JPS63162866A - Electromagnet device for sputtering - Google Patents

Electromagnet device for sputtering

Info

Publication number
JPS63162866A
JPS63162866A JP30873686A JP30873686A JPS63162866A JP S63162866 A JPS63162866 A JP S63162866A JP 30873686 A JP30873686 A JP 30873686A JP 30873686 A JP30873686 A JP 30873686A JP S63162866 A JPS63162866 A JP S63162866A
Authority
JP
Japan
Prior art keywords
electromagnet
target
substrate
yoke
diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30873686A
Other languages
Japanese (ja)
Inventor
Koichiro Takaishi
高石 幸一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP30873686A priority Critical patent/JPS63162866A/en
Publication of JPS63162866A publication Critical patent/JPS63162866A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Abstract

PURPOSE:To form a thin film having superior symmetry properties in contact holes, by disposing inner and outer annular electromagnets to the rear of a target and by forming so that the diameter of a yoke in the intermediate part between the above electromagnets is regulated to about one-half that of a yoke in the outside peripheral part or less. CONSTITUTION:A substrate 1 and a target 3 are oppositely disposed in a vacuum chamber 2, and a double-pole electromagnet 4 is disposed to the rear of the target 3. The inside of the vacuum chamber 2 is evacuated and Ar gas, etc., are introduced into the chamber, and negative potential is applied to the target 3 so as to produce plasma discharge in front of the target 3. At the same time, the above electromagnet is electrified and plasma is concentrated in a region of high magnetic flux density so as to sputter the target 3 and form a thin film on the substrate 1 surface. The above electromagnet 4 is constituted of inner and outer electromagnets 5, 6 and columnar and annular yokes 9, 10, and 11. Further, the above electromagnet 4 is formed so that thickness 7 of the inner electromagnet 5 is smaller than the thickness 8 of the outer electromagnet 6 and the diameter of the yoke 10 in the intermediate part is one-half that of the yoke 11 in the outside peripheral part or less. In this way, plasma region is widely changed, so that thin film can be formed in the contact holes in the substrate 1 with superior symmetry properties.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、半導体基板等にマグネトロンスパッタリング
により薄膜を形成する場合に使用されるスパッタリング
用電磁石装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a sputtering electromagnetic device used when forming a thin film on a semiconductor substrate or the like by magnetron sputtering.

(従来の技術) 従来、第1図示のように、真空室a内に基板すとターゲ
ットCとを対向して設け、該ターゲットCの背面に環状
で厚ざ9の厚い内側MI1石dとこれよりも薄い厚さh
の外側電磁石eで構成された2重積l!磁石fを設ける
ようにしたスパッタリング装置が知られており、該ター
ゲットCに負電位を与えてその前面にマグネトロン放電
を発生させるとターゲットCの物質がスパッタされ、該
基板すの表面に堆積して薄膜が形成される。
(Prior Art) Conventionally, as shown in FIG. 1, a substrate is placed in a vacuum chamber a and a target C is provided facing each other, and a thick inner MI1 stone d having a circular shape and a thickness of 9 is placed on the back surface of the target C. Thickness h smaller than
A double stack l consisting of an outer electromagnet e! A sputtering apparatus is known in which a magnet F is provided, and when a negative potential is applied to the target C and a magnetron discharge is generated in front of the target C, the material of the target C is sputtered and deposited on the surface of the substrate. A thin film is formed.

