JPH0769723B2 - Process control equipment - Google Patents

Process control equipment

Info

Publication number
JPH0769723B2
JPH0769723B2 JP63076925A JP7692588A JPH0769723B2 JP H0769723 B2 JPH0769723 B2 JP H0769723B2 JP 63076925 A JP63076925 A JP 63076925A JP 7692588 A JP7692588 A JP 7692588A JP H0769723 B2 JPH0769723 B2 JP H0769723B2
Authority
JP
Japan
Prior art keywords
signal
output
control system
disturbance
gain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63076925A
Other languages
Japanese (ja)
Other versions
JPH01248205A (en
Inventor
和男 広井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP63076925A priority Critical patent/JPH0769723B2/en
Publication of JPH01248205A publication Critical patent/JPH01248205A/en
Publication of JPH0769723B2 publication Critical patent/JPH0769723B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Feedback Control In General (AREA)

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、フィードバック制御系とフィードフォワード
制御系を組合わせたプロセス制御装置に係わり、特に動
特性および静特性の補償手段を改良したプロセス制御装
置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial field of application) The present invention relates to a process control device in which a feedback control system and a feedforward control system are combined, and particularly to a dynamic characteristic and static characteristic compensating means. Relates to an improved process control device.

(従来の技術) 従来のこの種のプロセス制御装置は、第6図に示すよう
に制御対象1を制御するフィードバック制御系と外乱に
対する補償機能をもったフィードフォワード制御系とで
構成され、そのうち前者のフィードバック制御系は、目
標値SVと制御対象1のフィードバック信号であるプロセ
ス値PVとを偏差演算手段2に導入して両値の制御偏差信
号eを取出した後、この制御偏差信号eを速度形PID調
節手段3へ供給し速度形PID調節演算を行う。この速度
形PID調節手段3で得られた調節演算出力は加算手段4
を介して速度形−位置形信号変換手段5に供給され、こ
こで速度形信号を位置形信号に変換した後、加算手段6
を通って操作信号として制御対象1に印加している。
(Prior Art) A conventional process control device of this type is composed of a feedback control system for controlling a controlled object 1 and a feedforward control system having a compensation function for disturbance as shown in FIG. The feedback control system of 1 introduces the target value SV and the process value PV which is the feedback signal of the controlled object 1 into the deviation calculating means 2 and takes out the control deviation signal e of both values, and then the control deviation signal e is set to the speed. It is supplied to the PID control means 3 for speed PID control calculation. The adjustment calculation output obtained by the speed type PID adjusting means 3 is added by the adding means 4.
Is supplied to the speed type-position type signal converting means 5 through which the speed type signal is converted into a position type signal, and then the adding means 6 is added.
It is applied to the controlled object 1 as an operation signal through.

一方、フィードフォワード制御系は、外乱信号Dを検出
し、係数手段7で外乱信号Dにフィードフォワード制御
モデルのゲインKを乗算して信号Dnを得た後、この信号
Dnを2分岐する。そのうち,一方の分岐信号は差分演算
手段8で差分演算を行って速度形信号△Dnに変換した
後、前記加算手段4に導いて前記速度形PID調節手段3
の出力信号△Cnと加算合致し外乱の静特性補償を行い、
また、他方の分岐信号は不完全微分演算手段8で微分演
算出力を得、これを前記加算手段6へ導いて信号変換手
段5の出力と加算合成して動特性補償を行い、ここで加
算合成された操作信号が制御対象1へ印加する構成であ
る。
On the other hand, the feedforward control system detects the disturbance signal D, the coefficient means 7 multiplies the disturbance signal D by the gain K of the feedforward control model to obtain a signal Dn, and then this signal
Dn is branched into two. One of the branch signals is subjected to a difference calculation by the difference calculating means 8 to be converted into a speed type signal ΔDn, and then introduced to the adding means 4 to the speed type PID adjusting means 3
The output signal ΔCn of is added and matched to compensate for static characteristics of disturbance,
The other branch signal is obtained by the differential operation output by the incomplete differential operation means 8, is guided to the addition means 6, and is added and combined with the output of the signal conversion means 5 to perform dynamic characteristic compensation. In this configuration, the operated operation signal is applied to the controlled object 1.

(発明が解決しようとする課題) しかしながら、以上のようなフィードフォワード制御系
は、動特性の高次補償を行えないこと、動特性補償分が
変形されているので直感的に把握しにくく、パラメータ
チューニング時にパラメータの差を取って設定しなけれ
ばならず面倒で相当な時間を要する。また、フィードフ
ォワード制御系の動作特性補償に関し,外乱の増減時に
進み/遅れ時間に方向性が持たせることができないの
で、適用すべき制御対象1に応じて最適な制御を行えな
い問題がある。
(Problems to be Solved by the Invention) However, in the feedforward control system as described above, it is difficult to intuitively grasp the parameter because the higher order compensation of the dynamic characteristic cannot be performed and the dynamic characteristic compensation portion is deformed. At the time of tuning, it is necessary to take the difference in parameters and set it, which is troublesome and requires a considerable amount of time. Further, regarding the compensation of the operation characteristics of the feedforward control system, since the advance / delay time cannot have a directivity when the disturbance is increased or decreased, there is a problem that the optimum control cannot be performed according to the control target 1 to be applied.

