JPS63159234A - Production of optical fiber preform - Google Patents

Production of optical fiber preform

Info

Publication number
JPS63159234A
JPS63159234A JP30632486A JP30632486A JPS63159234A JP S63159234 A JPS63159234 A JP S63159234A JP 30632486 A JP30632486 A JP 30632486A JP 30632486 A JP30632486 A JP 30632486A JP S63159234 A JPS63159234 A JP S63159234A
Authority
JP
Japan
Prior art keywords
gas
linear velocity
raw material
layer
hydrogen gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30632486A
Other languages
Japanese (ja)
Inventor
Hiroaki Okano
広明 岡野
Masayoshi Kobayashi
正佳 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP30632486A priority Critical patent/JPS63159234A/en
Publication of JPS63159234A publication Critical patent/JPS63159234A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01413Reactant delivery systems
    • C03B37/0142Reactant deposition burners
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/04Multi-nested ports
    • C03B2207/06Concentric circular ports
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/20Specific substances in specified ports, e.g. all gas flows specified
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/20Specific substances in specified ports, e.g. all gas flows specified
    • C03B2207/22Inert gas details
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/20Specific substances in specified ports, e.g. all gas flows specified
    • C03B2207/24Multiple flame type, e.g. double-concentric flame
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/36Fuel or oxidant details, e.g. flow rate, flow rate ratio, fuel additives
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/70Control measures

Abstract

PURPOSE:To improve reaction efficiency and stabilize production of a porous glass preform, by specifying a relationship between the linear velocity of glass raw material gases discharging from the first layer in the center of a multitubular burner and linear velocity of hydrogen gas discharging from the inner and outer peripheral sides. CONSTITUTION:A glass raw material gas containing a dopant is discharged from the first layer in the center of a multitubular burner part at a linear velocity (V1). Hydrogen gas is respectively discharged from the second, seventh layers, etc., at linear velocities (V2), (V3). Ar and oxygen gas are respectively discharged from the third - sixth, eighth and ninth layers, etc., to constitute a double-pipe burner having two sets of flame surfaces. The linear velocity (V1) of the glass raw material gas is 0.5m/sec<V1<1.0m/sec and the relationship between the linear velocities (V2) and (V3) of the hydrogen gas on the inner and outer peripheral sides are set so as to provide 1<V3/V2<2. Thereby fine glass particles can be efficiently reacted and applied and a porous glass preform can be stably produced.

Description

【発明の詳細な説明】 [産業上の利用分野〕 本発明は、気相軸付法(VAD法)により光ファイバ母
材を製造する方法に関し、バーナに送り込まれるガラス
原料の反応収率を向上させ、多孔質は材の合成速度を向
上させる光ファイバ母材の製造方法に関するものである
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for manufacturing an optical fiber preform by a vapor deposition method (VAD method), and improves the reaction yield of glass raw materials fed into a burner. The porosity is related to a method of manufacturing an optical fiber preform that improves the synthesis rate of the material.

[従来の技術] 一般にVAD法により光ファイバ母材を製造する場合、
燃焼バーナとしては、複数のノズルを右する同心円状多
回管バーナが用いられ、ガラス原料として5iC14、
ドーパント原料としてGeα4、燃焼ガスとしてH2,
02が用いられる。
[Prior art] Generally, when manufacturing an optical fiber base material by the VAD method,
As the combustion burner, a concentric multi-tube burner with a plurality of nozzles is used, and the glass raw materials are 5iC14,
Geα4 as a dopant raw material, H2 as a combustion gas,
02 is used.

