JPS631604B2 - - Google Patents

Info

Publication number
JPS631604B2
JPS631604B2 JP4735082A JP4735082A JPS631604B2 JP S631604 B2 JPS631604 B2 JP S631604B2 JP 4735082 A JP4735082 A JP 4735082A JP 4735082 A JP4735082 A JP 4735082A JP S631604 B2 JPS631604 B2 JP S631604B2
Authority
JP
Japan
Prior art keywords
signal
disturbance
added
adjustment
feed forward
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4735082A
Other languages
Japanese (ja)
Other versions
JPS58165106A (en
Inventor
Kazuo Hiroi
Kojiro Ito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP4735082A priority Critical patent/JPS58165106A/en
Priority to US06/477,384 priority patent/US4563735A/en
Priority to DE19833311048 priority patent/DE3311048A1/en
Priority to FR8304921A priority patent/FR2524169B1/en
Publication of JPS58165106A publication Critical patent/JPS58165106A/en
Priority to US06/698,791 priority patent/US4714988A/en
Publication of JPS631604B2 publication Critical patent/JPS631604B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B5/00Anti-hunting arrangements
    • G05B5/01Anti-hunting arrangements electric

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Feedback Control In General (AREA)

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は、外乱に対して、進み/遅れ伝達関
数を経由して、調節演算出力信号に加算すること
により、外乱による影響を抑制するフイードフオ
ワード制御装置に関する。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention provides a feed that suppresses the influence of disturbance by adding it to an adjustment calculation output signal via a lead/lag transfer function. The present invention relates to a forward control device.

〔発明の技術的背景〕[Technical background of the invention]

第1図には従来のフイードフオワード制御装置
を示す。設定値1と制御量2との差を取り、偏差
3を取り出す。この偏差信号を調節演算部4が入
力し、PID演算して得られた調節信号を加算器5
に出力する、外乱信号8は係数器9で係数Kが乗
じられたのち、進み/遅れ伝達関数10を経て、
外乱補償用信号として加算器5に加えられる。加
算器5から得られる外乱補償信号の加わつた調節
信号を操作信号6としてプロセス7に印加して、
プロセス7を制御して、制御量2を得る。
FIG. 1 shows a conventional feed forward control device. The difference between set value 1 and control amount 2 is taken, and deviation 3 is taken out. This deviation signal is input to the adjustment calculation unit 4, and the adjustment signal obtained by PID calculation is input to the adder 5.
The disturbance signal 8 outputted to
It is added to the adder 5 as a disturbance compensation signal. The adjustment signal to which the disturbance compensation signal obtained from the adder 5 is added is applied as an operation signal 6 to the process 7,
Process 7 is controlled to obtain control amount 2.

このようにして、フイードバツク制御系に外乱
補償信号をフイードフオワードして、外乱による
影響を抑制するものである。
In this way, the disturbance compensation signal is fed forward to the feedback control system to suppress the influence of the disturbance.

〔背景技術の問題点〕[Problems with background technology]

制御システムにおける外乱補償の伝達関数は操
作量→制御量間の伝達関数をKP/1+TP・s,
外乱→制御量間の伝達関数をKD/1+TDSとする
と、 K・1+TPS/1+TDS K=KD/KP 但し T:時定数 K:ゲイン となる。従つて、進み/遅れ伝達関数10を経由
して、前記調節演算部の調節演算出力信号に外乱
Dを加算するフイードフオワード方式では、第1
図に示すように進み/遅れ伝達関数10の出力を
加算していた。
The transfer function for disturbance compensation in a control system is the transfer function from manipulated variable to controlled variable as K P /1+T P・s,
If the transfer function between the disturbance and the controlled variable is K D /1+T DS , then K・1+T PS /1+T DS K=K D /K P where T: time constant K: gain. Therefore, in the feed forward method in which the disturbance D is added to the adjustment calculation output signal of the adjustment calculation section via the lead/lag transfer function 10, the first
As shown in the figure, the outputs of the lead/lag transfer function 10 were added.