該基板すに堆積するターゲット物質は、マグネトロン放
電の領域に対向するターゲットCのエロージョン領域か
ら飛来するが、該基板すの表面に、第2図示のようなt
C回路用のコンタクトホールiが多数形成されている場
合、工0−ジョン領域から左右にずれた位置の、コンタ
クトホールiにはターゲット物質が斜めに入射し、例え
ば第3図、第4図示のようなステップカバレッジの悪い
層jが形成され、該ホールi内に対称的な厚さで薄膜の
層を形成することが難しくなるばかりか、オーバーハン
グにより該ホールi内に空洞が出来ることもある。そこ
で内側電磁石dと外側電磁石eの電流を変化させて第5
図示のようにプラズマ領域の直径を01、D2、D3と
時間を制御し乍ら移動させ、基板す上の各点α、β、γ
に対して有効にターゲット物質が入射出来るように制御
することも行なわれている。
The target material to be deposited on the substrate comes from the erosion region of the target C opposite to the region of magnetron discharge.
When a large number of contact holes i for the C circuit are formed, the target material is obliquely incident on the contact holes i at positions shifted left and right from the process area, for example, as shown in FIGS. 3 and 4. A layer j with poor step coverage is formed, which not only makes it difficult to form a thin film layer with a symmetrical thickness in the hole i, but also creates a cavity in the hole i due to overhang. . Therefore, by changing the currents of the inner electromagnet d and the outer electromagnet e, the fifth
As shown in the figure, the diameter of the plasma region is moved from 01, D2, D3 while controlling the time, and each point α, β, γ on the substrate is
Control is also being carried out so that the target material can be effectively injected into the target material.

(発明が解決しようとする問題点) 前記のような機構の2重極電磁石fに於いて、内側の電
磁石dと外側の電磁石eへ流す電流比を変えると、第6
図示の曲線へで示すようにターゲットC上のエロージョ
ン領域の直径が変り、基板すとターゲットCの距離が5
0ag+のとき、基板す上の点αには曲線Bで示すよう
な割合で薄膜が形成され、点β、γには夫々曲線C,D
で示すような割合で形成される。従ってエロージョン領
域の直径を一定の速度で変えても基板すの外周部の膜厚
が薄く、中間の点βの膜厚が最大となるので、その速度
を遅速変化させて各点α、β、γの膜厚の均一化を図る
が各点α、β、γに存するコンタクトホール内のカバレ
ッジが、第7図のように、基板すの中心側の壁面に薄<
 (bi)、外周側の壁面に厚< (bo)付着し、非
対称になり高密度の半導体デバイスのコンタクトホール
としては不適当である。
(Problems to be Solved by the Invention) In the dipole electromagnet f having the mechanism described above, if the ratio of current flowing to the inner electromagnet d and the outer electromagnet e is changed, the sixth
As shown by the curve shown in the figure, the diameter of the erosion area on the target C changes, and the distance between the substrate and the target C increases by 5.
When 0ag+, a thin film is formed at point α on the substrate at a rate shown by curve B, and curves C and D are formed at points β and γ, respectively.
It is formed at the rate shown in . Therefore, even if the diameter of the erosion area is changed at a constant speed, the film thickness at the outer periphery of the substrate is thin, and the film thickness at the intermediate point β is maximum, so by changing the speed slowly, each point α, β, Although the film thickness of γ is made uniform, the coverage inside the contact hole at each point α, β, and γ is thin on the wall surface on the center side of the substrate as shown in Figure 7.
(bi), the thickness is less than (bo) attached to the outer peripheral wall surface, resulting in an asymmetrical structure, making it unsuitable for use as a contact hole in a high-density semiconductor device.

こうした基板す上の各点α、β、γのコンタクトホール
のカバレッジが非対称となる原因は、エロージョン領域
の直径を広範囲に変化させ得ないことにあると考えられ
る。
The reason why the coverage of contact holes at each point α, β, and γ on the substrate is asymmetrical is thought to be that the diameter of the erosion region cannot be varied over a wide range.

本発明は、エロージョン領域を広範囲に変化させてコン
タクトホールに対称性の良い薄膜を形成するに適した電
磁石装置を提供することを目的とするものである。
An object of the present invention is to provide an electromagnet device suitable for forming a thin film with good symmetry in a contact hole by changing the erosion region over a wide range.