特に、今後の各種プラント運転では、益々フレキシブル
化の方向に進むものと予想されており、それに充分対処
させ得るためにはフィードフォワード制御系における特
性補償の柔軟性が必要不可欠な状況になってきている。
In particular, it is expected that the flexibility of characteristic compensation in the feedforward control system will become indispensable in order to cope with it, as it is expected to be more and more flexible in future plant operations. There is.

本発明は上記実情に鑑みてなされたもので、フィードフ
ォワード制御系の動特性補償として、高次補償が可能で
あり、かつ、直感的な把握を可能として調整容易な構成
とし、外乱信号の増減に対し適用制御対象に応じた応答
性を持たせうるプロセス制御装置を提供することを目的
とする。
The present invention has been made in view of the above circumstances, and as a dynamic characteristic compensation of a feedforward control system, high-order compensation is possible, and an intuitive grasp is made possible to facilitate adjustment, and increase / decrease of a disturbance signal. It is an object of the present invention to provide a process control device capable of providing responsiveness according to an applied control target.

また、本発明の他の目的は、フィードフォワード制御系
の動特性補償として、上記目的に加え、動特性補償ゲイ
ンの強さを、任意、かつ、独立に設定できるプロセス制
御装置を提供するものである。
Another object of the present invention is to provide a process control device capable of independently and independently setting the strength of a dynamic characteristic compensation gain as the dynamic characteristic compensation of a feedforward control system, in addition to the above object. is there.

更に、本発明の他の目的は、フィードフォワード制御系
の静特性補償として、静特性補償ゲインの強さを、任
意、かつ、独立に設定できるプロセス制御装置を提供す
るものである。
Still another object of the present invention is to provide a process control device capable of independently and independently setting the strength of the static characteristic compensation gain as the static characteristic compensation of the feedforward control system.

[発明の構成] (課題を解決するための手段) 本発明によるプロセス制御装置は、上記目的を達成する
ために、フィードバック制御系とフィードフォワード制
御系とを組合せたプロセス制御装置において、前記フィ
ードフォワード制御系の動特性補償手段として、外乱信
号の立上り変化または立下り変化に対して時間的に進み
/遅れをもった信号を出力する所要のフィードフォワー
ド制御ゲインを有する第1の単位伝達関数手段と、前記
外乱信号の立上り変化または立下り変化に対して時間的
に進み/遅れをもった信号を出力する所要のフィードフ
ォワード制御ゲインを有する第2の単位伝達関数手段
と,これら第1,第2の単位伝達関数手段の出力のうち、
高位信号または低位信号を選択する信号選択手段と、こ
の信号選択手段の出力から前記外乱信号を減算する減算
手段と、この減算手段の出力を動特性補償信号として前
記フィードバック制御系の操作出力に加える加算手段と
を設けてなる構成である。
[Configuration of the Invention] (Means for Solving the Problems) In order to achieve the above object, a process control device according to the present invention is a process control device in which a feedback control system and a feedforward control system are combined. As the dynamic characteristic compensating means of the control system, there is provided a first unit transfer function means having a required feedforward control gain for outputting a signal having time advance / delay with respect to a rising change or a falling change of the disturbance signal. Second unit transfer function means having a required feedforward control gain for outputting a signal having a time advance / delay with respect to a rising change or a falling change of the disturbance signal, and these first, second Of the output of the unit transfer function means of
A signal selecting means for selecting a high-order signal or a low-order signal, a subtracting means for subtracting the disturbance signal from the output of the signal selecting means, and an output of the subtracting means is added as a dynamic characteristic compensation signal to the operation output of the feedback control system. This is a structure provided with an adding means.

また、フィードフォワード制御系の静特性補償手段とし
て、外乱信号の差分を求める差分演算手段と、この差分
演算手段の出力に静特性補償ゲインを乗ずる係数手段
と、この係数手段の出力および前記差分演算手段の出力
のうち、高位信号または低位信号を選択する信号選択手
段と、この信号選択手段の出力を静特性補償信号として
前記フィードバック制御系の速度形調節演算出力に加え
る加算手段とを設けてなる構成である。
Further, as a static characteristic compensating means of the feedforward control system, a difference calculating means for obtaining a difference between disturbance signals, a coefficient means for multiplying an output of the difference calculating means by a static characteristic compensating gain, an output of the coefficient means and the difference calculating means. Among the outputs of the means, there are provided a signal selecting means for selecting a high level signal or a low level signal, and an adding means for adding the output of the signal selecting means as a static characteristic compensation signal to the speed type adjustment calculation output of the feedback control system. It is a composition.