実際のプロセスでは、プロセス特性が1次式で
完全に近似できない、非常線性がある、および各
種の制限,制約条件があるなどの理由から、従来
のフイードフオワード方式では、 (1) フイードフオワードの比例部と不完全微分
部、それぞれのゲインをプロセスの特性に合せ
て、個別に設定できない。
In an actual process, the process characteristics cannot be perfectly approximated by a linear equation, there are cordonal characteristics, and there are various limitations and constraints, so in the conventional feed-forward method, (1) It is not possible to set the gains of the forward proportional part and incomplete differential part individually to suit the characteristics of the process.

(2) フイードフオワード量に不感帯に不感帯を設
けて、外乱が微少変動の場合にフイードフオワ
ードをかけないように出来ない。
(2) It is not possible to set a dead zone in the amount of feed forward to prevent feed forward from being applied when the disturbance is a slight fluctuation.

(3) フイードフオワード量のある特定方向(増方
向,減方向)に対して、不感帯あるいは、フイ
ードフオワードの強は(ゲイン)の変化を持た
せられない。
(3) With respect to a specific direction (increasing direction, decreasing direction) of the feed forward amount, a dead zone or a change in the strength (gain) of the feed forward cannot be caused.

(4) 調節計の自動←→手動切換時の操作出力信号の
バランスレス―バンプレス切換が非常にむずか
しい。(特に速度形演算の場合に) (5) フイードフオワード制御の定性的意味が理解
しにくい。
(4) Balanceless switching of the operation output signal when switching the controller from automatic to manual - bumpless switching is extremely difficult. (Especially in the case of velocity type calculations) (5) It is difficult to understand the qualitative meaning of feedforward control.

などのフイードフオワード制御上の実用上、致
命的欠陥があつた。
There was a fatal flaw in the practical use of feed forward control.

〔発明の目的〕[Purpose of the invention]

この発明の目的は、従来の欠点を除去したフイ
ードフオワード制御装置を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a feedforward control device that eliminates the drawbacks of the prior art.

〔発明の概要〕[Summary of the invention]

この発明は、外乱に対する進み/遅れ伝達関数
を比例部と不完全微分部に分離し、比例部を経由
した外乱信号を速度形化したのち速度形調節演算
部の速度形PID調節演算信号に加算し、その後こ
の加算値を位置形信号に変換し、位置形信号に不
完全微分部を経由した外乱信号を加えて操作出力
信号とすることにより上記目的を達成したフイー
ドフオワード装置を提供することにある。
This invention separates the lead/lag transfer function for disturbance into a proportional part and an incomplete differential part, converts the disturbance signal via the proportional part into a speed form, and then adds it to the speed form PID adjustment calculation signal of the speed form adjustment calculation part. Then, this added value is converted into a position signal, and a disturbance signal passing through an incomplete differentiation section is added to the position signal to obtain an operation output signal, thereby providing a feed forward device that achieves the above object. There is a particular thing.

以下この発明の実施例を図面に基づいて詳細に
説明する。
Embodiments of the present invention will be described in detail below with reference to the drawings.

〔発明の実施例〕[Embodiments of the invention]

第3図はこの発明の1実施例を示す構成図であ
る。
FIG. 3 is a block diagram showing one embodiment of the present invention.

なお以下の図面においては、第1図に示したと
同様の構成部分は同一符号を用いて示してある。
In the following drawings, the same components as shown in FIG. 1 are indicated using the same reference numerals.

本発明の構成を説明する前に第2図によつて、
進み/遅れ伝達関数K・1+TP・s/1+TD・sが比例
部と 不完全微分部K(TP―TD)・s/1+TD・sに分離でき
ること を証明する。
Before explaining the configuration of the present invention, with reference to FIG.
Prove that the lead/lag transfer function K.1+ T.sub.P.s /1+ T.sub.D.s can be separated into a proportional part and an incomplete differential part K( T.sub.P - T.sub.D ).s/1+ T.sub.D.s .

第2図aと第2図bが等価となるためのTX
求める 1+TP・s/1+TD・s=1+TX・s/1+TDS =1+(TD+TX)s/1+TD・s 左右両辺が等しくなるためには TP=TD+TX ∴TX=(TP−TD) となり、1+TP・s/1+TD・sは比例部と不完全微分
部 (TP−TD)・s/1+TD・sに分離できる。
Find T _ _ _ _ _ _ In order for both the left and right sides to be equal, T P = T D + T X ∴T D )・s/1+T D・s.