(問題点を解決するための手段) 本発明では、真空室内の基板と対向して設けたターゲッ
トの背面に、内側と外側の2重の環状の電磁石を備え且
つ該内側の電磁石の中心部と外側の電磁石の外周部及び
両電磁石の中間部にヨークを設けて構成した2重接電磁
石を配置し、該基板に7グネトロン形のスパッタリング
による7II膜を形成するようにしたものに於いて、該
2重接電磁石を構成する中間部のヨークの径を外周部の
ヨークの径よりも約半分以下に形成することにより前記
問題点を解決するようにした。
(Means for Solving the Problems) In the present invention, a dual ring-shaped electromagnet (inner and outer) is provided on the back surface of a target provided facing a substrate in a vacuum chamber, and the central part of the inner electromagnet is In an arrangement in which a double contact electromagnet is arranged with a yoke provided on the outer periphery of the outer electromagnet and a yoke in the middle of both electromagnets, and a 7II film is formed on the substrate by 7-gnetron type sputtering, The above-mentioned problem is solved by forming the diameter of the intermediate yoke constituting the double contact electromagnet to be about half or less than the diameter of the outer circumferential yoke.

(作 用) 該2重接電磁石の内側の電磁石に対し逆方向の電流を外
側の電磁石に流すと、ターゲットの前方に発生するマグ
ネトロン放電のプラズマ領域の直径は小さくなり、内側
の電磁石と同方向の電流を外側の電磁石にも流すと該プ
ラズマ領域の直径は大きくなるが、該外側の電磁石の外
周部のヨークの径の半分以下に両電磁石の中間部のヨー
クの径を構成することにより該プラズマ領域の直径を従
来Qものよりも大幅に小さくすることが出来、その分プ
ラズマ領域の変化の範囲が大きくなってターゲットのエ
ロージョン領域を広げ得、基板面に多数形成された各コ
ンタクトホール内に対称性の良い薄膜を形成することが
出来る。
(Function) When a current flows in the opposite direction to the inner electromagnet of the double contact magnet, the diameter of the plasma region of the magnetron discharge generated in front of the target becomes smaller, and the current flows in the same direction as the inner electromagnet. The diameter of the plasma region increases when a current of The diameter of the plasma region can be made much smaller than that of the conventional Q type, and the range of change in the plasma region is correspondingly increased, expanding the erosion region of the target. A thin film with good symmetry can be formed.

