JPS6316288A - Manufacture of heat-receiving plate for nuclear fusion device - Google Patents

Manufacture of heat-receiving plate for nuclear fusion device

Info

Publication number
JPS6316288A
JPS6316288A JP61159784A JP15978486A JPS6316288A JP S6316288 A JPS6316288 A JP S6316288A JP 61159784 A JP61159784 A JP 61159784A JP 15978486 A JP15978486 A JP 15978486A JP S6316288 A JPS6316288 A JP S6316288A
Authority
JP
Japan
Prior art keywords
receiving plate
plasma
heat
heat receiving
surface material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61159784A
Other languages
Japanese (ja)
Inventor
陽二 渋谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP61159784A priority Critical patent/JPS6316288A/en
Publication of JPS6316288A publication Critical patent/JPS6316288A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/10Nuclear fusion reactors

Landscapes

  • Lining Or Joining Of Plastics Or The Like (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 [発明の目的〕 (産業上の利用分野) 本発明は核融合装置において、プラズマからの熱負荷や
粒子負荷を受ける第、1壁、ダイバータ板、リミタ板等
の受熱板の製造方法に関する。
[Detailed Description of the Invention] [Objective of the Invention] (Industrial Application Field) The present invention relates to a nuclear fusion device that receives heat from the first wall, diverter plate, limiter plate, etc. that receives heat load and particle load from plasma. This invention relates to a method for manufacturing a board.

(従来の技術) 核融合装置の受熱板には、プラズマから大きな熱負荷と
粒子負荷がかかる。プラズマからの入射粒子によるスパ
ッタリングで受熱板は損耗するため、受熱板材料はスパ
ッタリング率の小さい材料、すなわち、表面損耗量の少
ない材料とする必要がある。またプラズマからの高熱負
荷を除熱するために、受熱板には冷却装置が必要である
(Prior Art) The heat receiving plate of a nuclear fusion device is subjected to a large heat load and particle load from plasma. Since the heat receiving plate is worn out by sputtering due to incident particles from the plasma, the material of the heat receiving plate needs to be a material with a low sputtering rate, that is, a material with a small amount of surface wear. Additionally, the heat receiving plate requires a cooling device to remove the high heat load from the plasma.

このため従来の受熱板(1)は第3図に示すように、銅
等の高熱伝導率の冷却材(4)上に高融点で低スパツタ
リング率の材料からなるプラズマ側表面材(3)を冶金
的に接合した構造となっている。
For this reason, the conventional heat receiving plate (1) has a plasma side surface material (3) made of a material with a high melting point and low sputtering rate on a coolant (4) with high thermal conductivity such as copper, as shown in Figure 3. It has a metallurgically bonded structure.

この種の構造としては、特開昭597151084号公
報で第◆図に示すように給熱性のセラミックス−(5)
゛を冷却材【4)上に緩衝材(6)を介ごて冶金的に接
合しているものがある。また第5図に示すように、プラ
ズマ粒子(2)が金属基材(4)に直接衝突するのを防
止するためにプラズマ側表面材のセラミックス(5)に
段付部(7)を設けているものがある。
This type of structure is disclosed in Japanese Patent Application Laid-Open No. 597151084, as shown in Figure ◆.
There are some that are metallurgically joined to the coolant (4) via the buffer material (6). Furthermore, as shown in Fig. 5, a stepped portion (7) is provided on the ceramic (5) of the plasma side surface material to prevent the plasma particles (2) from directly colliding with the metal base material (4). There are some.

(発明が解決しようとする問題点) 第3図のような従来の構造はプラズマ側表面材(3)と
冷却材(4)を冶金的方法(ろう付)により接合してい
る。この種の構造のように線膨張係数が非常に異なる材
料の接合の場合、考えられる破壊形態は二つある。
(Problems to be Solved by the Invention) In the conventional structure as shown in FIG. 3, the plasma side surface material (3) and the coolant (4) are joined by a metallurgical method (brazing). When joining materials with very different coefficients of linear expansion, such as in this type of structure, there are two possible failure modes.

一つはろう付接合過程においてろう付温度から常温まで
冷却すると、接合部に生じる熱応力の影響によりプラズ
マ側表面材(3)の側面に第6図に示すような板厚方向
引張応力(8)が生じる。この接合部近傍に発生する最
大引張応力(11)により脆性破壊が生じる。
One is that when cooled from the brazing temperature to room temperature during the brazing joining process, tensile stress in the plate thickness direction (8 ) occurs. The maximum tensile stress (11) generated in the vicinity of this joint causes brittle fracture.

