JPS5816068A - Target electrode structure for planer magnetron system spattering device - Google Patents

Target electrode structure for planer magnetron system spattering device

Info

Publication number
JPS5816068A
JPS5816068A JP11366081A JP11366081A JPS5816068A JP S5816068 A JPS5816068 A JP S5816068A JP 11366081 A JP11366081 A JP 11366081A JP 11366081 A JP11366081 A JP 11366081A JP S5816068 A JPS5816068 A JP S5816068A
Authority
JP
Japan
Prior art keywords
target
magnetic
spatter
magnetic field
magnetic pole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11366081A
Other languages
Japanese (ja)
Other versions
JPS6116347B2 (en
Inventor
Kazuyuki Fujimoto
藤本 一之
Yoshio Nakagawa
宣雄 中川
Katsuo Abe
勝男 阿部
Hide Kobayashi
秀 小林
Tsuneaki Kamei
亀井 常彰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP11366081A priority Critical patent/JPS5816068A/en
Priority to US06/400,258 priority patent/US4444635A/en
Priority to EP82106621A priority patent/EP0070574B1/en
Priority to DE8282106621T priority patent/DE3272887D1/en
Publication of JPS5816068A publication Critical patent/JPS5816068A/en
Publication of JPS6116347B2 publication Critical patent/JPS6116347B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3492Variation of parameters during sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3402Gas-filled discharge tubes operating with cathodic sputtering using supplementary magnetic fields
    • H01J37/3405Magnetron sputtering
    • H01J37/3408Planar magnetron sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3411Constructional aspects of the reactor
    • H01J37/3414Targets
    • H01J37/3426Material
    • H01J37/3429Plural materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3411Constructional aspects of the reactor
    • H01J37/345Magnet arrangements in particular for cathodic sputtering apparatus
    • H01J37/3458Electromagnets in particular for cathodic sputtering apparatus

Abstract

PURPOSE:To form spatter films of various composition ratio easily by placing spatter materials of more than two kinds in a target electrode of a spattering device of planer magnetron system and installing a specified target electrode. CONSTITUTION:Different spatter materials A, B are provided concentrically on a target plate, and a permanent magnet 4 for generating main magnetic flux and a peripheral soft magnetic material 3 are attached. Further, a magnetic pole 13 for controlling the shape of distribution of magnetic line of force and a coil 14 for exciting are provided to control the shape of magnetic line of force. Plasma domains 16a, 16b are generated by forming flat parts of two kinds of magnetic line of force 15a, 15b in a hollow space of the side of the target plate 12 that faces a sample base plate. Erosion domains in the target plate are in the domain of spatter material A and in the domain of spatter material B. Spatter films of various composition ratio can be formed easily by sending out spatter materials A and B alternately.

Description

【発明の詳細な説明】 本発明は、薄膜製造プロセスによって作製される試料基
板表面上に堆積された薄膜の厚み方向の組成制御ないし
は組成の異った薄膜を単一の成震源にて作製し得るプレ
ーナマグネトロン方式スパッタリング装置のターゲット
構造体に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention involves controlling the composition in the thickness direction of a thin film deposited on the surface of a sample substrate produced by a thin film manufacturing process, or producing thin films with different compositions using a single seismic source. The present invention relates to a target structure for a planar magnetron sputtering apparatus.

スパッタリング技術は、低圧の雰囲気ガスをグロー放電
を起こしてイオン化(プラズマ状)し、陰陽電極間に印
加された電圧によシ、そのプラズマ状イオンが加速され
て、陰極におかれたターゲット材料の平板に衝突させら
れる。
In sputtering technology, low-pressure atmospheric gas is ionized (plasma-like) by causing a glow discharge, and the plasma-like ions are accelerated by a voltage applied between negative and positive electrodes, and the target material placed on the cathode is Collided into a flat plate.

衝突させられたイオンにより飛び出されたターゲット材
料の構成原子又は粒子は、陽極近傍に設けられた基板上
に付着堆積して、ターゲット材料の薄膜を形成する技術
である。
This is a technique in which constituent atoms or particles of the target material ejected by the collided ions are deposited on a substrate provided near the anode to form a thin film of the target material.