(実施例) 本発明の実施例を図面に基づき説明すると、第8図に於
いて符号(1)は真空室(乃に設けられたシリコンウェ
ハ等の基板、(3)は該真空室(D内に基板(1)と対
向して設けたAI¥lJ等の円形のターゲットを示し、
該ターゲット(3)は真空室(りに嵌め込まれて設けら
れた2重接電磁石(4)上に取付けされる。該2重接電
磁石(4)は環状の内側の電磁石(S)と外側の電磁石
(6)とを備え、該内側の電磁石(5)の厚さく7)よ
りも外側の電磁石(6)の厚さく8)を大きく形成し、
その内側の電磁石(5)の中心部に円柱状のヨーク(9
)を設け、各電磁石(5) (6)の中間部及び外側の
電磁石(6)の外周部に夫々環状のヨークaDavが設
けられる。該真空V(η内を真空排気してそこにArガ
ス等の不活性ガスを導入し、ターゲット(3)に負電位
を与えてその前方にプラズマ放電を発生させると共に内
外電磁石(5) (6)に流す電流を制御して該ターゲ
ット(3)の前方に於ける磁束密度を制御すると、磁束
!度の高い領域にプラズマが集中し、それに対応する個
所のターゲット(3)がスパッタされて消耗されるエロ
ージョン領域となり、スパッタされた物質が基板(1)
の表面に層状に付着する。基板(1)の板面の各所に多
数のIC回路用のコンタクトホールが存する場合、各電
磁石(5) (6)に流す電流の大きさと方向を制御し
、各コンタクトホールに形成される薄膜のカバレッジを
均一化するためにプラズマ領域をターゲット(3)の半
径方向に移動させるが、両型磁石(5) (6)の中間
部のヨーク(IOの径を外周部のヨークatの径の半分
以下に形成することによりプラズマ領域を広範囲に移動
させ得、コンタクトホール内に均一性の良い薄膜の層を
形成出来る。
(Embodiment) An embodiment of the present invention will be described based on the drawings. In FIG. A circular target such as AI¥lJ is shown inside, facing the substrate (1).
The target (3) is mounted on a double contact electromagnet (4) fitted into a vacuum chamber. The double contact magnet (4) has an annular inner electromagnet (S) and an outer ring. an electromagnet (6), the outer electromagnet (6) has a thickness 8) larger than the thickness 7) of the inner electromagnet (5);
There is a cylindrical yoke (9) in the center of the electromagnet (5) inside it.
), and an annular yoke aDav is provided at the intermediate portion of each electromagnet (5) (6) and at the outer periphery of the outer electromagnet (6). The inside of the vacuum V(η is evacuated and an inert gas such as Ar gas is introduced therein, and a negative potential is applied to the target (3) to generate a plasma discharge in front of it. At the same time, the inner and outer electromagnets (5) (6) ) by controlling the magnetic flux density in front of the target (3), plasma will concentrate in areas with high magnetic flux, and the target (3) in the corresponding locations will be sputtered and consumed. The sputtered material forms an erosion area on the substrate (1).
It adheres in a layer on the surface of. When there are many contact holes for IC circuits in various places on the board surface of the substrate (1), the magnitude and direction of the current flowing through each electromagnet (5) (6) is controlled to control the thickness of the thin film formed in each contact hole. In order to make the coverage uniform, the plasma region is moved in the radial direction of the target (3). By forming the contact hole in the following manner, the plasma region can be moved over a wide range, and a thin film layer with good uniformity can be formed within the contact hole.

これを第9図示の具体的実施例に基づき説明すると、中
心のヨーク(9)の直径を40INR1中間部のヨーク
(IO及び外周部のヨークatを夫々厚さ7mの環状体
とし、中心部のヨーク(10の壁芯までの直径を111
1MI、外周部のヨーク111の壁芯までの直径を22
7as+とじた。そして各ヨーク(9) (10(li
)間に厚さくnが22mの環状の内側の電磁石(5)と
厚さく8)が44jIlの環状の外側の電磁石(6)を
