recovering the sintering heat transferred to the grade bar and pallet frame of the sintering machine.

通常、焼結鉱の顕熱を回収する方法として、嬉1図に示
すような焼結機rζ付設された冷却機に↓り該顕熱を回
収する方法が行われている。
Normally, the sensible heat of sintered ore is recovered by using a cooler attached to the sintering machine rζ as shown in Figure 1.

すなわち第1図において、左右両側のスブロケツ)8間
に無限帯状に嵌装されたパレットフレーム1列、その上
部パレットフレームP 列の直下に対向して配設さtし
たウィンドボッ22B列、とれに接続した通風機構とし
てのダクトd、ダンパーD1排ガスダクト22、集塵′
a2、ブロワ1、スタック3、パレットフレームPへ床
敷鉱および焼結用原料をそれぞれ供給するための床敷鉱
供給機4および原料供給機5、原料層表層への点火を行
う点火炉6、焼結反応分終えたパレットフレームP内の
内容物すなわち焼結鉱ヲパレットフレームPから取出す
排鉱部7、パレットフレームPから排出された高温の焼
結塊を破砕する熱風破砕機8、シュート9、高温の焼結
鉱を冷却するための冷却用環状ホッパ10、該ホッパ1
0を保持する回転テーブル11、該テーブル11の駆動
機13、冷却空気供8/1フード12、冷却空気供給プ
ロワ14、冷却″′と気ダクト15、高温空気収集用7
−ド16、ダクト17(以上9から17筐での機器を総
称して冷却%cという)、高温空気用集塵器18、ボイ
ラ19等から取る焼結機および冷却機系統VCより次の
ような方法で焼結鉱顕熱が回収される。。
In other words, in Fig. 1, there is a row of pallet frames fitted in an endless strip between the right and left sub-blocks 8, and a row of window boxes 22B arranged opposite to the upper pallet frame row P, connected to the slots. duct d as a ventilation mechanism, damper D1 exhaust gas duct 22, dust collection'
a2, blower 1, stack 3, bedding ore feeder 4 and raw material feeder 5 for supplying bedding ore and sintering raw material to pallet frame P, respectively; ignition furnace 6 for igniting the surface layer of the raw material layer; An ore discharge section 7 takes out the contents of the pallet frame P after the sintering reaction, that is, the sintered ore, from the pallet frame P, a hot air crusher 8 and a chute 9 that crush the high-temperature sintered lumps discharged from the pallet frame P. , a cooling annular hopper 10 for cooling high-temperature sintered ore, and the hopper 1
a rotary table 11 holding 0, a drive machine 13 for the table 11, a cooling air supply 8/1 hood 12, a cooling air supply blower 14, a cooling air duct 15, a hot air collection 7
- From the sintering machine and cooling system VC taken from the door 16, duct 17 (the equipment in the casings 9 to 17 are collectively referred to as cooling %c), the high-temperature air dust collector 18, the boiler 19, etc. The sensible heat of the sintered ore is recovered in a suitable manner. .

先ず、床敷鉱供給機4および原料供給機5から図面右方
に移行するパレットフレーム層内に床敷鉱およびその上
に原料が連続的に供給され、点火炉6面下を通過する際
に原料層表面に着火され、図面右方へ移行する間にウィ
ンドボックスBおよびこれに接続された通風機構により
パレットフレームP上方より燃焼用および冷却用空気が
吸引さn下向の通風となって原料の乾燥、焼結反応およ
び焼結塊の冷却を順次原料層の下りへ進竹させてパレッ
トフレーム層内のグレードバー土の床敷鉱層に到達し、
さらにパレットフレームPが図面右方に移行するに伴い
下向きのIJ目虱温川用ほぼビークに到達した後、排鉱
部7にて焼結鉱が排出される。
First, the bedding ore and raw materials are continuously supplied from the bedding ore feeder 4 and the raw material feeder 5 into the pallet frame layer moving to the right in the drawing, and as it passes under the ignition furnace 6. The surface of the raw material layer is ignited, and while it moves to the right in the drawing, combustion and cooling air is sucked in from above the pallet frame P by the wind box B and the ventilation mechanism connected to it, and the raw material is ventilated downward. The drying, sintering reaction and cooling of the sintered mass are carried out sequentially down the raw material layer to reach the bedding layer of grade bar soil in the pallet frame layer.
Further, as the pallet frame P moves to the right in the drawing, the sintered ore is discharged at the ore discharge section 7 after reaching the downward IJ beak.