この分離できることをふまえて、本発明による
フイードフオワード制御装置は第3図に示すよう
に外乱信号8に係数器9でゲインK(=KD/KP
を乗じたのち、比例部と不完全微分部に入れる信
号に分ける。前者の信号は差分演算器21で、位
置形信号から速度形信号に変換した後、加算器5
でPIDなどの調節演算する調節演算部4の速度形
調節出力信号△Cnと加算したのち、速度形→位
置形演算部22に入れて、MVn=MVn−1+△
MVnなる演算をして速度形信号から位置形信号
に変換する。
Based on this separation, the feedforward control device according to the present invention applies a gain K (=K D /K P ) to the disturbance signal 8 using a coefficient multiplier 9, as shown in FIG.
After multiplying by The former signal is converted from a position type signal to a velocity type signal by a difference calculator 21, and then sent to an adder 5.
After adding it to the speed type adjustment output signal △Cn of the adjustment calculation unit 4 that performs adjustment calculations such as PID, input it into the speed type→position type calculation unit 22, and calculate MVn=MVn−1+△
Perform the calculation MVn to convert the velocity type signal to the position type signal.

もう一つの後者の信号は、不完全微分部23を
経たのち、加算器24で前記速度形→位置形演算
部22の出力信号と加算して、操作出力信号6と
して、プロセス7に加えて制御量2を調節する。
The other latter signal passes through the incomplete differentiator 23 and is added to the output signal of the velocity type → position type calculation unit 22 in the adder 24, and is used as the operation output signal 6 for control in addition to the process 7. Adjust amount 2.

なお調節演算部4の入力は設定値1と制御量2
の偏差値である。
The inputs of the adjustment calculation unit 4 are set value 1 and control amount 2.
is the deviation value of

次に第4図を参照しながら第3図の本発明のフ
イードフオワード制御装置の作動を説明する。
Next, referring to FIG. 4, the operation of the feed forward control device of the present invention shown in FIG. 3 will be explained.

外乱信号8が単位量“1”だけ変化したときの
係数器9の出力ANの応答波形,差分演算部21
の出力信号Bnの応答波形と不完全微分部の出力
信号Enの応答波形は第4図に示す如きの通りと
なる。Kは例えば1とする。
Response waveform of the output AN of the coefficient unit 9 when the disturbance signal 8 changes by a unit amount “1”, the difference calculation unit 21
The response waveform of the output signal Bn and the response waveform of the output signal En of the incomplete differentiator are as shown in FIG. For example, K is 1.

不完全微分部23の出力信号Enの波形は外乱
信号8が変動したとき零を中心として変化する信
号となつており、外乱が一定のときは零となる。
また係数器9の出力は位置形の信号であるが差分
演算部21によつて速度形化され、差分演算部の
出力波形は外乱が変動したとき零を中心として変
化する信号となり外乱が一定のときは零となる。
The waveform of the output signal En of the incomplete differentiator 23 is a signal that changes around zero when the disturbance signal 8 fluctuates, and becomes zero when the disturbance is constant.
The output of the coefficient unit 9 is a position type signal, but it is converted into a velocity type by the difference calculation unit 21, and the output waveform of the difference calculation unit is a signal that changes around zero when the disturbance fluctuates. The time becomes zero.

このように、比例部も、不完全微分部も、外乱
信号8が変化したとき、零を中心として変化し、
外乱信号が一定のときは零となる信号にした部
分、つまり第3図のBn,Enの所に、ゲインまた
は不感帯を持つ折線などを設けると、プロセス特
性に合せて個別に、自由にフイードフオワード特
性を設定することができる。
In this way, both the proportional part and the incomplete differential part change around zero when the disturbance signal 8 changes,
If a broken line with a gain or a dead band is provided at the part where the signal becomes zero when the disturbance signal is constant, that is, at Bn and En in Fig. 3, the feed can be adjusted individually and freely according to the process characteristics. Forward characteristics can be set.