ガラス原料およびドーパント原料である5iC24゜G
eCfL<は火炎中で加水分解反応をおこし、ガラス微
粒子を生成する。このガラス微粒子が多孔質ガラス母材
の堆積面上に付着し、堆積していく。このとき、多孔質
ガラス母材のかさ密度及びドーパントの濃度分布は多孔
質母材の堆積面の温度分布及び火炎温度分布に依存する
。この多孔質母材の堆積面の温度分布及び火炎温度分布
は、合成用バーナにより形成される火炎の状態が重要な
役割をはたす。とくにガラス合成速度を向上させ大形の
多孔質母材を形成する場合には、火炎温度分布を制御す
る一つの手段として多重管バーナを用い、水素ガスと酸
素ガスにより形成される火炎面を2個以上形成する方法
が提案されている。
5iC24゜G, which is a glass raw material and a dopant raw material
eCfL< causes a hydrolysis reaction in a flame to produce glass particles. These glass particles adhere to and accumulate on the deposition surface of the porous glass base material. At this time, the bulk density and dopant concentration distribution of the porous glass base material depend on the temperature distribution of the deposition surface of the porous glass base material and the flame temperature distribution. The condition of the flame formed by the synthesis burner plays an important role in the temperature distribution on the deposition surface of the porous base material and the flame temperature distribution. In particular, when increasing the glass synthesis rate and forming a large porous base material, a multi-tube burner is used as a means of controlling the flame temperature distribution, and the flame front formed by hydrogen gas and oxygen gas is divided into two. A method of forming more than one is proposed.

ここで、合成用バーナにより形成される火炎面を2個つ
くるときには、例えば多重管バーナ部すに原料ガス、燃
焼ガスを第2図に示すように供給する。即ちバーナ部す
の中心の第1層からガラス原料を流出させ、内側の第2
層から水素ガス、第3層にシールドガスとしてArガス
をはさんで第4層に酸素ガスを流出させる。さらに第5
層、第6層を静で区画して同様な順序で外側の第7層、
第9FpXに水素ガス、M索ガスを流出させる。
When two flame surfaces are formed by the synthesis burner, for example, raw material gas and combustion gas are supplied to the multi-tube burner section as shown in FIG. In other words, the glass raw material flows out from the first layer in the center of the burner part, and
Hydrogen gas flows from the layer, Ar gas is sandwiched between the third layer as a shielding gas, and oxygen gas flows into the fourth layer. Furthermore, the fifth
layer, the 6th layer is divided into layers and the outer 7th layer is placed in the same order,
Hydrogen gas and M-cord gas are discharged to the 9th FpX.

[発明が解決しようとする問題点] このような方法により多孔質ガラス母材を製造したとこ
ろ、次のような問題があった。
[Problems to be Solved by the Invention] When a porous glass base material was manufactured by such a method, the following problems occurred.

大型母材を形成するために原料ガスの投入量を増大させ
ると、反応収率の著しい劣化をまねく。
Increasing the input amount of raw material gas to form a large base material leads to a significant deterioration of the reaction yield.

殊に、第6図に示すように、5i(14,GeCl4の
液体材料に対してArガス等の不活性ガスでバブリング
を行い気体原料としてガラス原料をバーナ部すに供給し
ているため、原料投入量を増大させるには、Arガスの
mも増やさねばならず原料ガスの全体量が多くなってし
まう。一方、原料投入量が少な過ぎる場合にも反応収率
が劣化する。
In particular, as shown in Fig. 6, since the liquid material of 5i (14, GeCl4) is bubbled with an inert gas such as Ar gas and the glass raw material is supplied to the burner section as a gaseous raw material, the raw material In order to increase the input amount, m of the Ar gas must also be increased, resulting in an increase in the total amount of raw material gas.On the other hand, if the raw material input amount is too small, the reaction yield also deteriorates.

また、内側の第2層から流出する水素ガスの線速度に比
べ外側の第711から流出する水素ガスの線速度を小さ
くした場合、収率の茗しい劣化をまねき、一方、外側の
第7層から流出する水素ガスの線速度が大き過ぎる場合
、多孔質母材の堆積部の温度上昇が見られ、多孔質母材
の製造には不適となる。
Furthermore, if the linear velocity of the hydrogen gas flowing out from the outer layer 711 is made smaller than the linear velocity of the hydrogen gas flowing out from the inner layer 7, this will lead to a gradual deterioration of the yield; If the linear velocity of the hydrogen gas flowing out is too high, the temperature of the deposited portion of the porous base material will increase, making it unsuitable for manufacturing the porous base material.

本発明は、上記問題点を解消するもので、多孔質ガラス
母材の合成を行う場合に、ガラス原料の反応収率を向上
させ、ガラス合成速度の向上をはかり多孔質ガラス母材
の製造を安定に行なうことができる光ファイバ母材の製
造方法を提供することにある。
The present invention solves the above-mentioned problems, and when synthesizing a porous glass base material, it improves the reaction yield of glass raw materials and the speed of glass synthesis. It is an object of the present invention to provide a method for manufacturing an optical fiber preform that can be performed stably.