この間の温度状況をき・、2図に示す。The temperature situation during this time is shown in Figure 2.

第2図において、TIはグレードバー面から110+a
+位置の層内温度t、Tzはグレードバー面から75.
位置の層内温度を、T3はグレードバー面の温度を、T
4は下向き排風温度をそtLぞれ示す。すなわち、焼結
反応の終期が近づくと排風温度T4が上昇を始め、この
温度がピークになる時期を通常焼結反応が完全に終了す
ると兄なし、この時期〔第2図中(イ)の時期〕に焼結
鉱を排鉱する。この時間にはグレードバー温k T3は
約700℃になっている。また、この時期における焼結
層内の温度分布は、その−例を第5図に示すように、平
均約650℃(第5図Fよ、層厚280+mの焼結銅試
験結果であり、NTf−均温度は実際のものより低くな
っている。実際九は通常450〜600℃程度である)
であるので、排出された焼結鉱は冷却が施される。
In Figure 2, TI is 110+a from the grade bar surface.
The layer temperature t, Tz at the + position is 75% from the grade bar surface.
T3 is the temperature in the layer at the position, T3 is the temperature of the grade bar surface, T
4 indicates the temperature of the downward exhaust air. In other words, as the end of the sintering reaction approaches, the exhaust air temperature T4 begins to rise, and the period at which this temperature reaches its peak is usually reached when the sintering reaction is completely completed; The sintered ore is discharged during the following period. During this time, the grade bar temperature kT3 is approximately 700°C. In addition, the temperature distribution within the sintered layer during this period is, as shown in Figure 5, an average of approximately 650°C (Figure 5F is the result of a sintered copper test with a layer thickness of 280+ m, and NTf -The average temperature is lower than the actual temperature.In reality, it is usually around 450-600℃)
Therefore, the discharged sintered ore is cooled.

次に、この冷却方法を第1図rこ戻って説明する。排鉱
部7にて排出された焼結鉱は、熱間破砕機8にて適当な
大きさに破砕され冷却し易くなって/ニート9から冷却
@Cの遠吠ホッパ10に移送される。該ホッパ1oには
常温の空気が冷却空気ダクト15およびホッパ1oと一
体になった冷却空気供給フード12を介して供給され、
ホッパ1o内の高温焼結鉱を順次冷却する。このホッパ
1oは回転テーブル11に乗って水子方向に回転運動を
しているため、ホッパ1001ケ所に装入さnた高温焼
結鉱はホッパ10内に環状に配給され、かつ一定区間回
転運動する間に冷却用空気によシ冷却され、ホッパ10
の排出孔から排出される。
Next, this cooling method will be explained by returning to FIG. The sintered ore discharged from the ore discharge section 7 is crushed into an appropriate size by a hot crusher 8 to be easily cooled, and then transferred from the neat 9 to the howling hopper 10 for cooling@C. Room temperature air is supplied to the hopper 1o via a cooling air duct 15 and a cooling air supply hood 12 integrated with the hopper 1o,
The high temperature sintered ore in the hopper 1o is sequentially cooled. Since this hopper 1o is mounted on a rotary table 11 and rotates in the water direction, the high-temperature sintered ore charged into the hopper 1001 places is distributed in a ring shape within the hopper 10, and rotates over a certain period. During this time, it is cooled by cooling air, and the hopper 10
It is discharged from the discharge hole.