介在させ、全体の直径が236sの2重極電磁石(4)
を製作した。その前方に厚さ15m+のA1製のターゲ
ット(3)を取付け、内側の電磁石(5)に10Aの電
流を流し、外側の電磁石(6)をOAの電流とすると、
該ターゲット(3)の表面の直径方向の各点に於ける垂
直磁束密度と水平磁束密度の分布は曲線EとFで示すよ
うになり、この場合第12図のように直径120m+の
範囲にプラズマ領域Kが収束する。また内側の電磁石(
5)に10Aの電流を流し、外側に4への逆方向電流を
流すと、第10図の曲線GとHで示すような垂直磁束密
度と水平磁束密度となり、この場合第13図のように外
径が100Mで内径が40履の環状の内径の小さいプラ
ズマ領域りが形成され、更に内側の電磁石(5)に10
Aの電流を流し、外側の電磁石(6)に−1Aの同方向
電流を流すと、第11図曲線■とJで示すような垂直磁
束密度と水平磁束密度となり、この場合外径及び内径が
第14図のように更に拡がった外径200m+及び内径
160麿の環状のプラズマ領域Mが形成される。その結
果、基板(D上の各コンタクトホールの内面には、第1
5図示のように、基板(2)の中心寄りの内面に形成さ
れる膜厚■、と外周寄りの内側に形成される膜厚■2と
がほぼ等しい対称性の良い薄膜でしかも底面にも■1、
■2に近い膜厚■3の薄膜を形成することが出来た。
To explain this based on the specific embodiment shown in FIG. 9, the diameter of the center yoke (9) is 40 INR1. Yoke (diameter to wall center of 10 is 111
1 MI, the diameter to the wall center of the outer yoke 111 is 22
7as+ closed. and each yoke (9) (10(li
) with an annular inner electromagnet (5) with a thickness n of 22 m and an annular outer electromagnet (6) with a thickness n of 44 m interposed between them, and a dipole electromagnet (4) with a total diameter of 236 s.
was produced. If a target (3) made of A1 with a thickness of 15m+ is attached in front of it, a current of 10A is applied to the inner electromagnet (5), and an OA current is applied to the outer electromagnet (6),
The distribution of vertical magnetic flux density and horizontal magnetic flux density at each point in the diametrical direction of the surface of the target (3) is shown by curves E and F, and in this case, as shown in Fig. 12, the plasma is distributed in a range of 120 m+ in diameter. Region K converges. Also, the inner electromagnet (
When a current of 10 A is applied to 5) and a reverse current is applied to the outside of 4, the vertical and horizontal magnetic flux densities will be as shown by curves G and H in Fig. 10, and in this case, as shown in Fig. 13. A small annular plasma region with an outer diameter of 100M and an inner diameter of 40M is formed, and an inner electromagnet (5) with a diameter of 10M is formed.
When a current of A is applied and a current of -1A in the same direction is applied to the outer electromagnet (6), the vertical and horizontal magnetic flux densities are as shown by curves ■ and J in Figure 11, and in this case, the outer and inner diameters are As shown in FIG. 14, a further expanded annular plasma region M having an outer diameter of 200 m+ and an inner diameter of 160 m+ is formed. As a result, the inner surface of each contact hole on the substrate (D) has a first
5 As shown in figure 5, the film thickness (2) formed on the inner surface near the center of the substrate (2) is approximately equal to the film thickness (2) formed on the inner side near the outer periphery, which is a thin film with good symmetry. ■1,
It was possible to form a thin film with a film thickness of ■3, which is close to ■2.