〔発明の効果〕〔Effect of the invention〕

本発明のフイードフオワード制御装置では、フ
イードフオワード成分を、比例分と不完全微分部
に分離し、比例分は、外乱補償のバイアス分、不
完全微分部は、外乱補償の位相補償分に明確に分
けて、定性的意味を明確にして、調整を容易にす
るとともに、いずれの成分も、零を中心として変
化し、且つ外乱信号が一定のときは、零になるよ
うにし、この部分にゲイン調整を入れられるよう
にフイードフオワード制御装置を組み立てたこと
により、 (1) 外乱補償を、バイアス分と不完全微分による
位相補償分に明確に分け、定性的意味を明らか
にし、調整を容易にした。
In the feedforward control device of the present invention, the feedforward component is separated into a proportional component and an incomplete differential component, where the proportional component is a bias component for disturbance compensation, and the incomplete differential component is a phase compensation component for disturbance compensation. In addition to making the qualitative meaning clear and making adjustment easier, all components should be made to change around zero and become zero when the disturbance signal is constant. By assembling a feed forward control device so that gain adjustment can be made in each part, (1) clearly dividing disturbance compensation into bias component and phase compensation component due to incomplete differentiation, clarifying the qualitative meaning; Made adjustment easier.

(2) 外乱補償フイードフオワードがK
1+TP・s/1+TD・sで、速度形演算と組み合せた場
合 最少の機能モジユールで実現できる。
(2) Disturbance compensation feed forward is K
1+T P・s/1+T D・s, and when combined with velocity type calculation, it can be realized with the minimum number of functional modules.

(3) 比例分(バイアス分)、不完全微分部分につ
いて、個別にフイードフオワードのゲインが設
定できるので、現実のプロセスの特性に合せて
設定できるので、限界制御ができる。
(3) Since the feed forward gain can be set individually for the proportional component (bias component) and the incomplete differential component, it can be set according to the characteristics of the actual process, allowing for limit control.

(4) 各成分個別に不感帯を設けることができるの
で、外乱が小さい範囲はフイードフオワードを
なくして、プロセスや機器にムダな変動を与え
ないようにできる。
(4) Since a dead zone can be provided for each component individually, feed forward can be eliminated in areas where disturbances are small, thereby preventing unnecessary fluctuations in processes and equipment.

(5) 折線によるゲイン設定をすると、特定方向の
フイードフオワードを強くしたり、弱くした
り、また零にしたりして、フイードフオワード
のかけ方に方向性を持たせることができ、万能
形フイードフオワード制御方式である。
(5) By setting the gain using a broken line, you can make the feed forward in a specific direction stronger, weaker, or even zero, giving you directionality in how you apply the feed forward. This is an all-purpose feed forward control system.

(6) 調節計の自動←→手動切換時に簡単にバランス
レス―バンプレス切換が実現できる。
(6) Easily achieves balance-less and bumpless switching when switching between automatic and manual controllers.

などのすぐれた効果作用がある。 It has excellent effects such as.

自由度の高い、万能形のフイードフオワード制
御方式である。
This is a versatile feed forward control system with a high degree of freedom.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のフイードフオワード制御装置の
構成をブロツク構成にして示す図、第2図はフイ
ードフオワード成分を比例分と不完全微分部に分
離するための説明図、第3図は本願発明の制御装
置の構成をブロツク構成にして示す図、第4図は
第3図の作動を説明するための図である。 4……調節演算部、5……加算器、7……プロ
セス、9……係数器、10……進み/遅れ伝達関
数、21……差分演算部、22……速度形→位置
形演算部、23……不完全微分部、24……加算
器。
Fig. 1 is a diagram showing the configuration of a conventional feedforward control device in block configuration, Fig. 2 is an explanatory diagram for separating the feedforward component into a proportional component and an incomplete differential component, and Fig. 3 4 is a diagram showing the configuration of the control device of the present invention in a block configuration, and FIG. 4 is a diagram for explaining the operation of FIG. 3. 4...Adjustment calculation section, 5...Adder, 7...Process, 9...Coefficient unit, 10...Advance/lag transfer function, 21...Difference calculation section, 22...Speed type → position type calculation section , 23... incomplete differentiation section, 24... adder.