一方、冷却用字句は、ホッパ1oの内側壁下部から侵入
してホッパ10内の焼結鉱充填層中を通過する間に焼結
鉱と熱交換し、高温の空気となり、高温空勿収隼用フー
ド16で収集され、ダクト17および集頭器18を経て
ボイラ19にj″へられ、低I[のスチームを製造する
こと等で熱回収が行われる。
On the other hand, the cooling token enters from the lower part of the inner wall of the hopper 1o, exchanges heat with the sintered ore while passing through the sintered ore packed bed in the hopper 10, becomes high-temperature air, and becomes hot air. The heat is collected in the hood 16, passed through the duct 17 and the collector 18 to the boiler 19, and is recovered by producing low I steam.

しかし、このような焼結鉱顕熱の回収方法では、冷却機
Cから回収される島温空気の温用は約200℃と比較的
低いので、−F記のように低圧スチームを製造するにと
どまっている。この理由は、冷却機Cに装入される焼結
鉱の温度が低いためであり、これは焼結鉱が焼結機から
排鉱される迄に、焼結層中で生じるコークスの燃焼熱が
下向きの通風に乗って床敷鉱層、グレードバー、パレッ
トフレームを介して1力のウィンドボックスBに相当量
逃げてし筐うからであり、第2図に示す排風温度T4、
グレード面温度T3の状況から明らかである。
However, in this method of recovering sintered ore sensible heat, the temperature of the island-heated air recovered from cooler C is relatively low at about 200℃, so it is not suitable for producing low-pressure steam as in -F. It's staying. The reason for this is that the temperature of the sintered ore charged into cooler C is low, and this is because the combustion heat of coke generated in the sintered layer is This is because a considerable amount of air escapes to the single-force wind box B through the bedding layer, grade bar, and pallet frame due to the downward draft, and the exhaust air temperature T4 shown in Figure 2,
This is clear from the condition of the grade surface temperature T3.

このように、焼結鉱の排鉱時点で、特にグレードバーが
高温(700〜1000℃)になることは、冷却機Cに
移送できる焼結鉱顕熱の減少を来たす欠点のみならず、
高温のグレードバーおよびパレットフレームが焼結機ス
トランド下側をUターンすることによる作業環境の悪化
を招く欠点がある。
As described above, the high temperature (700 to 1000°C) of the grade bar at the time of discharge of sintered ore not only has the disadvantage of reducing the sensible heat of the sintered ore that can be transferred to cooler C, but also
There is a drawback that the high temperature grade bar and pallet frame make a U-turn under the sintering machine strand, resulting in a deterioration of the working environment.

本発明は、このような欠点を解消するためになされたも
ので、その要旨とするところは、オノストランドクーリ
ング型式のドヮイトロイド式焼結機にお・いて、・焼結
終期又は焼結完了後の焼結鉱塊層のF方、すなわちパレ
ットフレーム下面のグレードバー側から、その表層面に
向って空気を導入することにょシ、グレードバーおよび
パレットフレームに移行していた熱を焼結鉱塊層中に再
度移させ、この状態の焼結鉱塊層を排出させ、冷却機に
移送させて顕熱を回収することにある。
The present invention was made in order to eliminate such drawbacks, and its gist is that, in an onostrand cooling type dotroid sintering machine, By introducing air from the F side of the sintered ore lump layer, that is, from the grade bar side on the lower surface of the pallet frame, toward the surface layer, the heat that has been transferred to the grade bar and pallet frame is transferred to the sintered ore lump layer. The sintered ore lump layer in this state is discharged and transferred to a cooler to recover sensible heat.

以下、図面を参照して本発明方法を詳細に説明する。Hereinafter, the method of the present invention will be explained in detail with reference to the drawings.