[問題点を解決するための手段] 本発明は、同心円状で複数の噴出ノズルを有する多重管
バーナ部の中心の第111からガラス原料ガスを流出さ
せると共に、内周側部と外周側部に水素ガスおよび酸素
ガスをそれぞれ流出させて火炎面を2組形成させた二重
火炎バーナにおいて、第1層のガラス原料ガスの線速度
v1、バーナ内周側部から流出する水素ガスの線速度■
2、バーナ外周側部から流出する水素ガスの線速度v3
がバーナ燃焼状態にとって重要なパラメータであること
を見出し、これらをo、sm/s<Vi <  1.0
m/sでかつ 1<V3 /V2 <2となるようにし
だものである。
[Means for Solving the Problems] The present invention allows frit gas to flow out from the center No. 111 of a multi-tube burner section having a plurality of concentric jet nozzles, and also to In a double flame burner in which two sets of flame surfaces are formed by respectively flowing out hydrogen gas and oxygen gas, the linear velocity v1 of the frit gas in the first layer, and the linear velocity ■ of the hydrogen gas flowing out from the inner peripheral side of the burner.
2. Linear velocity v3 of hydrogen gas flowing out from the outer peripheral side of the burner
is an important parameter for the burner combustion state, and these are expressed as o, sm/s<Vi<1.0
m/s and 1<V3/V2<2.

[作 用] 第3図、第4図は今回のバーナ燃焼実験により得られた
実験結果であり、第3図は第1層から流出するガラス原
料ガスの線速度v1と反応収率との関係を示し、第4図
は多重管バーナ部の内周側部から流出する水素ガスの線
速度■2と外周側部から流出する水素ガスの線速度v3
との比V3/v2と反応収率との関係を示すものである
[Function] Figures 3 and 4 are the experimental results obtained from this burner combustion experiment, and Figure 3 shows the relationship between the linear velocity v1 of the frit gas flowing out from the first layer and the reaction yield. Fig. 4 shows the linear velocity of hydrogen gas flowing out from the inner circumferential side of the multi-tube burner section ■2 and the linear velocity v3 of hydrogen gas flowing out from the outer circumferential side.
It shows the relationship between the ratio V3/v2 and the reaction yield.

第3図から明らかなように、大形の光ファイバ母材を形
成すべくガラス原料ガスの投入量を増大させ、ガラス原
料ガスの線速度v1を1m/s以上とすると、反応収率
が著しく低下する。これは、ガラス原料ガスの線速度v
1が大きくなり過ぎると、火炎内において十分な加水分
解反応ができずに未反応のままガラス原料ガスが流出す
ることとなるからである。一方、ガラス原料ガスの投入
りを減少しその線速度■1を0.5m /s以下とした
場合にも反応収率が低下する。これは、ガラス原料ガス
が拡散しやすくなるため、多孔質母材に対する付着効率
が下がるためと考えられる。そこで、ガラス原料ガスの
線速度■1の範囲を0.57FL/sから1m/sまで
とする。
As is clear from Fig. 3, when the amount of frit gas input is increased to form a large optical fiber preform and the linear velocity v1 of the frit gas is set to 1 m/s or more, the reaction yield significantly increases. descend. This is the linear velocity v of the frit gas
This is because if 1 becomes too large, a sufficient hydrolysis reaction cannot take place within the flame, and the glass raw material gas will flow out unreacted. On the other hand, the reaction yield also decreases when the input of frit gas is reduced and its linear velocity (1) is set to 0.5 m 2 /s or less. This is thought to be because the frit gas becomes more easily diffused, which lowers the adhesion efficiency to the porous base material. Therefore, the range of the linear velocity (1) of the frit gas is set from 0.57 FL/s to 1 m/s.

なお、5iCJ!4. Gf3CjLa等の液体材料を
高温加熱し気体原料とし直接流量υJt[lを行ない且
つ多重管バーナ部までの原料ガス輸送ラインの途中にA
r等の不活性ガスを付加できる機構とすることにより、
ガラス原料を増減しても、Ar等の不活性ガスを含むガ
ラス原料ガスの線速度■1を上記範囲内にすることがで
きる。
In addition, 5iCJ! 4. A liquid material such as Gf3CjLa is heated to a high temperature and used as a gaseous raw material, and a flow rate of υJt[l is carried out directly.
By using a mechanism that can add inert gas such as r,
Even if the glass raw material is increased or decreased, the linear velocity (1) of the glass raw material gas containing an inert gas such as Ar can be kept within the above range.

