JPS63164449A - Manufacture of holding plate for semiconductor element - Google Patents

Manufacture of holding plate for semiconductor element

Info

Publication number
JPS63164449A
JPS63164449A JP31240586A JP31240586A JPS63164449A JP S63164449 A JPS63164449 A JP S63164449A JP 31240586 A JP31240586 A JP 31240586A JP 31240586 A JP31240586 A JP 31240586A JP S63164449 A JPS63164449 A JP S63164449A
Authority
JP
Japan
Prior art keywords
molybdenum
powder
molded body
holding plate
support plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31240586A
Other languages
Japanese (ja)
Inventor
Katsuhiro Endo
遠藤 勝弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP31240586A priority Critical patent/JPS63164449A/en
Publication of JPS63164449A publication Critical patent/JPS63164449A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To obtain a holding plate having a approximate thermal expansion coefficient to a silicon semiconductor piece by melting metal powder put on a compression molded object to be infiltrated into the object and forming a metallic thin film layer on its surface. CONSTITUTION:Elementary molybdenum powder is compression-molded and metal powder excellent in thermal and electric conductivity is put on the surface of said molybdenum molded body to sinter the molybdenum molded body and to melt the powder simultaneously to make a part thereof infiltrate into empty holes in the surface of the molybdenum sintered molded object 101 for forming a layer 102 of compound with molybdenum. An amount of powder over what has been infiltrated into the molybdenum sintered molded body 101 is melted to form a thin film layer 103 on the surface of the molybdenum sintered molded object 101 and make a strong combined body. When a silicon semiconductor piece is piled on the thin film layer 103 of said holding plate for being heated above an alloying temperature, the holding plate and the silicon semiconductor piece are made en bloc.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、半導体素子のシリコン半導体片と近似した熱
膨張係数を有するモリブデンを主体とした支持板の製造
方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing a supporting plate mainly made of molybdenum and having a coefficient of thermal expansion similar to that of a silicon semiconductor piece of a semiconductor element.

〔従来の技術〕[Conventional technology]

従来、半導体素子用の支持板は、モリブデンやタングス
テンの粉末単体を圧縮成形した後焼結し、焼結密度を高
めるために鍛造、圧延をした板材が使用されている。半
導体素子を構成させるためには、このような例えばモリ
ブデン支持板とシリコン半導体片との間にろう材ない゛
しアルミニウムの箔を挟んで加熱し、モリブデン支持板
にシリコン半導体片を固着させる方法が一般に行われて
いる。
BACKGROUND ART Conventionally, support plates for semiconductor devices have been made by compression molding single molybdenum or tungsten powder, sintering it, and then forging and rolling it to increase the sintered density. In order to construct a semiconductor element, for example, a brazing material or aluminum foil is sandwiched between a molybdenum support plate and a silicon semiconductor piece and heated, thereby fixing the silicon semiconductor piece to the molybdenum support plate. This is commonly done.

すなわち、第3図aに示すように、モリブデン支持板l
とシリコン半導体片2との闇にアルミニウム箔3を挟み
、アルミニウム箔3の熔融温度660℃以上の高温に加
熱してアルミニウム箔3を溶融させ、第3図すに示すよ
うにアルミニウムとシリコンとの合金層4、モリブデン
とシリコンとの合金層5を生成させ、両会金層を結合さ
せて一体とする。このような合金化技術においては、モ
リブデン支持板1の表面空孔の相違により、アルミニウ
ム・シリコン合金層4、モリブデン・シリコン合金層5
の合金生成物のでき方に差が生じ、第4図に示すように
空孔6の部分はモリブデン・シリコン化合物が不連続と
なることがある。また半導体素子形成後にモリブデン支
持板の裏面に酸化膜が生成するのを防止するため、第5
図に示すようにモリブデン支持板lの裏面、すなわち半
導体片2を結合した側と反対側に、熱および電気良導性
の保護金属膜7、例えば金、銀、ニッケル等の金属をメ
ッキによって被着させて良好な接触面が確保されるよう
にしている。
That is, as shown in FIG. 3a, the molybdenum support plate l
An aluminum foil 3 is sandwiched between the aluminum foil 3 and the silicon semiconductor piece 2, and the aluminum foil 3 is heated to a high temperature higher than the melting temperature of 660°C to melt the aluminum foil 3, and as shown in FIG. An alloy layer 4 and an alloy layer 5 of molybdenum and silicon are formed, and both metal layers are bonded to form a single body. In such an alloying technique, due to the difference in the surface pores of the molybdenum support plate 1, the aluminum-silicon alloy layer 4 and the molybdenum-silicon alloy layer 5 are separated.
There is a difference in the way the alloy product is formed, and as shown in FIG. 4, the molybdenum-silicon compound may be discontinuous in the pores 6. In addition, in order to prevent an oxide film from forming on the back surface of the molybdenum support plate after semiconductor elements are formed, a fifth
As shown in the figure, a protective metal film 7 having good thermal and electrical conductivity, such as a metal such as gold, silver, or nickel, is coated by plating on the back side of the molybdenum support plate l, that is, the side opposite to the side to which the semiconductor piece 2 is bonded. to ensure a good contact surface.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述のようにモリブデン・シリコン化合物が不連続とな
ると局部的な熱応力を受けやすく、半導体素子の破壊に
至る可能性があるが、均一な合金生成物を確保するため
のモリブデン支持板表面空孔の管理は、支持板全面の空
孔均一性を必要とするから極めて困難であり、また支持
板裏面への接触面信頼性確保のための保護金属膜の被着
は多大な工数を必要とするなどの欠点を持っている。
As mentioned above, when the molybdenum-silicon compound becomes discontinuous, it is susceptible to localized thermal stress, which may lead to the destruction of the semiconductor element. It is extremely difficult to control the pores because it requires uniformity of the pores over the entire surface of the support plate, and the application of a protective metal film to the back surface of the support plate to ensure reliability of the contact surface requires a large amount of man-hours. It has drawbacks such as.