先ず、第2図により従来法と本発明法を比較して説明す
る。
First, the conventional method and the method of the present invention will be compared and explained with reference to FIG.

従来法においては、前述の通り、パレットフレーム内原
料層表面に点火された後、焼結反応が次第に原料tvt
iT方に進行し、原料層全体の焼結反応が終期に近づく
に伴って下向きの排風温度T4が上昇を開始し、ピーク
になる付近を焼結反応完−rル1と見なし、図中(()
の時期で焼結鉱塊層をパレットフレームから排出してい
る。この時期の・焼結鉱塊層内の温度分布は第3図に小
した通りであり、顕熱回収上余り好ましい高温石とはな
っていない。
In the conventional method, as mentioned above, after the surface of the raw material layer in the pallet frame is ignited, the sintering reaction gradually increases the raw material tvt.
As the sintering reaction of the entire raw material layer approaches the final stage, the downward exhaust air temperature T4 starts to rise, and the vicinity of the peak is regarded as the completion of the sintering reaction, (()
The sintered ore lump layer is discharged from the pallet frame at this time. The temperature distribution within the sintered ore lump layer at this time is as shown in Figure 3, and it is not a very desirable high-temperature stone in terms of sensible heat recovery.

ところが、この時期でのグレードバーのrAn I’I
T3は、未だ約701]Cと高温で、かつ該グレートバ
ーを支えているパレットフレームも約300〜400℃
と高温となっており、この両名1よ重量も大きいため大
きな顕熱を保壱していることになる。そこで、本発明で
は、この大きな顕熱を焼結鉱塊層に押戻して、焼結鉱塊
層と従来法のものよシ高温にし、大きな顕熱に保有させ
た状態で排出達せ、冷却機に移送させてこの大きな顕熱
を回収するものである。
However, at this time, the grade bar rAn I'I
T3 is still at a high temperature of approximately 701]C, and the pallet frame supporting the grate bar is also at a temperature of approximately 300 to 400C.
The temperature is high, and since both of them are heavier, they are able to retain a large amount of sensible heat. Therefore, in the present invention, this large sensible heat is pushed back into the sintered ore lump layer, making it higher than the sintered ore lump layer and the conventional method, and discharged while retaining the large sensible heat. This large amount of sensible heat is recovered by transferring it to the

すなわち、本発明では、卯、2図において、従来法での
焼結鉱塊層排出期(イ)の直後に、焼結鉱塊層の下方す
なわちパレットフレーム下i/+1のグレードバー側か
ら、その表層面に向って空気を導入し、(ハ)の時期ま
でこの空気導入を続行する−なお、←)から(ロ)迄の
時期に、通風方向逆転に伴う下向き通風区間と上向通風
区間とのガス流通を抑制する関係上、ンールプレートを
設ける必要がある11.7川(2示している。
That is, in the present invention, in Figure 2, immediately after the sintered ore lump layer discharge period (a) in the conventional method, from below the sintered ore lump layer, that is, from the grade bar side of the lower pallet frame i/+1, Air is introduced toward the surface layer, and this air introduction is continued until the period (c).In addition, from ←) to (b), there is a downward ventilation section and an upward ventilation section due to the reversal of the ventilation direction. 11.7 River (2 shown) where it is necessary to install a chamber plate in order to suppress gas flow with the pipe.