上記スパッタリング技術を用いたプレーナマグネトロン
方式スパッタリング装置は、その堆積速度が従来の抵抗
加熱型真空蒸着装置に匹敵する程度になるに及び、近都
薄膜集積回路や半導体デバイス用の薄膜形成装置として
、その生産用成膜工程に多用されるに到つた。
Planar magnetron sputtering equipment using the above-mentioned sputtering technology has reached a level where its deposition rate is comparable to that of conventional resistance heating type vacuum evaporation equipment, and has recently become popular as a thin film forming equipment for thin film integrated circuits and semiconductor devices. It has come to be widely used in production film formation processes.

第1図はよく知られた従来技術によるプレーナマグネト
ロン方式スパッタリング装fl(1) P −ゲット材
料平板近傍の構造を示す概念説明断面図である。ターゲ
ット材料平板(以下ターゲット平板という)1の裏面に
ヨーク!により磁気結合されたリング状磁極6と、その
リング状磁極5の中心部に円柱状磁極4とが、磁気回路
を構成して配置されている。これらの磁極3,4によっ
てターゲット平板10表面側(第1図1の下側)の空間
に磁力線の分布、換言すれば円環体(Torus )の
高さ方向に垂直な平面で半裁しその半裁面がターゲット
平板10表面に平行におかれた半円環状磁界分布、通称
トンネル状磁界分布5が発生する。このトンネル状磁界
分布5によって、その内部に上記プラズマ状イオンが高
濃度に閉じ込められる(図示せず)。このプラズマ状イ
オンは、さらに陽極6とターゲット平板1の裏面に設置
された陰極7間に印加された高電圧により発生している
ターゲット平板10表面にほぼ垂直な電界によって加速
され、ターゲット平板1表面に衝突し、その結果、ター
ゲット平板1表面から順次、その原子又は粒子がはじき
出され、侵食領域8が形成される。
FIG. 1 is a conceptual explanatory sectional view showing the structure of a planar magnetron type sputtering apparatus fl(1) in the vicinity of a flat plate of P-get material according to a well-known prior art. Yoke on the back side of target material flat plate (hereinafter referred to as target flat plate) 1! A ring-shaped magnetic pole 6 magnetically coupled to the ring-shaped magnetic pole 5 and a cylindrical magnetic pole 4 at the center of the ring-shaped magnetic pole 5 are arranged to form a magnetic circuit. These magnetic poles 3 and 4 distribute magnetic lines of force in the space on the surface side of the target flat plate 10 (lower side in FIG. 1), in other words, the torus is cut in half by a plane perpendicular to the height direction. A semicircular magnetic field distribution whose surface is parallel to the surface of the target flat plate 10, commonly known as a tunnel-shaped magnetic field distribution 5, is generated. This tunnel-like magnetic field distribution 5 confines the plasma-like ions therein at a high concentration (not shown). These plasma-like ions are further accelerated by an electric field almost perpendicular to the surface of the target flat plate 10 generated by a high voltage applied between the anode 6 and the cathode 7 installed on the back surface of the target flat plate 1. As a result, the atoms or particles are sequentially ejected from the surface of the target flat plate 1, and an eroded region 8 is formed.

この侵食領域8は、以上の説明から推定されるように、
スパッタリング工程の時間経過に伴って侵食度が進むか
、この侵食は通常第1図に示す構成のターゲット平板構
造体では、ターゲット平板の特定の領域に限定されて進
行する。
As estimated from the above explanation, this erosion area 8 is
The degree of erosion progresses with the passage of time in the sputtering process, or, in the case of the target flat plate structure shown in FIG. 1, this erosion usually progresses only in a specific region of the target flat plate.

前記侵食領域は、磁力線がターゲット平板に平行になる
点あるいは領域に対応して発生する。
The erosion region occurs corresponding to a point or region where the magnetic field lines are parallel to the target plate.