つぎに考えられる破壊は接合界面の熱応力による界面疲
労破壊である。第6図に示すように、接合界面に生じる
せん断路力(9)、 (10)のうち、プラズマ側表面
材(3)に生じる最大ぜん断路力(12)は弾性域内の
応力であるが、冷却材(4)の端部に生じるせん断路力
は降伏応力を越えて塑性領域内と考えられる。
The next possible fracture is interface fatigue fracture due to thermal stress at the joint interface. As shown in Fig. 6, among the shear road forces (9) and (10) generated at the bonding interface, the maximum shear road force (12) generated on the plasma side surface material (3) is a stress within the elastic range. The shear path force generated at the end of the coolant (4) exceeds the yield stress and is considered to be in the plastic region.

本発明は、ろう付接合冷却過程においてプラズマ側表面
材側面に生じる破壊を防止し、かつ、サイクリックな熱
負荷に対して長寿命な核融合装置の受熱板を製造する方
法を提供することを目的とする。
The present invention aims to provide a method for manufacturing a heat receiving plate for a nuclear fusion device that prevents damage to the side surface of the plasma-side surface material during the brazing joint cooling process and has a long service life against cyclic heat loads. purpose.

〔発明の構成〕[Structure of the invention]

(問題点を解決するための手段) 上記目的を達成するために、本発明の受熱板は、ろう付
する前にプラズマ側表面材と冷却材の接合面端部にそれ
ぞれ面取形状の凹部を予め形成しておく構成とする。
(Means for Solving the Problems) In order to achieve the above object, the heat receiving plate of the present invention has chamfered recesses at the ends of the joining surfaces of the plasma side surface material and the coolant, respectively, before brazing. The structure is formed in advance.

(作 用) 上記のように、プラズマ側表面材と冷却材の接合部に面
取状凹部を形成しておくと、ロー付冷却過程時に生じる
プラズマ側表面材の側面で接合部近傍に発生する板厚方
向引張応力を低減させ、かつ、接合界面に生じるせん断
路力も低減させる受熱板が得られる。
(Function) As described above, if a chamfer-like recess is formed at the joint between the plasma-side surface material and the coolant, chamfer-like recesses can be formed near the joint on the side surface of the plasma-side surface material during the brazing cooling process. A heat receiving plate is obtained that reduces tensile stress in the plate thickness direction and also reduces shear path force generated at the joint interface.

(実施例) 以下本発明の一実施例を第1図によって説明する。タン
グステン等の高融点で低スパツタリング率の材料、Si
cやグラファイト等の低原子番号材料、および耐熱用セ
ラミックス等が用いられるプラズマ側表面材(3)の接
合端面角部に174円形の面取状凹部(14a)を形成
する。また、銅等の高熱伝導車の金属からなる冷却材(
4)の接合端面角部にも上記同形の面取状凹部(14b
)を形成し、両者を接合する。 (18)はろう付接合
面である。
(Example) An example of the present invention will be described below with reference to FIG. Materials with high melting point and low sputtering rate such as tungsten, Si
A 174-circular chamfered recess (14a) is formed at the corner of the bonding end face of the plasma side surface material (3), which is made of a low atomic number material such as C or graphite, and heat-resistant ceramics. In addition, coolants made of high thermal conductivity car metals such as copper (
4) is also provided with a chamfered recess (14b) of the same shape as above at the corner of the joint end
) and join them together. (18) is the brazed joint surface.

このように構成した受熱板においては、ろう付冷却過程
で接合面に生じる熱応力の影響がプラズマ側表面材(3
)の側面にまでおよぶことを少なくし、プラズマ側表面
材(3)の側面の接合面近傍に生じる最大引張応力(1
1)を低減させることができる。第2図に本実施例によ
る受熱板にプラズマ(2)、からの熱負荷が作用した場
合の各部の応力分布を示している。プラズマ側表面材(
3)に瀞取状凹部(14a)が設置されたことにより、
ブ、ラズマ側表面材(3)の側面上に発生する引張応力
(15)は端部における応力の解放により低下する。こ
れにより、プラズマ側表面材(3)の側面に発生するク
ラックを防止することができる。
In the heat receiving plate configured in this way, the influence of thermal stress generated on the joint surface during the brazing cooling process is caused by the plasma side surface material (3
), and reduce the maximum tensile stress (1
1) can be reduced. FIG. 2 shows the stress distribution at each part when a heat load from plasma (2) is applied to the heat receiving plate according to this embodiment. Plasma side surface material (
3) By installing the handle-shaped recess (14a),
The tensile stress (15) generated on the side surface of the plasma side surface material (3) is reduced by the release of stress at the end. Thereby, it is possible to prevent cracks from occurring on the side surface of the plasma side surface material (3).