この空気導入により、グレードバーおよびパレットフレ
ームの熱は、図rこ示すよう々温度経堝(図にはグレー
ドバーの温度T3のみ示し、パレットフレームの温度は
示していない)をたどり、焼結鉱塊層に移行し、本発明
の排出時期ぐ→においては第4図にその一例を示すよう
な層内温度分布を4した状態となる。この排出時期での
焼結鉱塊層の平均温度は約420℃(なお、第4Mも、
前記した第6図と同様、層厚さ280馴の焼結銅試験結
果であり、平均温度は実際のものより低くなっている)
で、従来法の約360℃に比し20係余り高い状態とな
っている。なお、第21Q1も身・6.4図と同様、層
厚さ280刺での1應結〜・”ろ試験に基づくもので、
実機ベースt(おいてはヤバー来法および本発明法とも
に第2〜4図に示すデータより高くなるが、従来法と本
分117J ?l:、との比較においては、排出時の焼
結鉱塊1−の平均l晶度は本発明法の方が従来法よりも
20%余り常に高く、冷詔1機での回収熱城に友になり
、かつ該回収熱は発電にまで利用でさるものとなる。
Due to this air introduction, the heat in the grade bar and pallet frame follows the temperature curve as shown in Figure R (the figure shows only the temperature T3 of the grade bar, and the temperature of the pallet frame is not shown), and the sintered ore is heated. The layer shifts to a lump layer, and at the discharge stage of the present invention, the temperature distribution within the layer becomes 4, an example of which is shown in FIG. The average temperature of the sintered ore lump layer at this discharge period is approximately 420°C (note that the 4th M also
(Similar to Figure 6 above, this is the result of a sintered copper test with a layer thickness of 280 mm, and the average temperature is lower than the actual one.)
This is about 20 times higher than the conventional method's temperature of about 360°C. In addition, the 21Q1 is also based on the 1 kyu test with a layer thickness of 280 pieces, similar to Figure 6.4.
Actual machine base t (both Yabar's conventional method and the present invention method are higher than the data shown in Figures 2 to 4, but when comparing the conventional method and the main 117J?l:, the sintered ore at the time of discharge is The average crystallinity of lump 1- is always 20% higher in the method of the present invention than in the conventional method, which facilitates the recovery of heat using only one Reicho, and the recovered heat can even be used for power generation. Become something.

なお、本発明法において、焼結終了後罠上向き通風を実
施する時期は、グレードバーおよびパレットフレーム温
度が一定水準迄低下する間で充分であり、それ以上上向
き通風を施せば、上向き通風に乗って焼結鉱塊層内の熱
が層外FC逃散するので好ましくない。焼結鋼試験の結
果からは、2分間前後が望ましいといえる。
In addition, in the method of the present invention, it is sufficient to carry out trap upward ventilation after the completion of sintering until the temperature of the grade bar and pallet frame has decreased to a certain level; This is not preferable because the heat within the sintered ore lump layer escapes from the FC layer. From the results of the sintered steel test, it can be said that around 2 minutes is desirable.

更に、第5図に示すように、本発明法によれば焼結鉱成
品としての還元粉化率が従来法に比し約1チ改善される
という派生効果をも奏し得る。なお、還元粉化率とは、
次工程で行わILる高炉中でのコークスから発生するC
Oによる焼結鉱の還元の際に、焼結鉱が粉化する割合の
ことで、該粉化率が高いと高炉内の通気性が悪化し操業
不能になるので、焼結鉱の品質の評価指数となるもので
ある。ここでは、粒[10〜15、の焼結鉱をC0−5
2混合カスで還凡率25チ迄逮元した後、ふるい分けを
行って5Wm以ドの粉粒イの全体ゾ料lJfに対する比
率で表わした。
Furthermore, as shown in FIG. 5, the method of the present invention has the additional effect that the reduction and pulverization rate of the sintered ore product is improved by about 1 inch compared to the conventional method. In addition, reduction powderization rate is
C generated from coke in blast furnace during IL in the next process
This refers to the rate at which sinter is pulverized when it is reduced by O. If the pulverization rate is high, the permeability inside the blast furnace will deteriorate and operation will become impossible, so it is important to determine the quality of sintered ore. This serves as an evaluation index. Here, the sintered ore with grains [10 to 15] is C0-5
After sieving to a reduction ratio of 25 with the mixed waste, the powder was sieved and expressed as the ratio of powder grains of 5 Wm or more to the total sol material lJf.