なお、説明が遅れたが、図において9は絶縁板10はシ
ールド、11はターゲット平板1を冷却する媒質(例え
ば水)の導入出管である。
Although the explanation is delayed, in the figure, 9 is the insulating plate 10 as a shield, and 11 is an inlet/outlet pipe for a medium (for example, water) for cooling the target flat plate 1.

第2図は、上記第1図に示したターゲット電極構造体を
有した従来の複数物質のスパッタリンl装置の11部構
成説明図である0図藺並に説明を簡明にするために、2
つの物質A及びBtスパッタする鳩舎で説明する。なお
、図において、前出のものと同−符号社同一または均等
部分會示すものとする0図から明らかなように、本スノ
(ツタリング装置は、被スパツタ物質としてそれぞれ物
質A及び物質Bt有するターゲット平1[を備えたター
ゲット電極構造体I及び■が、図示しないが棗〈知られ
た真空排気系、雰囲気ガス(例えばアルゴン)導入系、
試料基板搬送手段*1もつ真空槽内に併置されて構成さ
れている。
FIG. 2 is an explanatory diagram of the 11-part configuration of a conventional multi-material sputtering apparatus having the target electrode structure shown in FIG.
The explanation will be given using a pigeonhole in which two materials A and Bt are sputtered. In addition, in the figure, the same reference numerals as those in the previous one indicate the same or equivalent parts. Although not shown, the target electrode structures I and (2) equipped with Hei 1 [1] are equipped with a known vacuum evacuation system, an atmospheric gas (e.g., argon) introduction system,
It is configured to be placed side by side in a vacuum chamber with a sample substrate transport means *1.

上記従来の俟tt用いて、試料基板表面上に堆積された
薄膜の厚み方向の組成制御1行うには、試料基板(図中
に示さず)上に物質A(例えばA7)と物質B(例えば
Si)の原子(又は粒子)が到達し付着する速度の比t
、陽極6−陰極ア電極間に印加する電圧及び電rIL′
tターゲット電極構造体Iと■で別個に制御し、所望の
組成の物質を得ることができる。
To control the composition in the thickness direction of a thin film deposited on the surface of a sample substrate 1 using the above-mentioned conventional method, substance A (e.g., A7) and substance B (e.g., Ratio t of the speed at which atoms (or particles) of Si) reach and adhere
, the voltage and current rIL' applied between the anode 6 and cathode electrodes
By controlling the target electrode structures I and (2) separately, it is possible to obtain a substance with a desired composition.

しかしながら、ターゲット平板からはじき出されるスパ
ッタ物質の量は方向によシ異なシ、試料基板面上での堆
積厚さが均一なものを得るには、該試料基板をターゲッ
ト電極構造体■及び■かも十分な距離含量いて設置する
必要があシ、成膜速度が非常に低下してしまい実用的で
なかった。
However, the amount of sputtered material that is repelled from the target plate varies depending on the direction, and in order to obtain a uniform deposition thickness on the sample substrate surface, it is sufficient to place the sample substrate on the target electrode structures (1) and (2). It was necessary to install the film at a certain distance, and the film formation rate was extremely low, making it impractical.

本発明の目的は、上記した従来技術の欠点を解消し、試
料基板表面に均一に種々の組成の膜が形成でき、また、
膜の厚み方向に組成制御された膜が形成できるプレーナ
マグネトロン方式スパッタリング装置のターゲット構造
体を提供することにある。
The purpose of the present invention is to eliminate the drawbacks of the above-mentioned conventional techniques, to be able to uniformly form films of various compositions on the surface of a sample substrate, and to
An object of the present invention is to provide a target structure for a planar magnetron sputtering apparatus that can form a film whose composition is controlled in the thickness direction of the film.