これとの比較のために、第9図示のものと同構造であり
内側の電磁石の厚さが44m+で、これよりも薄い厚さ
22mmの外側の電磁石を備え中心部ヨークの径が14
9as+と大きい従来形の2重極電磁石を用意し、内側
の電磁石に3A。
For comparison, it has the same structure as the one shown in Figure 9, the inner electromagnet has a thickness of 44 m+, the outer electromagnet has a thinner thickness of 22 mm, and the diameter of the center yoke is 14 mm.
Prepare a conventional double-pole electromagnet as large as 9as+, and use 3A for the inner electromagnet.

外側の電磁石の電流を逆方法の10Aとしても、第16
図示のように直径110#lIにしかプラズマ領域Nが
収束しない。
Even if the current of the outer electromagnet is set to 10A in the reverse method, the 16th
As shown in the figure, the plasma region N converges only to a diameter of 110#lI.

また外側の電磁石に1OA、内側の電磁石に一10Aの
同方向電流を流すと第17図示のような外径が200m
+で内径が160mの環状の最大径のプラズマ領域0が
形成される。而してこれの収束した場合、及び最大径と
なった場合のプラズマ領域の範囲は、本発明のものに較
べて狭い。 尚、ターゲット(3)の外周に、第18図
示のような環状の補助磁石(12を設け、その磁界によ
り該外周の方向へのプラズマの拡散を防ぐようにすれば
、より一層密度の高いプラズマ領域を該ターゲット(3
)の前面に形成することが出来る。(発明の効果) 以上のように本発明によるときは、スパッタリング用の
2重極電磁石の中間部に介在するヨークの径を外周のヨ
ークの径の半分以上に形成するようにしたので、プラズ
マ領域をターゲットの前方に於いて広範囲に移動させる
ことが出来るため、ターゲットと基板間の距離を近づけ
ても基板に形成されたコンタクトホール内にオーバーハ
ングが生じなくなり対称性の良い薄膜を効率良く形成す
ることが出来る等の効果がある。
Furthermore, if a current of 1 OA is applied to the outer electromagnet and a current of 10 A is applied to the inner electromagnet in the same direction, the outer diameter becomes 200 m as shown in Figure 17.
+, an annular plasma region 0 with an inner diameter of 160 m and a maximum diameter is formed. The range of the plasma region when it converges and reaches its maximum diameter is narrower than that of the present invention. Incidentally, if an annular auxiliary magnet (12) as shown in Fig. 18 is provided around the outer circumference of the target (3) and the magnetic field is used to prevent the plasma from dispersing in the direction of the outer circumference, plasma with even higher density can be generated. area to the target (3
) can be formed on the front surface of the (Effects of the Invention) As described above, according to the present invention, the diameter of the yoke interposed in the middle part of the sputtering dipole electromagnet is formed to be more than half the diameter of the yoke on the outer periphery. can be moved over a wide range in front of the target, so even if the distance between the target and the substrate is shortened, there will be no overhang in the contact hole formed on the substrate, and a thin film with good symmetry can be efficiently formed. There are effects such as being able to do things.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来例の断面図、第2図は基板に形成されたコ
ンタクトホールの拡大断面図、第3図及び第4図は従来
のスパッタリング装置によるコンタクトホールへの薄膜
形成例を示す拡大断面図、第5図は従来のプラズマ領域
の移動状態を示す説明図、第6図は従来の装置によるエ
ロージョン領域と基板上の各点に於ける薄膜の形成速度
を示す線図、第7図は従来のプラズマ領域を移動させた
場合に於けるコンタクトホール内の薄膜形成状態を示す
拡大断面図、第8図は本発明の実施例の断面図、第9図
乃至第11図は本発明の実施例に於けるターゲット前方
の磁束密度を示す線図、第12図乃至第14図は夫々第
9図乃至第11図示の場合のプラズマ領域を示す平面図
、第15図は本発明の実施例によりコンタクトホール内
に形成された薄膜を示す拡大断面図、第16図及び第1
7図は従来例によるプラズマ領域の変化を示す平面図、
第18図は本発明の他の実施例の断面図である。 (1)・・・基  板    (2)・・・真空室(3
)・・・ターゲット   (4)・・・2重極電磁石(
5)・・・内側の電磁石  (6)・・・外側の電磁石
(7) (8)・・・厚  さ ゐ12図    第13図 第1L図
FIG. 1 is a cross-sectional view of a conventional example, FIG. 2 is an enlarged cross-sectional view of a contact hole formed in a substrate, and FIGS. 3 and 4 are enlarged cross-sectional views showing examples of thin film formation in contact holes using conventional sputtering equipment. Figure 5 is an explanatory diagram showing the moving state of a conventional plasma region, Figure 6 is a diagram showing the erosion region and the thin film formation rate at each point on the substrate by the conventional apparatus, and Figure 7 is a diagram showing the thin film formation rate at each point on the substrate. FIG. 8 is an enlarged sectional view showing the state of thin film formation in a contact hole when the conventional plasma region is moved. FIG. 8 is a sectional view of an embodiment of the present invention. FIGS. A diagram showing the magnetic flux density in front of the target in the example, FIGS. 12 to 14 are plan views showing the plasma region in the cases shown in FIGS. 9 to 11, respectively, and FIG. 15 is a diagram showing the magnetic flux density in front of the target. Enlarged cross-sectional view showing the thin film formed in the contact hole, FIGS. 16 and 1
Figure 7 is a plan view showing changes in the plasma region according to the conventional example;
FIG. 18 is a sectional view of another embodiment of the present invention. (1)...Substrate (2)...Vacuum chamber (3
)...Target (4)...Dipole electromagnet (
5)...Inner electromagnet (6)...Outer electromagnet (7) (8)...Thickness Fig. 12 Fig. 13 Fig. 1L

Claims (1)