第6図に、本発明法の一実施態様例を示す図で、図中1
〜22、d、B−D、P、Sは第1図のものと同一機能
の機器を示し、23は空気を供給する上向き通風用プロ
ワ、24はダクト、25は下向き連層と上向き通風との
ガス流通を抑制するためのシールプレートである。なお
、冷却機Cとしては第1図と同様のパン型の一パス式の
ものを示しているが、ニパス式のものを用いることもで
きる。
FIG. 6 is a diagram showing an example of an embodiment of the method of the present invention.
~22, d, B-D, P, and S indicate equipment with the same functions as those in Figure 1, 23 is an upward ventilation blower that supplies air, 24 is a duct, and 25 is a downward continuous layer and an upward ventilation. This is a seal plate to suppress gas flow. Although the cooling device C is shown as a bread-type one-pass type cooler similar to that shown in FIG. 1, a two-pass type cooler can also be used.

【図面の簡単な説明】[Brief explanation of drawings]

鈎、1図は従来法の説、四回、鍬2図は従来法と本発明
法との比較を説明するための点火から排鉱に至る迄の各
部の温度状況を示す図表、第3図は従来法における排鉱
時期の焼結鉱塊層内温度分布を示す図表、第4図は本発
明法にお&−Jる琲鉱時ル]の焼結鉱塊層内温度分布を
示す図表、第5図は従来法および本発明法による成品焼
結鉱の還元粉化率の比較を示す1表、第6図は本発明法
の一実施態様例を示す図である。 復代理人  内 1)  明 復代理人  萩 原 介 − 馬3図 尾4図 層内温度(°C) 第1頁の続き 0発 明 者 下茂文秋 呉市昭和町11番1号日新製鋼株 式会社呉製鉄所内 0出 願 人 日新製鋼株式会社 東京都千代田区丸の内3丁目4 番1号
Hook, Figure 1 is the explanation of the conventional method, Figure 4, Hoe Figure 2 is a chart showing the temperature situation of each part from ignition to ore discharge to explain the comparison between the conventional method and the method of the present invention, Figure 3 4 is a chart showing the temperature distribution in the sintered ore lump layer at the time of discharge in the conventional method, and FIG. 4 is a chart showing the temperature distribution in the sintered ore lump layer in the method of the invention. , FIG. 5 is a table showing a comparison of the reduction pulverization rate of finished sintered ore by the conventional method and the method of the present invention, and FIG. 6 is a diagram showing an example of an embodiment of the method of the present invention. Sub-agents 1) Meifuku agent Suke Hagiwara - Uma 3 Figure 4 Temperature in the layer (°C) Continued from page 1 0 Inventor Author: Nisshin Steel Co., Ltd., 11-1 Showa-cho, Shimoshige Bunshu, Kure City Kure Works Co., Ltd. 0 applicants Nisshin Steel Co., Ltd. 3-4-1 Marunouchi, Chiyoda-ku, Tokyo

Claims (1)

【特許請求の範囲】[Claims] ドワイトロイト式焼結機において、′パレットフレーム
内の原料層表層に点火後、下向き通風f1:辱えて焼結
反応を進行させ、その焼結反応の未聞過程以降に、パレ
ットフレーム内の内容物、グレードバーおよびパレット
フレームに対して一ヒ向き通風を与え、グレードバーお
よびパレットフレームの熱をパレットフレーム内の焼結
鉱塊rfiに戻し、該焼結鉱塊層を排出した後、冷却機
に搬送し、該焼結鉱塊層の顕熱を回収すること2特徴と
する焼結鉱の顕然回収方法。
In the Dwight-Royt type sintering machine, after the surface layer of the raw material layer in the pallet frame is ignited, downward ventilation f1: the sintering reaction proceeds, and after the unknown process of the sintering reaction, the contents in the pallet frame are , provide ventilation in one direction to the grade bar and pallet frame, return the heat of the grade bar and pallet frame to the sintered ore lump rfi in the pallet frame, and after discharging the sintered ore lump layer, put it into the cooler. A method for the sensible recovery of sintered ore, which comprises the following two features: transporting the sintered ore and recovering the sensible heat of the sintered ore lump layer.
JP2736582A 1982-02-24 1982-02-24 Method for recovering sensible heat from sintered ore Granted JPS58147525A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2736582A JPS58147525A (en) 1982-02-24 1982-02-24 Method for recovering sensible heat from sintered ore