上記の目的を達成するために、本発明のスパッタリング
装置においては、成膜源としてのターゲット平板及びタ
ーゲット構造体を改良し、その改良したターゲット構造
体t−1つ用いるのみで、複数の物質管スパッタするこ
とができるように構成した。すなわち、本発明の要点と
するところは、磁力線が一つの磁力線源から発生した場
合には、その性質として交鎖することがなく、磁力線相
互にMaze−ツノ応力なる引力ないし斥力が作用する
ことに鑑み、複数の磁極を有する一つの磁力線源を構成
し、その一部の磁極に発生する磁力線を制御して他の残
りの磁極に発する磁力線分布の立つ位置を移動させるこ
とによシ、プラズマの立つ位置を移動させることができ
る励磁手段を具備させ、また、ターゲット平板には被ス
パツタ物質として2種以上の異った物質領域を設けたこ
とを特徴とするプレーナマグネトロン方式スパッタリン
グ装置のターゲット構造体である。
In order to achieve the above object, the sputtering apparatus of the present invention improves the target flat plate and target structure as a film forming source, and uses only one improved target structure t- to produce a plurality of material tubes. It was configured so that it could be sputtered. In other words, the main point of the present invention is that when magnetic lines of force are generated from a single source of magnetic lines of force, they do not cross-link due to their nature, and an attractive or repulsive force called Maze-horn stress acts on each other. In view of this, it is possible to control the plasma by configuring one magnetic field line source with multiple magnetic poles, controlling the magnetic field lines generated at some of the magnetic poles, and moving the position of the magnetic field line distribution emitted from the remaining magnetic poles. A target structure for a planar magnetron sputtering apparatus, characterized in that it is equipped with excitation means that can move the standing position, and that a target flat plate is provided with regions of two or more different materials as materials to be sputtered. It is.

以下、本発明を実施例によって詳細に説明する。但し、
本発明のターゲット構造体の磁力線源及び磁力線の分布
形状制御手段については、1本願の発明者勢が先に提案
(特願昭56−1168特>した亀のを流用するので、
その部分の説明は簡単にすることにする。
Hereinafter, the present invention will be explained in detail with reference to Examples. however,
Regarding the source of magnetic lines of force and means for controlling the distribution shape of lines of magnetic force for the target structure of the present invention, we will utilize the tortoise previously proposed by the inventors of the present application (Japanese Patent Application No. 1168-1988).
I will keep the explanation of that part simple.

第5図は、本発明に係わるプレーナマグネトロン方式ス
パッタリング装置のターゲット電極構造体の一実施例の
断面構造図である。図において、12は複数の異なる被
スパツタ材料を備えたターゲット平板である0本実施例
においても説明上簡単にするため、被スパツタ材料とし
て2つの物質A及びBを備えた場合で説明する。
FIG. 5 is a cross-sectional structural diagram of one embodiment of a target electrode structure of a planar magnetron type sputtering apparatus according to the present invention. In the figure, reference numeral 12 denotes a flat target plate provided with a plurality of different materials to be sputtered.In order to simplify the explanation in this embodiment, a case will be described in which two substances A and B are provided as materials to be sputtered.

上記ターゲット平板12は、物質Aとして右。The target flat plate 12 is shown on the right as material A.