さらに、フィードフォワード制御系の動特性補償手段と
して、外乱信号の立上り変化および立下り変化に対して
時間的な進み/遅れに方向性を持たせた時間方向性手段
と、この時間方向性手段によって得られた出力の動特性
補償ゲインに方向性を持たせたゲイン方向性手段とを設
けてなる構成である。
Further, as the dynamic characteristic compensating means of the feedforward control system, there is provided a time directional means for giving directionality to advance / delay in time with respect to a rise change and a fall change of the disturbance signal, and the time directional means. The configuration is provided with a gain directional means that gives direction to the dynamic characteristic compensation gain of the obtained output.

(作用) 従って、本発明は以上のような手段とすることにより、
外乱信号の2分岐し、各分岐信号を単位伝達関数を通し
た後適宜にレベル選択して出力することにより、外乱信
号の立上り時に例えば速い応答方向性を持たせ、逆に外
乱信号の立下り時には例えば緩慢な応答方向性を持たせ
ながら動特性補償を行うことができる。
(Operation) Therefore, the present invention, by using the above means,
The disturbance signal is bifurcated, each branch signal is passed through a unit transfer function, and then the level is appropriately selected and output to give a fast response direction when the disturbance signal rises, and conversely the fall signal falls. At times, for example, dynamic characteristic compensation can be performed while providing a slow response directionality.

また、フィードフォワード制御系の静特性補償手段およ
び動特性補償手段の補償ゲインに独立的、かつ、任意に
設定することができる。
Further, the compensation gains of the static characteristic compensating means and the dynamic characteristic compensating means of the feedforward control system can be set independently and arbitrarily.

(実施例) 以下、本発明の一実施例について第1図を参照して説明
する。なお、フィードバック制御系は従来装置(第6
図)と同様であるので、ここでは同一符号を付して詳し
い説明は省略し、以下,専らフィードフォワード制御系
10について説明する。すなわち、このフィードフォワー
ド制御系10は、外乱が発生した時,その外乱が制御対象
1に影響を与える前に先回りして影響量を予測し、その
影響量を打消す方向に補償を行うものであって、フィー
ドバック制御系と組合せて使用される。具体的には、第
1図に示すように外乱検出手段(図示せず)によって検
出された外乱信号Dにフィードフォワード制御系のゲイ
ンkを乗ずる係数手段11と、この係数手段11で得られた
ゲインkを乗算した外乱信号Dnに対して静特性補償およ
び動特性補償を行う静特性補償手段および動特性補償手
段とが設けられている。
(Embodiment) An embodiment of the present invention will be described below with reference to FIG. The feedback control system is the same as the conventional device (6th
The same reference numerals are given here and detailed explanations are omitted here.
10 will be described. That is, the feedforward control system 10 predicts an influence amount in advance before the influence of the disturbance on the control target 1 when a disturbance occurs, and compensates for the influence amount. Therefore, it is used in combination with a feedback control system. Specifically, as shown in FIG. 1, the coefficient means 11 for multiplying the disturbance signal D detected by the disturbance detection means (not shown) by the gain k of the feedforward control system, and the coefficient means 11 are obtained. There are provided a static characteristic compensating means and a dynamic characteristic compensating means for performing static characteristic compensation and dynamic characteristic compensation on the disturbance signal Dn multiplied by the gain k.

この静特性補償手段は従来と同様に係数手段11の出力Dn
を差分演算によって速度形信号△Dnを取得する差分演算
手段12と、この差分演算手段12の出力△Dnを速度形PID
調節手段3の出力△Cnと加算合成する加算手段13によっ
て構成されている。
This static characteristic compensating means uses the output Dn of the coefficient means 11 as in the conventional case.
Difference calculation means 12 for obtaining the speed type signal ΔDn by difference calculation, and the output ΔDn of this difference calculation means 12
It is composed of an adding means 13 for adding and synthesizing with the output ΔCn of the adjusting means 3.

一方、前記動特性補償手段は、係数手段11の出力Dnを例
えばフィードフォワード制御モデルのゲイン「1」を通
す第1の単位伝達関数手段14、同じく係数手段11の出力
Dnを例えばフィードフォワード制御モデルのゲイン
「1」を通す第2の単位伝達関数手段15、これら両関数
手段14,15の出力のうち高位信号または低位信号を選択
する信号選択手段16、この信号選択手段16の出力から前
記係数手段11の出力Dnを減算する減算手段17、この減算
手段17の出力を前記フィードバック制御系の速度形−位
置形信号変換手段5の出力と加算合成し操作出力MVを取
得する加算手段18等によって構成され、この加算手段18
で取得された操作出力MVが制御対象1に印加する構成と
なっている。
On the other hand, the dynamic characteristic compensating means outputs the output Dn of the coefficient means 11 through, for example, the gain "1" of the feedforward control model, the first unit transfer function means 14, and also the output of the coefficient means 11.
A second unit transfer function means 15 for passing Dn through, for example, a gain "1" of a feedforward control model, a signal selecting means 16 for selecting a high-order signal or a low-order signal from the outputs of these both function means 14, 15, and this signal selection A subtracting means 17 for subtracting the output Dn of the coefficient means 11 from the output of the means 16, and the output of the subtracting means 17 is added and synthesized with the output of the speed type-position type signal converting means 5 of the feedback control system to obtain an operation output MV. This adding means 18 is composed of the adding means 18 etc. to acquire
The operation output MV acquired in step 1 is applied to the controlled object 1.