また、第4図に示すように、多重管バーナ部の内周側部
から流出する水素ガスの線速度■2に比べ外周側部から
流出する水素ガスの線速度■3を小さくした場合、火炎
中心部で生成したガラス微粒子(Si02. Ge02
)が外周部へ拡散しやすく反応収率が著しく下がる。ま
た、外周側部の水素ガスの線速度v3が内周側部の水素
ガスの線速度v2より大きくなり両者の比V3/V2が
2以上となると、堆積部が温度上昇し多孔質母材の製造
には不適となる。そこで、内・外周側部の水素ガスの線
速度v2 、v3の比V3 /V2を1から2までの範
囲とする。
In addition, as shown in Fig. 4, when the linear velocity (3) of the hydrogen gas flowing out from the outer circumferential side is made smaller than the linear velocity (2) of the hydrogen gas flowing out from the inner circumferential side of the multi-tube burner section, the flame Glass fine particles (Si02. Ge02
) easily diffuses to the outer periphery, significantly reducing the reaction yield. Furthermore, when the linear velocity v3 of the hydrogen gas on the outer circumferential side becomes larger than the linear velocity v2 of the hydrogen gas on the inner circumferential side and the ratio V3/V2 of the two becomes 2 or more, the temperature of the deposition part increases and the porous base material Unsuitable for manufacturing. Therefore, the ratio V3/V2 of the linear velocities v2 and v3 of the hydrogen gas at the inner and outer peripheral sides is set in the range of 1 to 2.

[実施例] 以下に、木R明の具体的な実施例を比較例とともに述べ
る。
[Example] Hereinafter, specific examples of Ki Rime will be described together with comparative examples.

原料ガス供給系を第1図に示す。同図に示すように、5
iC14,GeCl4等の液体のガラス原料は図示省略
のヒーター等により高温加熱される容器10内にて気化
され、原料ガス輸送ライン11を通って多重管バーナ部
すに運ばれる。原料ガス輸送ライン11の途中には流量
制御のために不活性ガスのArが付加されるようになっ
ている。
Figure 1 shows the raw material gas supply system. As shown in the figure, 5
Liquid glass raw materials such as iC14 and GeCl4 are vaporized in a container 10 which is heated to a high temperature by a heater (not shown), and then transported to a multi-tube burner section through a raw material gas transport line 11. An inert gas, Ar, is added in the middle of the raw material gas transport line 11 to control the flow rate.

第2図は多重管バーナ部すの端面を示すもので、多重管
バーナ部すは9重管構造となっており、第1層にはガラ
ス原料5iC14とドーパントとしてGeC24等が供
給され、線速度v1にて流出する。
Figure 2 shows the end face of the multi-tube burner part. The multi-tube burner part has a nine-pipe structure, and the first layer is supplied with glass raw material 5iC14 and GeC24 etc. as a dopant, and the linear velocity is It leaks in v1.

第2層、第7層には水素ガスが供給され、それぞれ線速
度v2 、v3で流出する。第3層〜第6層。
Hydrogen gas is supplied to the second and seventh layers and flows out at linear velocities v2 and v3, respectively. 3rd layer to 6th layer.

第8層、第9層には図示の通りアルゴンと酸素が供給さ
れる。
Argon and oxygen are supplied to the eighth and ninth layers as shown in the figure.

実施例では、第1図の原料ガス供給系および第2図の多
重管バーナ部すを使用して多孔質ガラス母材の製造を行
った。各ガス流の配置も第2図と同様である。ガスの流
量条件は、第2層から流れる水素流量を8JVa+in
1第7層から流れる水素流量を30J/minとし、原
料ガスとして5iC1tを15g/min、 GeCl
4を1.5g/sin、付加Arガスを1000cc/
1nとした。このときの原料ガスの線速度■1は0、7
m /s1水素ガスの線速度■2は2.07FL /s
In the example, a porous glass preform was manufactured using the raw material gas supply system shown in FIG. 1 and the multi-tube burner section shown in FIG. The arrangement of each gas flow is also the same as in FIG. The gas flow conditions are such that the hydrogen flow rate from the second layer is 8JVa+in.
1 The flow rate of hydrogen flowing from the seventh layer was 30 J/min, 15 g/min of 5iC1t as raw material gas, GeCl
4 at 1.5 g/sin, additional Ar gas at 1000 cc/
It was set to 1n. At this time, the linear velocity ■1 of the raw material gas is 0.7
m/s1 The linear velocity of hydrogen gas ■2 is 2.07 FL/s
.