物質BとしてSiよ〕なる直径89m5φ、板厚2−の
円盤状平板である。物質A及びBd該円盤払、平板の半
径方向に異なる同心円状領域に配設されている。4及び
3は主磁速発生用に中央部に設けた永久磁石からなる第
1の磁極とそれを取巻く外周に設けた軟磁性材料(高透
磁率磁性材料:例えばパーマロイ)からなる第2の磁極
である。15及び14は磁力線の分布形状制御手段とし
てヨーク2に磁気的に連結して設けた軟磁性材料からな
る第3の磁極及び賦第3の磁極15の励磁用コイルであ
る。励磁用コイル14は第2の磁極3と第3の磁極13
との中間空間に多数巻した円環状コイルで、こ\に通ず
る制御電流によって、この全体の磁速分布すなわち磁力
線分布の形が制御される。このように磁力線分布を制御
して、ターゲット平板12の試料基板と対向する側の中
空空間に、実線及び点線で示すような2種の磁力線15
z、15!に扁平部t−設けることができ、プラズマ領
域L6g、16ht発生できる。
The material B is Si], and is a disk-shaped flat plate with a diameter of 89 m5φ and a thickness of 2 mm. The substances A and Bd are arranged in radially different concentric areas of the disk. 4 and 3 are a first magnetic pole made of a permanent magnet provided in the center for generating the main magnetic velocity, and a second magnetic pole made of a soft magnetic material (high permeability magnetic material: for example permalloy) provided on the outer periphery surrounding it. It is. Reference numerals 15 and 14 indicate a third magnetic pole made of a soft magnetic material and a coil for exciting the third magnetic pole 15, which is magnetically connected to the yoke 2 and provided as means for controlling the distribution shape of lines of magnetic force. The excitation coil 14 has a second magnetic pole 3 and a third magnetic pole 13.
A large number of toroidal coils are wound in the intermediate space between the magnetic field and the magnetic field, and the control current flowing through this coil controls the overall magnetic velocity distribution, that is, the shape of the magnetic field line distribution. By controlling the magnetic field line distribution in this way, two types of magnetic field lines 15 as shown by solid lines and dotted lines are placed in the hollow space on the side of the target flat plate 12 facing the sample substrate.
Z, 15! A flat portion t- can be provided in the plasma region L6g and a plasma region L16ht can be generated.

そのため、ターゲット平板12における侵食領域は、被
スパツタ物質A(A))の領域及び物質B(5i)の領
域の2つに存在し、物質Aと物質Bを交互に飛び出させ
ることができ、しかもプラズマの応答は数千mIの速さ
で、各物質領域上での滞在時間及びその比を自由に設定
することができるので1種々の組成比のスパッタ膜が容
易に得られる。
Therefore, the eroded areas on the target flat plate 12 exist in two areas: the area of the material to be sputtered A (A)) and the area of the material B (5i), and the material A and the material B can be sputtered out alternately. The plasma response is at a speed of several thousand mI, and the residence time on each material region and the ratio thereof can be freely set, so sputtered films with various composition ratios can be easily obtained.

なお、従来、例えばCr−5iの合金薄膜を基板面に堆
積させるのに、 CrとSiを短柵状に並べたターゲッ
トを用いることが行なわれているが、この場合、Cr−
5i合金薄膜の組成は、被スパツタ面な占めるCrとS
iの面積比で決まっていた。この従来法を本発明に代え
、ターゲット平板の物質AとしてCr、物質BとしてS
if用いれば、種々の組成の膜を容易に作製することが
できる。
Conventionally, a target in which Cr and Si are arranged in a short fence shape has been used to deposit, for example, a Cr-5i alloy thin film on a substrate surface.
The composition of the 5i alloy thin film is Cr and S occupying the sputtered surface.
It was determined by the area ratio of i. By replacing this conventional method with the present invention, the material A of the target plate is Cr, and the material B is S.
By using if, films with various compositions can be easily produced.

以上説明したように、本発明のターゲット構造体を備え
たスパッタリング装置及びその制御手段管用いることに
よシ、2つの異なる物質AとB(例えばAl−5i又は
Cr −Si等>’を種々の組成比で効率よく試料基板
上に堆積し得るのみならず、膜厚方向に組成を容易に制
御することができる。
As explained above, by using the sputtering apparatus equipped with the target structure of the present invention and its control means tube, two different substances A and B (for example, Al-5i or Cr-Si, etc.) can be sputtered in various ways. Not only can the composition be efficiently deposited on a sample substrate with a certain composition ratio, but also the composition can be easily controlled in the film thickness direction.

なお、本発明は上述した実施例に限定される本のではな
く、磁力線源を構成する磁極を分割したり、増加したシ
、また永久磁石t−ta石に変えるなど種々の変更が可
能であり、また、ターゲット平板の複数(2種以上)の
スパッタ物質配置に関しても、その各物質の領域の位置
It should be noted that the present invention is not limited to the embodiments described above, and various modifications can be made such as dividing the magnetic poles constituting the magnetic field line source, increasing the number of magnetic poles, or changing the magnetic poles to permanent magnets. , Also, regarding the arrangement of a plurality of (two or more) sputtering materials on the target flat plate, the position of the region of each material.