次に、上記装置の動作について説明する。外乱検出手段
によって検出された外乱信号Dは係数手段11に導入さ
れ、ここで外乱信号Dにフィードフォワード制御モデル
のゲインkを乗算して信号Dnを得、この信号Dnが静特性
補償および動特性補償にに利用される。
Next, the operation of the above device will be described. The disturbance signal D detected by the disturbance detecting means is introduced into the coefficient means 11, where the disturbance signal D is multiplied by the gain k of the feedforward control model to obtain the signal Dn, which is the static characteristic compensation and the dynamic characteristic. It is used for compensation.

ところで、本装置におけるフィードフォワード制御モデ
ルGF(s)は、 GF(s)=k・gF(s) ……(1) k:フィードフォワード制御ゲイン s:ラプラス演算子 で表される。ここで、上記(1)式を変形すると、 GF(s)=k・gF(s) =k[{gF(s)−1}] ……(2) なる式を得ることができる。この式のうち,前段の下線
は静特性補償分を意味し、後段の下線は動特性補償分を
示す。
By the way, the feed forward control model G F (s) in this device is G F (s) = k · g F (s) (1) k: feed forward control gain s: Laplace operator It is represented by. Here, Transforming equation (1), GF (s) = k · gF (s) = k [1 + {gF (s) -1}] can be obtained ... (2) becomes equation. In this equation, the underline in the former stage represents the static characteristic compensation component, and the underline in the latter stage represents the dynamic characteristic compensation component.

従って、前記係数手段11から出力された信号Dnは、静特
性補償手段では第(2)式で表すように全く時間に関係
なく差分演算手段12を通って速取形信号に変換した後に
加算手段13へ導入し、ここでフィードバック制御系の速
度形PID調節手段3の出力△Cnと加算合成して静特性補
償を行う。
Therefore, in the static characteristic compensating means, the signal Dn output from the coefficient means 11 is converted into a rapid type signal through the difference calculating means 12 irrespective of time as shown by the equation (2), and then added. Introduced into 13, where the output characteristic ΔCn of the speed type PID adjusting means 3 of the feedback control system is added and combined to perform static characteristic compensation.

一方、動作特性補償手段においては、係数手段11の出力
Dnをフィードフォワード制御ゲインk=1とした第1の
単位伝達関数手段14を通った信号と、同じく係数手段11
の出力Dnをフィードフォワード制御ゲインk=1とした
第2の単位伝達関数手段15を通った信号とが信号選択手
段16に導入され、ここで例えば高レベルの信号が選択出
力される。つまり、第2図に示す信号Dnの立上りおよび
立下り変化に対し、第1の単位伝達関数手段14から同図
(イ),(イ′)のような時間的に進み/遅れの方向性
を持った信号が出力され、また第2の単位伝達関数手段
15から同図(ロ),(ロ′)のような時間的に進み/遅
れの方向性を持った信号が出力されるが、信号選択手段
16ではそのうち高い方のレベル信号(図示黒丸ライン
線)を選択して出力する。ここで、方向性とは信号が増
加する方向の性質をもつ信号か下降する方向の性質をも
つ信号かを表す意味であって、同図(イ),(ロ)は増
加する方向性をもった信号であり、同図(イ′),
(ロ′)は下降する方向性をもった信号である。このこ
とは立上り変化に対して速やかに応答し、立下り変化に
対して緩やかに応答し、例えば蒸留塔のフィード制御あ
るいはボイラの空気制御に最適な制御として利用可能で
ある。また、制御対象1に応じて例えば特性(イ)
(ロ′)のような低位信号を選択することもできる。
On the other hand, in the operation characteristic compensation means, the output of the coefficient means 11
The signal that has passed through the first unit transfer function means 14 in which Dn is the feedforward control gain k = 1, and the coefficient means 11 is also used.
And the signal that has passed through the second unit transfer function means 15 with the feed-forward control gain k = 1 as the output Dn of the above is introduced into the signal selection means 16, where, for example, a high-level signal is selectively output. That is, with respect to the rising and falling changes of the signal Dn shown in FIG. 2, the directionality of advance / delay in time shown in (a) and (a ′) of FIG. The signal it has is output, and the second unit transfer function means
A signal having a directionality of advance / delay in time is output from 15 as shown in (b) and (b ') of FIG.
In 16, the higher level signal (black circle line in the figure) is selected and output. Here, the directionality means that the signal has a property of increasing direction or a signal having a property of decreasing direction, and (a) and (b) in the same figure have an increasing directionality. Signal (a ′),
(B ') is a signal having a downward direction. This responds promptly to rising changes and responds slowly to falling changes, and can be used as optimum control for feed control of a distillation column or air control of a boiler, for example. Further, depending on the controlled object 1, for example, the characteristic (a)
It is also possible to select a low level signal such as (b ').