また、接合界面に生じる最大せん断路力は接合面積が小
さくなる程減少し、一様な分布に近づく。
Furthermore, the maximum shear path force generated at the joint interface decreases as the joint area becomes smaller, and approaches a uniform distribution.

(橋本達成・岡本郁男共著「同相溶接・ろう付」197
9年6月産報出版P192参照)本実施例による受熱板
(13)の接合面積は従来の受熱板(1)に比べて減少
するので、端部に生じる最大ぜん断路力(16)は減少
する。これにより、接合強度の向上した長寿命の受熱板
を得ることができる。
(Co-authored by Tatsuo Hashimoto and Ikuo Okamoto, “In-phase welding and brazing” 197
(Refer to page 192 of Sanpo Publishing, June 1999) Since the joint area of the heat receiving plate (13) according to this embodiment is reduced compared to the conventional heat receiving plate (1), the maximum shear path force (16) generated at the end is reduced. do. Thereby, a long-life heat receiving plate with improved bonding strength can be obtained.

尚、面取状凹部(14a)、 (14b)は通常みられ
る平面的な面取りでもかなりの効果がある。
Incidentally, the chamfer-shaped recesses (14a) and (14b) are quite effective even if they are normally flat chamfers.

〔発明の効果〕〔Effect of the invention〕

以上述べたように、本発明によればろう付冷却過程時の
プラズマ側表面材の側面に生じるクラックを防止し、か
つ、接合強度を向上させ受熱板の寿命を増大させること
ができる。
As described above, according to the present invention, it is possible to prevent cracks from occurring on the side surface of the plasma-side surface material during the brazing cooling process, improve the bonding strength, and extend the life of the heat receiving plate.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の方法の一実施例にて製造した受熱板の
断面図、第2図は第1図の実施例による受熱板に作用す
る応力分布を示す説明図、第3図、第4図および第5図
はそれぞれ異なる従来の受熱板を示す断面図、第6図は
従来の受熱板の断面でプラズマ側表面材の側面に生じる
応力と接合界面に生じる応力分布を示す説明図である。 1・・・従来の受熱板、       2・・・プラズ
マ、3・・・プラズマ側表面材、    4・・・冷却
材、8・・・従来例のプラズマ側表面材側面上の板厚方
向引張応力分布曲線、 9・・・従来例のプラズマ側表面材接合界面のせん断路
力分布曲線、 10・・・従来例の冷却材接合界面のせん断路力分布曲
線、11・・・最大引張応力、12・・・最大ぜん断応
力、13・・・本発明の一実施例の受熱板、14a・・
・面取状凹部(プラズマ側表面材)、14b・・・面取
状凹部(冷却材)、 15・・・本発明の一実施例によるプラズマ側表面材側
面上の板厚方向引張応力分布曲線、 16・・・本発明の一実施例によるプラズマ側表面材接
合界面のせん断路力分布曲線、 17・・・本発明の一実施例による冷却材接合界面のせ
ん断路力分布曲線、 18・・・ろう付接合面。
FIG. 1 is a sectional view of a heat receiving plate manufactured by an embodiment of the method of the present invention, FIG. 2 is an explanatory diagram showing the stress distribution acting on the heat receiving plate according to the embodiment of FIG. 1, and FIGS. Figures 4 and 5 are cross-sectional views showing different conventional heat-receiving plates, and Figure 6 is an explanatory diagram showing the stress generated on the side surface of the plasma-side surface material and the stress distribution generated at the bonding interface in a cross-section of the conventional heat-receiving plate. be. 1...Conventional heat receiving plate, 2...Plasma, 3...Plasma side surface material, 4...Cooling material, 8...Thickness direction tensile stress on the side surface of plasma side surface material of conventional example Distribution curve, 9... Shear road force distribution curve of the plasma side surface material bonding interface of the conventional example, 10... Shear road force distribution curve of the coolant bonding interface of the conventional example, 11... Maximum tensile stress, 12 ...Maximum shear stress, 13...Heat receiving plate of one embodiment of the present invention, 14a...
- Chamfered recess (plasma side surface material), 14b... Chamfered recess (coolant), 15... Thickness direction tensile stress distribution curve on the side surface of the plasma side surface material according to an embodiment of the present invention , 16... Shear road force distribution curve of the plasma side surface material bonding interface according to an embodiment of the present invention, 17... Shear road force distribution curve of the coolant bond interface according to an embodiment of the present invention, 18...・Brazing joint surface.