本発明は、このような問題点がなく、シリコン半導体片
と熱膨張係数の近似した支持板を得ることを目的とする
An object of the present invention is to obtain a support plate that does not have such problems and has a coefficient of thermal expansion similar to that of a silicon semiconductor piece.

〔問題点を解決するための手段〕[Means for solving problems]

上述の目的は本発明によれば、圧縮成形したモリブデン
粉末の少なくとも一方の表面上に、モリブデンの焼結温
度以下で熔融する熱および電気良導性の金属粉末をおき
、モリブデン粉末の焼結時にこの金属粉末をモリブデン
焼結体内に熔浸させ、かつモリブデン焼結体の表面に金
属粉末の熔融薄膜を形成させることにより達成される。
According to the present invention, a thermally and electrically conductive metal powder that melts at a temperature below the sintering temperature of molybdenum is placed on at least one surface of a compression-molded molybdenum powder. This is achieved by infiltrating this metal powder into a molybdenum sintered body and forming a molten thin film of the metal powder on the surface of the molybdenum sintered body.

〔作用〕[Effect]

本発明においては、モリブデン粉末の圧縮成形体を焼結
する際、圧縮成形体上に置かれた金属粉末も溶融して成
形体内に熔浸し、モリブデン成形体の空孔を埋め、かつ
表面に金属粉末が熔融凝固した金属薄膜が形成され、シ
リコン半導体片との合金化の際の接合箔となり、圧縮成
形体の両面に金属粉末を用いた場合には他方の面に保護
膜が形成される。
In the present invention, when a compression molded body of molybdenum powder is sintered, the metal powder placed on the compression molded body is also melted and infiltrated into the molded body, filling the pores of the molybdenum molded body and metallizing the surface. A metal thin film is formed by melting and solidifying the powder, and serves as a bonding foil when alloyed with a silicon semiconductor piece. If metal powder is used on both sides of the compression molded body, a protective film is formed on the other side.

〔実施例〕〔Example〕

次に本発明の実施例を図面について説明する。 Next, embodiments of the present invention will be described with reference to the drawings.

まずモリブデン単体粉末を1〜1.5ton/cd程度
の圧力で圧縮成形し1.モリブデン成形体を作る。この
モリブデン成形体の表面に、熱および電気伝導性に優れ
た金属としてAl−5L(5〜12%)の合金粉末を置
き、1100〜1300℃の焼結温度でモリブデン成形
体を焼結すると同時にAt−3L合金粉末を熔融させ、
第1図に示すように一部をモリブデン焼結体101の表
面空孔に溶浸させてモリブデンとの化合物層102を形
成し、モリブデン焼結体101内に溶浸しきれなかった
量のAt−3L合金粉末は熔融して、モリブデン焼結体
101の表面上にAt−3tlll膜層103を形成し
、モリブデン焼結体101とA1−5t合金粉末とは強
固な結合体を作る。Al−31合金は大きい熱膨張係数
を持っているが、モリブデン中へRtHした後はモリブ
デン単体とほぼ同一となる。
First, molybdenum single powder is compression molded at a pressure of about 1 to 1.5 ton/cd.1. Make a molybdenum molded body. An alloy powder of Al-5L (5~12%), which is a metal with excellent thermal and electrical conductivity, is placed on the surface of this molybdenum molded body, and the molybdenum molded body is simultaneously sintered at a sintering temperature of 1100 to 1300°C. Melting At-3L alloy powder,
As shown in FIG. 1, a part of the At- The 3L alloy powder is melted to form an At-3tll film layer 103 on the surface of the molybdenum sintered body 101, and the molybdenum sintered body 101 and the A1-5t alloy powder form a strong bond. Al-31 alloy has a large thermal expansion coefficient, but after RtH into molybdenum, it becomes almost the same as molybdenum alone.