すなわち、本装置における動特性補償手段は、上記
(2)式の動特性補償分に基づき外乱信号Dnの増減に応
じて信号選択手段16で、 外乱増加時… Wn=k・gF1(s) ……(3) 外乱減少時… Wn=k・gF2(s) ……(4) 定常時……… Wn=k・gF1(s) =k・gF2(s) ……(5) を選択し、動特性補償に時間的な進み/遅れに方向性を
持たせるものである。
That is, the dynamic characteristic compensating means in the present device is the signal selecting means 16 according to the increase / decrease of the disturbance signal Dn based on the dynamic characteristic compensating amount of the equation (2), when the disturbance is increased ... Wn = k · g F 1 (s ) (3) When disturbance is reduced ... Wn = k · g F 2 (s) …… (4) Constant time ………… Wn = k · g F 1 (s) = k · g F 2 (s)…. (5) is selected so that the dynamic characteristic compensation has directionality in time advance / delay.

しかる後、信号選択手段16によって得られた信号Wnは減
算手段17に導入され、ここでWn−Dnの演算を行って次の
ような動特性補償分Ynを得る。
Thereafter, the signal Wn obtained by the signal selecting means 16 is introduced into the subtracting means 17, where Wn-Dn is calculated to obtain the following dynamic characteristic compensation amount Yn.

Yn=k{gF1(s)−1}・D ……(6) または Yn=k{gF2(s)−1}・D ……(7) となる。このYnは、 外乱一定の時…Yn=0 ……(8) 外乱変化の過渡時…Yn≠0 (9) となる。上記(8)式が成立する理由は最終値の定理に
より単位ステップ外乱が入力されたとき、時間経過後の
値Yt=∞は、 となる。そして、以上のようにして得られた動作特性補
償分Ynは加算手段18に導入され、ここでフィードバック
制御系の信号変換手段5の出力と加算合成して操作信号
MVとして制御対象1に印加される。
Yn = k {g F 1 ( s) -1} · D ...... (6) or Yn = k {g F 2 ( s) -1} · D ...... becomes (7). This Yn is such that Yn = 0 when the disturbance is constant (8) (8) Transient when the disturbance changes ... Yn ≠ 0 (9) The reason why the above equation (8) is established is that when a unit step disturbance is input according to the final value theorem, the value Y t = ∞ after the lapse of time is Becomes Then, the operation characteristic compensation amount Yn obtained as described above is introduced into the adding means 18, where it is added and synthesized with the output of the signal converting means 5 of the feedback control system.
It is applied to the controlled object 1 as MV.

従って、以上のような実施例の構成によれば、外乱信号
Dnを第1,第2の単位伝達関数手段14,15を通すことによ
り、フィードフォワード制御の高次補償を行うことがで
き、しかも、不完全微分演算とは異なって(1)式の単
位伝達関数を1次式をもって表わせば直感的に把握可能
となり調整が非常に容易になる。また、信号選択手段16
を用いて高位信号または低位信号を選択するので、外乱
信号の増減方向に応じて動特性補償に時間的な進み/遅
れに方向性を持たせることにより、適用制御対象1に合
った制御性で最適な制御を実現できる。また、フィード
フォワード制御モデルが進み補償の場合、あるいは遅れ
補償の場合でも容易に適用でき融通性の富んだ補償を行
うことができる。
Therefore, according to the configuration of the above embodiment, the disturbance signal
By passing Dn through the first and second unit transfer function means 14 and 15, high-order compensation of feedforward control can be performed, and, unlike the incomplete differential calculation, the unit transfer of equation (1) is performed. If the function is expressed by a linear expression, it can be intuitively grasped and adjustment becomes very easy. Also, the signal selection means 16
Since the high-order signal or the low-order signal is selected by using, the directional characteristic of the dynamic characteristic compensation is given to the advance / delay in time according to the increasing / decreasing direction of the disturbance signal, so that the controllability suitable for the applied control target 1 is obtained. Optimal control can be realized. Further, even when the feedforward control model is lead compensation or lag compensation, it can be easily applied and flexible compensation can be performed.

次に、本発明装置の他の実施例について第3図を参照し
て説明する。すなわち、第1図に示す静特性補償手段で
は差分演算手段12と加算手段13で構成されたが、例えば
第3図に示すように差分演算手段12の出力を2分岐し、
その一方の信号を係数手段21でゲインk1を乗じた信号を
得、この信号と前記差分演算手段12の出力そのもの,つ
まり残りの分岐信号とを信号選択手段22で高位信号また
は低位信号を選択し、その選択信号△Xnを前記加算手段
13に供給する構成である。
Next, another embodiment of the device of the present invention will be described with reference to FIG. That is, the static characteristic compensating means shown in FIG. 1 is composed of the difference calculating means 12 and the adding means 13. For example, as shown in FIG. 3, the output of the difference calculating means 12 is branched into two,
A signal obtained by multiplying one of the signals by the gain k 1 is obtained by the coefficient means 21, and this signal and the output itself of the difference calculating means 12, that is, the remaining branch signal is selected by the signal selecting means 22 as a high-order signal or a low-order signal. And the selection signal ΔXn is added to the adding means.
It is configured to supply to 13.