面積等の配分が種々性なわれることは言うまでもないこ
とである。
It goes without saying that the distribution of area, etc. may vary.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のプレーナマグネトロン方式スパッタリン
グ装置のターゲット電極構造体を示す断面図1M2図は
第1図のターゲット電極構造体を有する従来の複数物質
スパッタリング装置の要部構成説明図、第3図は本発明
の装置のターゲット電極構造体の断面構造図である。 1・・・ターゲット平板 2・・・ヨーク 5・・・磁
極(第2の磁極) 4・・・磁極(第1の磁極)5・・
・磁界分布 6・・・陽極 7・・・陰極 8・・・侵
食領域 12・・・ターゲット平板 15・・・磁極(
第Sの磁極)14・・・励磁用コイル 15g、15h
・・・磁力線16α、16b・・・プラズマ領域 A、
B・・・被スパツタ物質 代理人弁理士 薄 1)利 幸 /” ′、l・・ 25 図 第1頁の続き 0発 明 者 亀井常彰 横浜市戸塚区吉田町292番地株 式会社日立製作所生産技術研究 所内 3
FIG. 1 is a cross-sectional view showing a target electrode structure of a conventional planar magnetron sputtering device. FIG. FIG. 3 is a cross-sectional structural diagram of a target electrode structure of the device of the present invention. 1... Target flat plate 2... Yoke 5... Magnetic pole (second magnetic pole) 4... Magnetic pole (first magnetic pole) 5...
・Magnetic field distribution 6... Anode 7... Cathode 8... Erosion area 12... Target flat plate 15... Magnetic pole (
Sth magnetic pole) 14... Excitation coil 15g, 15h
...Magnetic field lines 16α, 16b...Plasma region A,
B... Patent attorney representing the spattered substance Susuki 1) Toshiyuki/'', l... 25 Continued from Figure 1 page 0 Inventor Tsuneaki Kamei 292 Yoshida-cho, Totsuka-ku, Yokohama City Hitachi, Ltd. Production Technology Laboratory 3

Claims (1)