Claims (2)

【特許請求の範囲】[Claims] (1)ろう付接合するプラズマ側表面材と冷却材との接
合端部に、それぞれろう付前に予め面取状の凹部を形成
することを特徴とする核融合装置の受熱板の製造方法。
(1) A method for manufacturing a heat receiving plate for a nuclear fusion device, characterized in that chamfered recesses are formed in advance at the joining ends of the plasma-side surface material and the coolant to be joined by brazing, respectively, before brazing.
(2)面取状の凹部は1/4円弧状としたことを特徴と
する特許請求の範囲第1項記載の核融合装置の受熱板の
製造方法。
(2) The method for manufacturing a heat receiving plate for a nuclear fusion device according to claim 1, wherein the chamfered recess is shaped like a quarter arc.
JP61159784A 1986-07-09 1986-07-09 Manufacture of heat-receiving plate for nuclear fusion device Pending JPS6316288A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61159784A JPS6316288A (en) 1986-07-09 1986-07-09 Manufacture of heat-receiving plate for nuclear fusion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61159784A JPS6316288A (en) 1986-07-09 1986-07-09 Manufacture of heat-receiving plate for nuclear fusion device

Publications (1)

Publication Number Publication Date
JPS6316288A true JPS6316288A (en) 1988-01-23

Family

ID=15701196

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61159784A Pending JPS6316288A (en) 1986-07-09 1986-07-09 Manufacture of heat-receiving plate for nuclear fusion device

Country Status (1)

Country Link
JP (1) JPS6316288A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02309288A (en) * 1989-05-24 1990-12-25 Hitachi Ltd Nuclear fusion reactor
JP2008518213A (en) * 2004-10-27 2008-05-29 プランゼー エスエー Monoblock cooling device components

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02309288A (en) * 1989-05-24 1990-12-25 Hitachi Ltd Nuclear fusion reactor
JP2008518213A (en) * 2004-10-27 2008-05-29 プランゼー エスエー Monoblock cooling device components
JP2013167631A (en) * 2004-10-27 2013-08-29 Plansee Se Monobloc cooling device component

Similar Documents

Publication Publication Date Title
JP4797077B2 (en) Semiconductor power module, power converter, and method for manufacturing semiconductor power module
US20030168729A1 (en) Insulating substrate, manufacturing method thereof, and module semiconductor device with insulating substrate
WO1994003037A1 (en) Sealable electronics packages and methods of producing and sealing such packages
JPS6316288A (en) Manufacture of heat-receiving plate for nuclear fusion device
JP2002231865A (en) Insulation board with heat sink, bonding member and bonding method
JP4055596B2 (en) Composite
JPH0680873B2 (en) Circuit board
KR102533265B1 (en) Heat sink utilizing filler metal
JP2001345402A (en) Module-type semiconductor device and its method
JPH04168267A (en) Coupling body for sputtering
JP2002299532A (en) Al-SiC BASED COMPOUND MATERIAL AND HEAT RADIATION COMPONENT
JPH0321092B2 (en)
JPS63139077A (en) Method of joining different kind materials of different thermal expansion coefficient
JP2010219215A (en) Heat dissipation structure
JP2512495B2 (en) Bonded body of silicon nitride ceramics and metal
JP2790582B2 (en) Semiconductor device
JPH05249264A (en) Plasma facing device of nuclear fusion device
JPH0292873A (en) Bonded material of member having different coefficient of thermal expansion
JPH069907B2 (en) Method for producing composite material composed of graphite and metal
JPH069906B2 (en) Composite material consisting of graphite and copper or copper alloy
JP2002280501A (en) METHOD FOR FIXING Al-SiC COMPOSITE MATERIAL AND HEAT SINK COMPONENT
JPH0317793B2 (en)
JPH0240631B2 (en)
JPS61201677A (en) Method of bonding ceramic and metal
JPS61109906A (en) Method of mechanically joining low expansible ceramic memberand member of different kind