従って、以上のような実施例の構成によれば、差分演算
手段12の出力△Dnを2分岐し、係数k1(例えば0<k1
1)を乗じた信号とそのまま信号のうち、信号選択手段
22で例えば常に高い方の信号△Xnを選択すれば、第4図
に示すように △Dn≧0のとき(外乱増加時)……△Xn=△Dn △Dn≦0のとき(外乱減少時)……△Xn=k1・△Dn を選択できる。すなわち、外乱信号Dの増減に対し、フ
ィードフォワード制御の静特性補償ゲインに方向性を持
たせることができる。ここで、方向性とはゲインが増加
する方向の性質をもつものか下降する方向の性質をもつ
かを意味する。このことは、補償ゲインを任意、かつ、
独立的に設定でき、制御の応答性を改善できる。
Therefore, according to the configuration of the above embodiment, the output ΔDn of the difference calculation means 12 is branched into two, and the coefficient k 1 (for example, 0 <k 1 <
Signal selection means of the signal multiplied by 1) and the signal as it is
For example, if the higher signal ΔXn is always selected at 22, when ΔDn ≧ 0 (when disturbance increases) as shown in FIG. 4, when ΔXn = ΔDn ΔDn ≦ 0 (when disturbance decreases ) …… △ Xn = k 1・ △ Dn can be selected. That is, the static characteristic compensation gain of the feedforward control can be made directional with respect to the increase / decrease of the disturbance signal D. Here, the directional property means whether the property has a property of increasing the gain or a property of decreasing the gain. This means that the compensation gain is arbitrary and
It can be set independently and the control response can be improved.

更に、本発明装置の他の実施例として、第3図に示すよ
うに動特性補償手段として、第1図に示す動特性補償の
時間的な進み/遅れの方向性を持たせる各手段14〜17の
ほか、前記減算手段17の出力Ynに係数k2を乗じた信号を
得る係数手段31と、この係数手段31の出力と前記減算手
段17の出力そのものの信号とから例えば高レベルの信号
を選択して出力する信号選択手段32を付加し、外乱信号
の増減に対し、フィードフォワード制御における動特性
補償分のゲインに方向性を持たせる構成であってもよ
い。
Further, as another embodiment of the device of the present invention, as a dynamic characteristic compensating means as shown in FIG. 3, each means 14 to give a directionality of advance / delay in time of dynamic characteristic compensation shown in FIG. In addition to 17, a high-level signal, for example, is output from the coefficient means 31 that obtains a signal by multiplying the output Yn of the subtraction means 17 by a coefficient k 2, and the output of the coefficient means 31 and the signal of the output itself of the subtraction means 17. A configuration may be adopted in which a signal selecting means 32 for selecting and outputting is added so that the gain for the dynamic characteristic compensation in the feedforward control has directionality with respect to increase and decrease of the disturbance signal.

なお、本発明は上記実施例に限定されるものではない。
例えば静特性補償手段として信号選択手段等21,22を用
いたが、例えば第5図に示すよに折線信号発生手段41を
設け、静特性補償分のゲインに方向性を持たせるもので
あってもよい。同様の理由により、動作特性補償のゲイ
ンに方向性を持たせる手段として、折線信号発生手段41
を設けてもよい。その他、本発明はその要旨を逸脱しな
い範囲で種々変形して実施できる。
The present invention is not limited to the above embodiment.
For example, although the signal selecting means 21 and 22 are used as the static characteristic compensating means, for example, the broken line signal generating means 41 is provided as shown in FIG. 5 so that the gain for the static characteristic compensation has directionality. Good. For the same reason, the polygonal line signal generating means 41 is provided as means for giving a directionality to the gain of the operation characteristic compensation.
May be provided. In addition, the present invention can be modified in various ways without departing from the scope of the invention.

[発明の効果] 本発明によるプロセス制御装置は、次に述べるように種
々の効果を奏するものである。
[Effects of the Invention] The process control device according to the present invention has various effects as described below.

請求項1においては、外乱信号を分岐しそれぞれの分岐
信号を単位伝達関数を通した後、両信号から高位信号ま
たは低位信号を選択的に取出し、前記外乱信号との減算
処理を行って動特性補償を行うようにしたので、高次補
償が実現でき、かつ、直感的に把握できることから調整
が容易に行うことができ、また外乱信号の増減に対し動
特性補償の時間的な進み/遅れに方向性を持たせること
が可能となり適用制御対象に応じて最適な制御を実現で
きる。
In claim 1, the disturbance signal is branched, each branch signal is passed through a unit transfer function, a high-order signal or a low-order signal is selectively extracted from both signals, and a subtraction process with the disturbance signal is performed to obtain a dynamic characteristic. Since the compensation is performed, higher-order compensation can be realized, and the adjustment can be easily performed because it can be intuitively grasped, and the dynamic characteristic compensation can be advanced / delayed in time with respect to the increase / decrease of the disturbance signal. Since it is possible to give directionality, optimum control can be realized according to the applied control target.