この支持板のAl−5i薄膜層103の上にシリコン半
導体片を重ね合わせてAl−3L合金温度以上に加熱す
ると、支持板とシリコン半導体片とは一体化される0合
金層度は低音のためモリブデン化合物層102はほとん
ど成長することはない。シリコン半導体片の合金する面
がp形の場合にはp形−p形層としてオーミック接触さ
れ、n形の場合にはn形−p形の半導体接合を形成する
ことになる。
When a silicon semiconductor piece is superimposed on the Al-5i thin film layer 103 of this support plate and heated above the Al-3L alloy temperature, the support plate and silicon semiconductor piece are integrated. The molybdenum compound layer 102 hardly grows. If the alloying surface of the silicon semiconductor piece is p-type, it will be in ohmic contact as a p-type-p-type layer, and if it is n-type, it will form an n-p-type semiconductor junction.

第2図は本発明の異なる実施例を示し、第1図と異なる
ところは、支持板101のAt−3i薄膜層103と反
対側の表面にモリブデン面保護金属膜104が形成され
る点である。保護金属膜としては銀、ニッケル等が用い
られる。
FIG. 2 shows a different embodiment of the present invention, which differs from FIG. 1 in that a molybdenum surface protection metal film 104 is formed on the surface of the supporting plate 101 opposite to the At-3i thin film layer 103. . Silver, nickel, etc. are used as the protective metal film.

まず第1図の場合と同様にモリブデン成形体を作り、そ
の一方の表面に保護金属粉末を置いて水素中で1100
〜1300℃で焼結溶浸することにより、モリブデン粉
末焼結体101の表面に保護金属1!!!104が形成
される。次いでモリブデン焼結体101のもう一方の表
面にAl−3i(5〜12%)合金粉末を置き、真空中
、700〜800℃で0.5〜2時間加熱することによ
り、モリブデン焼結体101の表面にモリブデン化合物
層102およびAl−5i薄膜1’1i103が形成さ
れる。この支持板のシリコン半導体片との合金化は第1
図の場合と同様である。
First, a molybdenum molded body is made in the same manner as in the case of Fig. 1, protective metal powder is placed on one surface of the molded body, and the molded body is heated at 1100° C. in hydrogen.
By sintering and infiltrating at ~1300°C, a protective metal 1 is applied to the surface of the molybdenum powder sintered body 101! ! ! 104 is formed. Next, Al-3i (5 to 12%) alloy powder is placed on the other surface of the molybdenum sintered body 101 and heated in vacuum at 700 to 800°C for 0.5 to 2 hours to form the molybdenum sintered body 101. A molybdenum compound layer 102 and an Al-5i thin film 1'1i103 are formed on the surface. This alloying of the support plate with the silicon semiconductor piece is the first step.
This is the same as the case shown in the figure.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、モリブデン焼結体の空孔に金属粉末の
熔融したものを溶浸させるものであるから、支持板表面
の空孔を管理することはほとんど必要なく、シリコン半
導体片と低温での合金化が可能となるから合金層の制御
性に優れ、支持板の表面保護薄膜も同時に形成すること
ができるから被着工程が大幅に減少するとともに支持板
の酸化による影響を低減させることができる。
According to the present invention, since the pores of the molybdenum sintered body are infiltrated with molten metal powder, there is almost no need to control the pores on the surface of the support plate, and the pores of the molybdenum sintered body are infiltrated at low temperatures. Since it is possible to alloy the alloy layer, the controllability of the alloy layer is excellent, and a thin film to protect the surface of the support plate can be formed at the same time, which greatly reduces the deposition process and reduces the effects of oxidation on the support plate. can.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図は本発明方法によって得られる支持板の
異なる例の断面図、第3図a、bは従来の方法の各工程
における支持板の断面図、第4図は従来の方法による支
持板の断面図、第5図は従来の方法による支持板の異な
る例の断面図である。 101・・・モリブデン焼結体、  102・・・モリ
ブデン化合物層、 103・・・Al−3ii膜層、1
04・・・保護金i膜。 第1図 82図 第3図q 第3図b
Figures 1 and 2 are cross-sectional views of different examples of support plates obtained by the method of the present invention, Figures 3a and b are cross-sectional views of support plates in each step of the conventional method, and Figure 4 is the conventional method. FIG. 5 is a cross-sectional view of a different example of a support plate according to the conventional method. 101...Molybdenum sintered body, 102...Molybdenum compound layer, 103...Al-3ii film layer, 1
04...Protective gold i film. Figure 1 Figure 82 Figure 3 q Figure 3 b