v3は2.8m /sであった。この結果、反応収率7
0%と非常に良好に多孔質ガラス母材を得ることができ
た。また第2図に示す原料ガス供給系により5iCi4
の増減にかかわらず任意にvlを変えることができた。
v3 was 2.8 m/s. As a result, the reaction yield was 7
It was possible to obtain a porous glass base material with a very good porous glass content of 0%. In addition, 5iCi4
It was possible to arbitrarily change vl regardless of the increase or decrease in .

次に比較例を述べる。Next, a comparative example will be described.

比較例1 第2図に示す多重管バーナ部すを用い、各ガス流の配置
も第2図と同様とした。原料ガスの供給系としては第6
図の従来のバブリング方式のものを使用した。ガスの流
量条件は、第2層から流れる水素流量を8J/win、
第7層から流れる水素流量を30C/1nとし、原料ガ
スとして5iCu4を3000cc/sin、 GeC
f1aを500CC/l i nとした。このときの原
料ガスの線速度v1は1.5m/s、水素ガスの線速度
v2は2、On/51V3は2. am /sであった
Comparative Example 1 The multi-tube burner section shown in FIG. 2 was used, and the arrangement of each gas flow was also the same as in FIG. 2. The sixth source gas supply system is
The conventional bubbling method shown in the figure was used. The gas flow conditions are as follows: hydrogen flow rate flowing from the second layer is 8J/win;
The flow rate of hydrogen flowing from the seventh layer was 30C/1n, 5iCu4 was used as the raw material gas at 3000cc/sin, and GeC
f1a was set to 500CC/lin. At this time, the linear velocity v1 of the raw material gas is 1.5 m/s, the linear velocity v2 of the hydrogen gas is 2, and the On/51V3 is 2. am/s.

この結果多孔質ガラス母材の製造はできたが反応収率は
25%と非常に低い値であった。
As a result, a porous glass base material could be produced, but the reaction yield was a very low value of 25%.

比較例2 第1図の原料ガス供給系を用い、第2図の多重管バーナ
部すの各ガス流の配置も第2図と同様とした。ガスの流
量条件は、第2層の水素流量を20J?/min、第7
層の水素流Mを18J/1nとした。原料ガスとして5
iCJ24を159/win、 GeCf1aを1.5
g/ln1付加Arガスを1000cc/m i nと
した。このときの原料ガスの線速度v1は0.7m /
s、水素ガスの線速度v2は5.0m151V3は1.
7m/sであった。
Comparative Example 2 The raw material gas supply system shown in FIG. 1 was used, and the arrangement of each gas flow in the multi-tube burner section shown in FIG. 2 was also the same as that shown in FIG. 2. The gas flow conditions are: hydrogen flow rate in the second layer is 20J? /min, 7th
The hydrogen flow M in the bed was 18 J/1n. 5 as raw material gas
iCJ24 159/win, GeCf1a 1.5
g/ln1 additional Ar gas was set to 1000 cc/min. The linear velocity v1 of the raw material gas at this time is 0.7 m/
s, the linear velocity of hydrogen gas v2 is 5.0 m151V3 is 1.
It was 7m/s.

この結果、反応収率は20%と非常に低い値であった。As a result, the reaction yield was a very low value of 20%.

比較例3 第1図の原料ガス供給系を用い、多重管パーナ部すをク
ラッド合成用に用い、第5図のようにバーナ設置して多
孔質ガラス母材の製造を行った。
Comparative Example 3 A porous glass base material was manufactured using the raw material gas supply system shown in FIG. 1, using a multi-pipe perner section for cladding synthesis, and installing a burner as shown in FIG. 5.

ガスの流量条件は、第2層の水素流量を201 /wi
n。
The gas flow conditions are such that the hydrogen flow rate in the second layer is 201 /wi
n.