次に、請求項2においては、外乱信号の変化に対し、そ
の変化信号に係数を乗じた信号とその変化信号そのもの
の信号のうち高位信号または低位信号を選択的に取出し
て静特性補償を行うことにより、外乱信号の増減に対し
てフィードフォワード制御の静特性補償ゲインに独立、
かつ、任意の方向性を持たせて補償できる。
Next, according to claim 2, static characteristic compensation is performed by selectively extracting a high-order signal or a low-order signal from a signal obtained by multiplying the change signal by a coefficient and a signal of the change signal itself in response to a change in the disturbance signal. As a result, the static characteristic compensation gain of the feedforward control is independent of the increase or decrease of the disturbance signal,
Moreover, it is possible to compensate by giving an arbitrary direction.

次に、請求項3においても、外乱信号の増減に対してフ
ィードフォワード制御の動静特性補償ゲインに独立、か
つ、任意の方向性を持たせながら補償できる。
Next, also in the third aspect, it is possible to compensate for the increase or decrease of the disturbance signal while making the dynamic characteristic compensation gain of the feedforward control independent and having an arbitrary directivity.

【図面の簡単な説明】[Brief description of drawings]

第1図および第2図は本発明に係わるプロセス制御装置
の一実施例を説明するために示したもので、第1図は本
発明装置の機能的なブロック構成図、第2図は外乱の変
化に対する各部の挙動を示す図、第3図は本発明装置の
他の実施例を示す機能的なブロック構成図、第4図は外
乱変化に対する各部の挙動を示す図、第5図は同じく本
発明装置の他の実施例を説明する一部の構成を示す図、
第6図は従来装置の機能的なブロック構成図である。 1……制御対象、3……速度形PID調節手段、5……速
度形−位置形信号変換手段、10……フィードフォワード
制御系、11……係数手段、12……差分演算手段、13……
加算手段、14……第1の単位伝達関数手段、15……第2
の単位伝達関数手段、16……信号選択手段、17……減算
手段、18……加算手段、21,31……係数手段、22,32……
信号選択手段、41……折線信号発生手段。
1 and 2 are shown to explain one embodiment of the process control device according to the present invention. FIG. 1 is a functional block configuration diagram of the device of the present invention, and FIG. FIG. 3 is a diagram showing the behavior of each part with respect to a change, FIG. 3 is a functional block configuration diagram showing another embodiment of the device of the present invention, FIG. 4 is a diagram showing the behavior of each part with respect to a disturbance change, and FIG. The figure which shows the one part structure explaining the other Example of an invention apparatus,
FIG. 6 is a functional block configuration diagram of a conventional device. 1 ... Control object, 3 ... Speed type PID adjusting means, 5 ... Speed type-position type signal converting means, 10 ... Feed forward control system, 11 ... Coefficient means, 12 ... Difference calculating means, 13 ... …
Adding means, 14 ... First unit transfer function means, 15 ... Second
Unit transfer function means, 16 ... Signal selection means, 17 ... subtraction means, 18 ... addition means, 21,31 ... coefficient means, 22,32 ...
Signal selection means, 41: broken line signal generation means.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】フィードバック制御系とフィードフォワー
ド制御系とを組合せたプロセス制御装置において、 前記フィードフォワード制御系の動特性補償手段とし
て、外乱信号の立上り変化および立下り変化に応じて時
間的に進み/遅れをもった信号を出力する所要のフィー
ドフォワード制御ゲインを有する第1の単位伝達関数手
段と、前記外乱信号の立上り変化および立下り変化に応
じて時間的に進み/遅れをもった信号を出力する所要の
フィードフォワード制御ゲインを有する第2の単位伝達
関数手段と,これら第1,第2の単位伝達関数手段の出力
のうち、高位信号または低位信号を選択する信号選択手
段と、この信号選択手段の出力から前記外乱信号を減算
する減算手段と、この減算手段の出力を動特性補償信号
として前記フィードバック制御系の操作出力に加える加
算手段とを備えたことを特徴とするプロセス制御装置。
1. A process control device in which a feedback control system and a feedforward control system are combined, the dynamic characteristic compensating means of the feedforward control system advancing in time according to a rising change and a falling change of a disturbance signal. / First unit transfer function means having a required feed-forward control gain for outputting a signal with a delay, and a signal with a time advance / delay in accordance with a rise change and a fall change of the disturbance signal. Second unit transfer function means having a required feedforward control gain to be output, signal selecting means for selecting a high-order signal or a low-order signal from the outputs of these first and second unit transfer function means, and this signal Subtracting means for subtracting the disturbance signal from the output of the selecting means, and the output of the subtracting means as the dynamic characteristic compensation signal Process control device being characterized in that an adding means for adding to the operation output of the control system.
【請求項2】フィードバック制御系とフィードフォワー
ド制御系とを組合せたプロセス制御装置において、 前記フィードフォワード制御系の静特性補償手段とし
て、外乱信号の差分を求める差分演算手段と、この差分
演算手段の出力に静特性補償ゲインを乗ずる係数手段
と、この係数手段の出力および前記差分演算手段の出力
のうち、高位信号または低位信号を選択する信号選択手
段と、この信号選択手段の出力を静特性補償信号として
前記フィードバック制御系の調節演算出力に加える加算
手段とを備えたことを特徴とするプロセス制御装置。
2. A process control device in which a feedback control system and a feedforward control system are combined, wherein as a static characteristic compensating means of the feedforward control system, a difference calculating means for obtaining a difference between disturbance signals, and a difference calculating means of the difference calculating means. The coefficient means for multiplying the output by the static characteristic compensation gain, the signal selecting means for selecting the high-order signal or the low-order signal from the output of the coefficient means and the output of the difference calculating means, and the static characteristic compensation for the output of the signal selecting means. A process control device comprising: an addition unit that adds a signal as a signal to the adjustment calculation output of the feedback control system.
【請求項3】フィードバック制御系とフィードフォワー
ド制御系とを組合せたプロセス制御装置において、 前記フィードフォワード制御系の動特性補償手段とし
て、外乱信号の立上り変化および立下り変化に応じて時
間的な進み/遅れに方向性を持たせた時間方向性手段
と、この時間方向性手段で得られた出力の動特性補償ゲ
インに方向性を持たせたゲイン方向性手段とを備えたこ
とを特徴とするプロセス制御装置。
3. A process control device in which a feedback control system and a feedforward control system are combined, wherein as a dynamic characteristic compensating means of the feedforward control system, a time advance according to a rise change and a fall change of a disturbance signal is performed. / A time directional means having a directional delay, and a gain directional means having a directional characteristic of the dynamic characteristic compensation gain of the output obtained by the time directional means. Process control equipment.
JP63076925A 1988-03-30 1988-03-30 Process control equipment Expired - Lifetime JPH0769723B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63076925A JPH0769723B2 (en) 1988-03-30 1988-03-30 Process control equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63076925A JPH0769723B2 (en) 1988-03-30 1988-03-30 Process control equipment