【特許請求の範囲】 t 試料基板の堆積面とは所与の間隔を隔てて対面する
第1の主面と対面しない第2の主面とt有する被スパツ
タ物質からなる成膜源としてのターゲット平板と、上記
試料基板と該ターゲット平板の第1の主面との間の上記
所与の間隔を保持して構成される中空空間に所定の磁界
分布を発生する磁界発生手段と、上記ターゲット平板の
第2の主面側に諌第2の主面に近接あるいは接して設け
られた陰極電極と、上記中空空間に該陰極電極とは空間
的に離れて設けられた陽極電極と、これら両電極に電力
を供給し両電極間空間に電界分布を発生する電界印加手
段とt具備せしめて構成したプレーナマグネトロン方式
スパッタリング装置のターゲット電極構造体であって、
上記ターゲット平板社、その第1の主面に**の被スパ
ツタ物質をそれぞれ異なる領域に配設した構成とし、上
記磁界発生手段は、主磁界発生用に中央部に設けた第1
のl!極とそれ1*巻く外周に設けた少なくとも1つの
第2の磁極及びそれらを磁気的に接続するヨークを備え
、且つ磁力線分布制御用に上記ヨークに磁気的に連結さ
れた少なくとも1つの第暴のa極と腋゛第3の磁極を励
磁する励磁コイルを備え、上記全磁極142で一つの磁
力纏源“を構成するとともに上記第1の磁極の励磁コイ
ルに流す制御電流に工って上記中空空間内の全体の磁力
線の分布形状音制御し、複数物質からなるスパッタ膜の
組成制御を行なわしめるよう構成したことt4I黴とす
るプレーナマグネトロン方式スパッタリング装置のター
ゲット電極構造体。 Zmmメタ−ゲット平板、その菖1の主面に複数の被ス
パツタ物質tそれぞれ半価方向に異なる同心円状領域に
配設して構成したものであることt−特徴とする特許請
求の範囲第1項記載のプレーナマグネトロン方式スパッ
タリング装置のターゲット電極構造体。
[Claims] A target as a film-forming source consisting of a sputtering material having a first main surface facing the deposition surface of the sample substrate at a given interval and a second main surface not facing the deposition surface of the sample substrate. a flat plate; magnetic field generating means for generating a predetermined magnetic field distribution in a hollow space formed by maintaining the given spacing between the sample substrate and the first main surface of the target flat plate; and the target flat plate. a cathode electrode provided close to or in contact with the second main surface, an anode electrode provided in the hollow space spatially apart from the cathode electrode, and both of these electrodes. A target electrode structure for a planar magnetron sputtering apparatus, comprising an electric field applying means for supplying electric power to and generating an electric field distribution in a space between both electrodes,
The above-mentioned target Taitabansha has a configuration in which the sputtering substances ** are arranged in different areas on the first main surface thereof, and the above-mentioned magnetic field generating means is configured such that the first sputtering material is arranged in a central part for generating the main magnetic field.
No l! A magnetic pole, at least one second magnetic pole provided on the outer periphery of the magnetic pole, and a yoke for magnetically connecting them, and at least one second magnetic pole magnetically connected to the yoke for magnetic field line distribution control. The a-pole and the armpit are provided with an excitation coil that excites the third magnetic pole, and all the magnetic poles 142 constitute one magnetic force source. A target electrode structure of a planar magnetron sputtering device configured to control the distribution shape and sound of the entire magnetic field line in a space and to control the composition of a sputtered film made of a plurality of substances.Zmm metal get plate, A planar magnetron system according to claim 1, characterized in that a plurality of substances to be sputtered are disposed on the main surface of the irises 1 in concentric circular regions different in the half-value direction. Target electrode structure for sputtering equipment.
JP11366081A 1981-07-22 1981-07-22 Target electrode structure for planer magnetron system spattering device Granted JPS5816068A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP11366081A JPS5816068A (en) 1981-07-22 1981-07-22 Target electrode structure for planer magnetron system spattering device
US06/400,258 US4444635A (en) 1981-07-22 1982-07-21 Film forming method
EP82106621A EP0070574B1 (en) 1981-07-22 1982-07-22 Film forming method
DE8282106621T DE3272887D1 (en) 1981-07-22 1982-07-22 Film forming method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11366081A JPS5816068A (en) 1981-07-22 1981-07-22 Target electrode structure for planer magnetron system spattering device

Publications (2)

Publication Number Publication Date
JPS5816068A true JPS5816068A (en) 1983-01-29
JPS6116347B2 JPS6116347B2 (en) 1986-04-30

Family

ID=14617910

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11366081A Granted JPS5816068A (en) 1981-07-22 1981-07-22 Target electrode structure for planer magnetron system spattering device

Country Status (1)

Country Link
JP (1) JPS5816068A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58171569A (en) * 1982-03-31 1983-10-08 Hidetoshi Tsuchiya Magnetron sputtering device
JPS6039161A (en) * 1983-07-19 1985-02-28 バリアン・アソシエイツ・インコーポレイテツド Method and device for controlling sputter coating
JPS6039160A (en) * 1983-07-19 1985-02-28 バリアン・アソシエイツ・インコーポレイテツド Magnetron sputter coating source for both magnetic and non-magnetic target substances
JPS60148951A (en) * 1984-01-11 1985-08-06 菊水化学工業株式会社 Construction method using glaze free tile as joint
JPS6112863A (en) * 1984-06-28 1986-01-21 Toshiba Corp Formation of alloy film
US4606806A (en) * 1984-05-17 1986-08-19 Varian Associates, Inc. Magnetron sputter device having planar and curved targets
JPS63262462A (en) * 1987-04-17 1988-10-28 Ube Ind Ltd Method and device for plasma-control magnetron sputtering
JPS6419749U (en) * 1987-07-25 1989-01-31
JPH0289137U (en) * 1988-12-28 1990-07-16
JPH0358536U (en) * 1989-10-14 1991-06-07
JPH03126940U (en) * 1990-04-03 1991-12-20
JP2007527839A (en) * 2004-03-01 2007-10-04 プラクスエア・テクノロジー・インコーポレイテッド Low zirconium hafnium halide composition