Claims (1)

【特許請求の範囲】 1)モリブデン粉末を圧縮成形し、該成形体の少なくと
も一方の表面上にモリブデンの焼結温度以下で溶融する
熱および電気良導性の金属粉末を加えて圧縮成形し、し
かる後モリブデン粉末を焼結すると同時に前記金属粉末
を溶融させてモリブデン焼結体の気孔内に溶浸させ、か
つ成形体の前記表面に溶融金属の薄膜を形成させること
を特徴とする半導体素子用支持板の製造方法。 2)特許請求の範囲第1項記載の製造方法において、金
属粉末としてアルミニウムとシリコンとの合金を用いる
ことを特徴とする半導体素子用支持板の製造方法。 3)特許請求の範囲第1項記載の製造方法において、金
属粉末として、成形体の一方の表面にはアルミニウムと
シリコンとの合金、他方の表面にはニッケルまたは銀を
用いることを特徴とする半導体素子用支持板の製造方法
[Scope of Claims] 1) Compression molding of molybdenum powder, adding a thermally and electrically conductive metal powder that melts at a temperature below the sintering temperature of molybdenum onto at least one surface of the molded body; After that, the molybdenum powder is sintered, and at the same time, the metal powder is melted and infiltrated into the pores of the molybdenum sintered body, and a thin film of molten metal is formed on the surface of the molded body. Method of manufacturing support plate. 2) A method for manufacturing a support plate for a semiconductor device according to claim 1, characterized in that an alloy of aluminum and silicon is used as the metal powder. 3) In the manufacturing method according to claim 1, a semiconductor characterized in that, as metal powder, an alloy of aluminum and silicon is used on one surface of the compact and nickel or silver is used on the other surface. A method for manufacturing a support plate for an element.
JP31240586A 1986-12-26 1986-12-26 Manufacture of holding plate for semiconductor element Pending JPS63164449A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31240586A JPS63164449A (en) 1986-12-26 1986-12-26 Manufacture of holding plate for semiconductor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31240586A JPS63164449A (en) 1986-12-26 1986-12-26 Manufacture of holding plate for semiconductor element

Publications (1)

Publication Number Publication Date
JPS63164449A true JPS63164449A (en) 1988-07-07

Family

ID=18028836

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31240586A Pending JPS63164449A (en) 1986-12-26 1986-12-26 Manufacture of holding plate for semiconductor element

Country Status (1)

Country Link
JP (1) JPS63164449A (en)

Similar Documents

Publication Publication Date Title
KR100745872B1 (en) Semiconductor substrate having copper/diamond composite material and method of making same
CN110178215B (en) Method for manufacturing electronic power modules by additive manufacturing and related substrates and modules
US20110070695A1 (en) Method of fabricating a high-temperature compatible power semiconductor module
JP2005354095A (en) Device for packing electronic components using injection moulding technology
US5311399A (en) High power ceramic microelectronic package
JPH06268117A (en) Heat radiating substrate for semiconductor device and its manufacture
JPS63164449A (en) Manufacture of holding plate for semiconductor element
JP4124497B2 (en) Metal-ceramic composite substrate and manufacturing method thereof
US3702787A (en) Method of forming ohmic contact for semiconducting devices
JP2803636B2 (en) Semiconductor integrated circuit package and method of manufacturing the same
US6914330B2 (en) Heat sink formed of diamond-containing composite material with a multilayer coating
JPS61181136A (en) Die bonding
JP3231984B2 (en) Package for housing semiconductor element and method of manufacturing the same
JP3279844B2 (en) Semiconductor device and manufacturing method thereof
JP2849865B2 (en) Heat radiator manufacturing method
KR20220062339A (en) Method for manufacturing a metal-ceramic substrate, a solder system and a metal-ceramic substrate manufactured by the method
US20190232437A1 (en) Multilayer composite bonding materials and power electronics assemblies incorporating the same
JP2548964Y2 (en) Package for storing semiconductor elements
JPH08125080A (en) Semiconductor device and manufacture thereof
JPS61166144A (en) Semiconductor device
JPH06163751A (en) Semiconductor device
JPS617637A (en) Semiconductor
JPH0412682Y2 (en)
JPS63288975A (en) Ceramics circuit board having earth conductor and its production
JPS59126645A (en) Manufacture of semiconductor device