Claims (1)

【特許請求の範囲】[Claims] 1 設定値と制御量との偏差値から速度形調節演
算部で調節演算した速度形調節演算信号を位置形
信号化し、この位置形信号を操作信号として出力
する調節装置において、外乱補償信号を加算して
フイードフオワード制御を行なう場合に、フイー
ドフオワード成分の外乱補償伝達関数を比例部と
不完全微分部に分離し、比例部を経由した外乱信
号を速度形信号化したのち前記速度形調節演算信
号に加算し、不完全微分部を経由した外乱信号を
前記位置形信号に加算したことを特徴とするフイ
ードフオワード制御装置。
1. The speed type adjustment calculation signal calculated by the speed type adjustment calculation unit from the deviation value between the set value and the control amount is converted into a position type signal, and in the adjustment device that outputs this position type signal as an operation signal, a disturbance compensation signal is added. When performing feedforward control, the disturbance compensation transfer function of the feedforward component is separated into a proportional part and an incomplete differential part, and the disturbance signal passing through the proportional part is converted into a velocity type signal, and then the velocity 1. A feed forward control device, characterized in that a disturbance signal which is added to the shape adjustment calculation signal and which has passed through an incomplete differentiator is added to the position shape signal.
JP4735082A 1982-03-26 1982-03-26 Feedforward controller Granted JPS58165106A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP4735082A JPS58165106A (en) 1982-03-26 1982-03-26 Feedforward controller
US06/477,384 US4563735A (en) 1982-03-26 1983-03-21 Process controlling method and system involving separate determination of static and dynamic compensation components
DE19833311048 DE3311048A1 (en) 1982-03-26 1983-03-25 CONTROL PROCEDURE AND SETUP
FR8304921A FR2524169B1 (en) 1982-03-26 1983-03-25 PROCESS AND SYSTEM FOR CONDUCTING PROCESSES
US06/698,791 US4714988A (en) 1982-03-26 1985-02-06 Feedforward feedback control having predictive disturbance compensation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4735082A JPS58165106A (en) 1982-03-26 1982-03-26 Feedforward controller

Publications (2)

Publication Number Publication Date
JPS58165106A JPS58165106A (en) 1983-09-30
JPS631604B2 true JPS631604B2 (en) 1988-01-13

Family

ID=12772693

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4735082A Granted JPS58165106A (en) 1982-03-26 1982-03-26 Feedforward controller

Country Status (1)

Country Link
JP (1) JPS58165106A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6464003A (en) * 1987-09-04 1989-03-09 Toshiba Corp Process controller
JPH0769723B2 (en) * 1988-03-30 1995-07-31 株式会社東芝 Process control equipment
JPH087625B2 (en) * 1989-07-06 1996-01-29 株式会社安川電機 Position controller using feedforward compensation
GB0113627D0 (en) 2001-06-05 2001-07-25 Univ Stirling Controller and method of controlling an apparatus

Also Published As

Publication number Publication date
JPS58165106A (en) 1983-09-30

Similar Documents

Publication Publication Date Title
JPS62212801A (en) Complete follow-up servo system
US3795799A (en) Arrangement for controlling processes
JP2772106B2 (en) 2-DOF adjustment device
JPH06119001A (en) Controller
JPS631604B2 (en)
JPS63262703A (en) Versatility time difference comparing and compensating method for control system
JP2507613B2 (en) Feedforward controller
JPH0245201B2 (en)
JPS6346503A (en) Pid controller
JPH05150802A (en) Deviation variable and deviation hysteresis type pi control method
JPS631603B2 (en)
JP2645112B2 (en) Gain adaptive control device
JPH05313704A (en) Adaptive controller
JPH0562361B2 (en)
JPH09179602A (en) Desired value filter type 2-degrees-of-freedom pid controller
JPS60160404A (en) Automatic tracking system of inertial fluctuation in servo system
JPS59128603A (en) Process control device
JPH07323945A (en) Tension control method
JP2677742B2 (en) Automatic control device
JP2766395B2 (en) Control device
JPS60160403A (en) Adaptive loop gain automatic compensation system in servo system
JPS59149505A (en) Process controller
JPS6277603A (en) Process controller
SU1200241A1 (en) Control system for object with time lag
SU1173390A1 (en) Self-adjusting system of automatic control of lagging objects