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0332509Y2 (en) * 1986-06-27 1991-07-10

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6154112B2 (en) * 1982-03-31 1986-11-20 Hidetoshi Tsucha
JPS58171569A (en) * 1982-03-31 1983-10-08 Hidetoshi Tsuchiya Magnetron sputtering device
JPS6039161A (en) * 1983-07-19 1985-02-28 バリアン・アソシエイツ・インコーポレイテツド Method and device for controlling sputter coating
JPS6039160A (en) * 1983-07-19 1985-02-28 バリアン・アソシエイツ・インコーポレイテツド Magnetron sputter coating source for both magnetic and non-magnetic target substances
JPS60148951A (en) * 1984-01-11 1985-08-06 菊水化学工業株式会社 Construction method using glaze free tile as joint
JPH0328554B2 (en) * 1984-01-11 1991-04-19 Kikusui Kagaku Kogyo Kk
US4606806A (en) * 1984-05-17 1986-08-19 Varian Associates, Inc. Magnetron sputter device having planar and curved targets
JPS6112863A (en) * 1984-06-28 1986-01-21 Toshiba Corp Formation of alloy film
JPS63262462A (en) * 1987-04-17 1988-10-28 Ube Ind Ltd Method and device for plasma-control magnetron sputtering
JPS6419749U (en) * 1987-07-25 1989-01-31
JPH0289137U (en) * 1988-12-28 1990-07-16
JPH0358536U (en) * 1989-10-14 1991-06-07
JPH03126940U (en) * 1990-04-03 1991-12-20
JP2007527839A (en) * 2004-03-01 2007-10-04 プラクスエア・テクノロジー・インコーポレイテッド Low zirconium hafnium halide composition
JP4852527B2 (en) * 2004-03-01 2012-01-11 プラクスエア・テクノロジー・インコーポレイテッド Low zirconium hafnium halide composition

Also Published As

Publication number Publication date
JPS6116347B2 (en) 1986-04-30

Similar Documents

Publication Publication Date Title
US4401539A (en) Sputtering cathode structure for sputtering apparatuses, method of controlling magnetic flux generated by said sputtering cathode structure, and method of forming films by use of said sputtering cathode structure
US4610770A (en) Method and apparatus for sputtering
KR20020005512A (en) Biased shield in a magnetron sputter reactor
JPH0585634B2 (en)
JPH01272765A (en) Sputtering coating apparatus and method
JPS60152671A (en) Sputtering electrode
JPS5816068A (en) Target electrode structure for planer magnetron system spattering device
WO2009157439A1 (en) Sputtering apparatus and sputtering method
TW201009104A (en) Sputtering apparatus
JP3419899B2 (en) Sputtering method and sputtering apparatus
JPS6128029B2 (en)
JPH08209343A (en) Method and apparatus for plane magnetron sputtering
JPS583976A (en) Method and device for formation of film by sputtering
JPS59173265A (en) Sputtering device
JPS583975A (en) Method and device for forming film by sputtering
JPH0660393B2 (en) Plasma concentrated high-speed sputter device
JP3610289B2 (en) Sputtering apparatus and sputtering method
JPS58199862A (en) Magnetron type sputtering device
JPS6233764A (en) Sputtering device
JPS5922788B2 (en) Planar magnetron sputtering device and method
JPH04116162A (en) Magnetic field generator for planar-magnetron sputtering system
JPH049864B2 (en)
JPS63153266A (en) Sputtering device
JPS63223173A (en) Method and apparatus for forming sputtered film
JPS62161956A (en) Sputtering device