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2736582A JPS58147525A (en) 1982-02-24 1982-02-24 Method for recovering sensible heat from sintered ore

Publications (2)

Publication Number Publication Date
JPS58147525A true JPS58147525A (en) 1983-09-02
JPS6316450B2 JPS6316450B2 (en) 1988-04-08

Family

ID=12219018

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2736582A Granted JPS58147525A (en) 1982-02-24 1982-02-24 Method for recovering sensible heat from sintered ore

Country Status (1)

Country Link
JP (1) JPS58147525A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55122833A (en) * 1979-03-13 1980-09-20 Kawasaki Steel Corp Sintering machine operating method
JPS5677345A (en) * 1979-11-28 1981-06-25 Mitsubishi Heavy Ind Ltd Fine ore sintering method and apparatus
JPS56105435A (en) * 1980-01-23 1981-08-21 Mitsubishi Heavy Ind Ltd Recovery of waste heat in sintering plant
JPS56122833A (en) * 1980-03-03 1981-09-26 Toray Ind Inc Modification of polyamide

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55122833A (en) * 1979-03-13 1980-09-20 Kawasaki Steel Corp Sintering machine operating method
JPS5677345A (en) * 1979-11-28 1981-06-25 Mitsubishi Heavy Ind Ltd Fine ore sintering method and apparatus
JPS56105435A (en) * 1980-01-23 1981-08-21 Mitsubishi Heavy Ind Ltd Recovery of waste heat in sintering plant
JPS56122833A (en) * 1980-03-03 1981-09-26 Toray Ind Inc Modification of polyamide

Also Published As

Publication number Publication date
JPS6316450B2 (en) 1988-04-08

Similar Documents

Publication Publication Date Title
CN102102021B (en) Lignite upgrading furnace
CN106282467B (en) A kind of iron ore fine coal base production direct-reduction facilities and method
CN108267013A (en) A kind of sinter cooling and afterheat utilizing system and hypoxemia complete alternation cooling means
CN106482530A (en) A kind of sintering deposit multipot type heat recovering device and sensible heat recovery method
JPS58147525A (en) Method for recovering sensible heat from sintered ore
CN207113623U (en) Vertical sinter cooler with chute feeder
US3043677A (en) Sintering method and apparatus
JPS62247035A (en) Blast furnace for sintered ore
JPS6316451B2 (en)
CN106337114B (en) Method for using presintering super-thick material layer sintering ore
CN110369123A (en) A kind of deironing apparatus and technique of refractory material fine powder
JPS6231268B2 (en)
CN108955275A (en) Vertical sinter cooler and sinter cooling means with chute feeder
JP2510193B2 (en) Sinter production method
JPS58125648A (en) Method of cooling and pulverizing cement clinker
KR0118997B1 (en) Method and apparatus for sintering ore
US1635950A (en) Process for the manufacture of sponge iron
JPS584918Y2 (en) Sintered ore cooling equipment
JP2622483B2 (en) Quicklime production method in sintering machine
JPH07258755A (en) Production of sintered ore
JP2001335850A (en) Operating method for sintering machine
JPS5931576B2 (en) Iron ore sintering method
JPH07286216A (en) Sintering method by waste gas circulation and waste gas circulation equipment
JPS5658934A (en) Waste heat recovering method in sintered ore cooler
JP2021091942A (en) Method for manufacturing sintered ore