Publications (2)

Publication Number Publication Date
JPH01248205A JPH01248205A (en) 1989-10-03
JPH0769723B2 true JPH0769723B2 (en) 1995-07-31

Family

ID=13619292

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63076925A Expired - Lifetime JPH0769723B2 (en) 1988-03-30 1988-03-30 Process control equipment

Country Status (1)

Country Link
JP (1) JPH0769723B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6974143B2 (en) * 2017-12-05 2021-12-01 アズビル株式会社 Control device and control method
JP6974142B2 (en) * 2017-12-05 2021-12-01 アズビル株式会社 Control device and control method
JP7050615B2 (en) * 2018-08-01 2022-04-08 アズビル株式会社 Control device and control method
JP7050614B2 (en) * 2018-08-01 2022-04-08 アズビル株式会社 Control device and control method
JP7050616B2 (en) * 2018-08-01 2022-04-08 アズビル株式会社 Control device and control method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58165106A (en) * 1982-03-26 1983-09-30 Toshiba Corp Feedforward controller
JPS5947608A (en) * 1982-09-13 1984-03-17 Toshiba Corp Characteristic compensating device

Also Published As

Publication number Publication date
JPH01248205A (en) 1989-10-03

Similar Documents

Publication Publication Date Title
KR0135586B1 (en) Gain adaptive control device
US7265511B2 (en) Motor control device
JPH0769723B2 (en) Process control equipment
JPH11305803A (en) Controller
JPS61804A (en) Process and apparatus for forecast self-adaptive adjustment of procedure
JP4623292B2 (en) Digital servo controller
JP3175517B2 (en) Position control device
JP3085499B2 (en) Rolling mill control method and device
JPH0721724B2 (en) Automatic control device
JP3234109B2 (en) Process control equipment
JP3582541B2 (en) Positioning control method by sliding mode control
JP2752240B2 (en) Target value tracking speed responsive 2-DOF adjustment device
JP2818325B2 (en) 2-DOF adjustment device
JPH0814762B2 (en) Process control equipment
JP2635754B2 (en) Process control equipment
JP2766395B2 (en) Control device
JP2645112B2 (en) Gain adaptive control device
JP2003259674A (en) Servo control apparatus
JPS63239502A (en) Control device
JPH07219601A (en) Controller
JPH0713801B2 (en) Control device
JP3124169B2 (en) 2-DOF adjustment device
KR100252714B1 (en) Operating control device for virtual reality system
JPS63284603A (en) Process plant controller
JPS631603B2 (en)