【特許請求の範囲】[Claims] 真空室内の基板と対向して設けたターゲットの背面に、
内側と外側の2重の環状の電磁石を備え且つ該内側の電
磁石の中心部と外側の電磁石の外周部及び両電磁石の中
間部にヨークを設けて構成した2重極電磁石を配置し、
該基板にマグネトロン形のスパッタリングによる薄膜を
形成するようにしたものに於いて、該2重極電磁石を構
成する中間部のヨークの径を外周部のヨークの径よりも
約半分以下に形成したことを特徴とするスパッタリング
用電磁石装置。
On the back of the target, which is placed opposite the substrate in the vacuum chamber,
A dipole electromagnet is arranged, which is equipped with an inner and outer double ring-shaped electromagnet, and a yoke is provided in the center of the inner electromagnet, the outer periphery of the outer electromagnet, and the middle part of both electromagnets,
In the substrate in which a thin film is formed by magnetron sputtering, the diameter of the intermediate yoke constituting the dipole electromagnet is approximately half or less than the diameter of the outer peripheral yoke. An electromagnetic device for sputtering characterized by:
JP30873686A 1986-12-26 1986-12-26 Electromagnet device for sputtering Pending JPS63162866A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30873686A JPS63162866A (en) 1986-12-26 1986-12-26 Electromagnet device for sputtering

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30873686A JPS63162866A (en) 1986-12-26 1986-12-26 Electromagnet device for sputtering

Publications (1)

Publication Number Publication Date
JPS63162866A true JPS63162866A (en) 1988-07-06

Family

ID=17984666

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30873686A Pending JPS63162866A (en) 1986-12-26 1986-12-26 Electromagnet device for sputtering

Country Status (1)

Country Link
JP (1) JPS63162866A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180005183A (en) * 2015-05-11 2018-01-15 가부시키가이샤 에바라 세이사꾸쇼 Electromagnetism device, electromagnetism control device, electromagnetism control method and electromagnetism system
US11662397B2 (en) 2019-08-26 2023-05-30 Ebara Corporation Electromagnet control device and electromagnet system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180005183A (en) * 2015-05-11 2018-01-15 가부시키가이샤 에바라 세이사꾸쇼 Electromagnetism device, electromagnetism control device, electromagnetism control method and electromagnetism system
US11662397B2 (en) 2019-08-26 2023-05-30 Ebara Corporation Electromagnet control device and electromagnet system

Similar Documents

Publication Publication Date Title
US6458252B1 (en) High target utilization magnetic arrangement for a truncated conical sputtering target
US4747926A (en) Conical-frustum sputtering target and magnetron sputtering apparatus
US4891560A (en) Magnetron plasma apparatus with concentric magnetic means
US4724060A (en) Sputtering apparatus with film forming directivity
US5865961A (en) Magnetron sputtering apparatus and method
US4971674A (en) Magnetron sputtering method and apparatus
US20040045811A1 (en) Magnetically confined metal plasma sputter source with magnetic control of ion and neutral densities
EP0884761A1 (en) Sputtering apparatus with a rotating magnet array
JP2000144399A (en) Sputtering device
JPS5816068A (en) Target electrode structure for planer magnetron system spattering device
EP1144713B1 (en) High target utilization magnetic arrangement for a truncated conical sputtering target
JPS63162866A (en) Electromagnet device for sputtering
JPS60255974A (en) Sputter coating source with plural target rings
JPH0692632B2 (en) Flat plate magnetron sputtering system
JPS62167877A (en) Plasma transfer type magnetron sputtering apparatus
JPS58199862A (en) Magnetron type sputtering device
JPH01116068A (en) Bias sputtering device
JPS6277459A (en) Sputtering electrode
JP4056112B2 (en) Magnetron sputtering equipment
JPS6296671A (en) Sputtering electrode
JPS62119907A (en) Sputtering device for formation of magnetic thin film
JPS58141387A (en) Sputtering device
JPS63103065A (en) Film formation by sputtering
JPH09310174A (en) Sputtering device
JP2689126B2 (en) Microwave plasma processing equipment