第7層の水素流量を18J2/winとした。原料ガス
として5iC14を10g/gain、付加ガスとして
A「を1300cc/a i nとした。このときの原
料ガスの線速度■1は0.7m /s、水素ガスの線速
度v2は5.0m/s。
The hydrogen flow rate in the seventh layer was set to 18 J2/win. The raw material gas was 5iC14 at 10 g/gain, and the additional gas was A' at 1300 cc/a in. At this time, the raw material gas linear velocity ■1 was 0.7 m /s, and the hydrogen gas linear velocity v2 was 5.0 m /s.

v3は1.7TrL/sであった。この結果、バーナ延
長上の堆積面よりも下方にはみ出して5102のガラス
微粒子Qが堆積するのが確認され、さらにこの付近から
多孔質母材に割れが生じ製造不能となった。
v3 was 1.7TrL/s. As a result, it was confirmed that the glass particles Q of 5102 were deposited protruding below the deposition surface on the burner extension, and cracks occurred in the porous base material from around this area, making production impossible.

比較例4 第1図の原料ガス供給系と第2図の多重管バーナ部すを
用い、各ガス流の配置も第2図と同様とし、多孔質ガラ
ス母材の製造を行った。ガスの流量条件は、第211J
の水素流量を8J/gin、第711の水素流量を50
1/sinとした。原料ガスとして5iCQ4を159
/sin、 GeCJLaを1.59/sin、付加A
rガスを1000cc/sinとした。このときの原料
ガスの線速度v1は0.7m /s、水素ガスの線速度
■2は2.0m/s、v3は4.6m/sであった。こ
の結果、バーナ外側から流出する水素流量が多いため、
堆積面の温度が高くなり過ぎ多孔質母材の製造不可とな
った。
Comparative Example 4 A porous glass preform was manufactured using the raw material gas supply system shown in FIG. 1 and the multi-tube burner section shown in FIG. 2, with the arrangement of each gas flow being the same as shown in FIG. 2. The gas flow conditions are 211J
The hydrogen flow rate of No. 711 was 8 J/gin, and the hydrogen flow rate of No. 711 was 50 J/gin.
It was set to 1/sin. 159 5iCQ4 as raw material gas
/sin, GeCJLa 1.59/sin, addition A
The r gas was set to 1000 cc/sin. At this time, the linear velocity v1 of the raw material gas was 0.7 m/s, the linear velocity 2 of the hydrogen gas was 2.0 m/s, and the linear velocity v3 was 4.6 m/s. As a result, there is a large flow of hydrogen flowing out from the outside of the burner, so
The temperature of the deposition surface became too high, making it impossible to produce a porous base material.

[発明の効5Q] 以上型するに本発明によれば、二重火炎バーナを使用し
;バーナ中心の第1層からのガラス原料ガスの線速度を
vl、バーナ内・外周側部から流出する水素ガスの線速
度をV2 、V3とするとき、0.5m/s<V+ <
  1.0m/sでかつ 1<V3/V2く2とするこ
とにより、多孔質ガラス母材の合成速度を上げる際、ガ
ラス微粒子を効率よく反応させ且つ付着できると共に安
定な多孔質ガラス母材の合成を行うことができる。
[Effect of the invention 5Q] To summarize, according to the present invention, a double flame burner is used; When the linear velocity of hydrogen gas is V2 and V3, 0.5 m/s<V+<
By setting the velocity to 1.0 m/s and 1<V3/V2, when increasing the synthesis speed of the porous glass base material, glass fine particles can be efficiently reacted and attached, and a stable porous glass base material can be formed. Synthesis can be performed.

また、特にガラス原料投入ωを増大させた場合でも、t
1温加熱して気体とした原料ガスにキャリア不活性ガス
を付加して流出を制御することにより、任意にバーナか
らのガラス原料ガスの線速度を変えられるため、上記関
係式を十分に満足することができる。
In addition, even when the glass raw material input ω is increased, t
By controlling the outflow by adding a carrier inert gas to the raw material gas that has been heated to one temperature and turned into gas, the linear velocity of the glass raw material gas from the burner can be arbitrarily changed, so the above relational expression is fully satisfied. be able to.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に好適なガラス原料ガスの供給系を示す
構成図、第2図は本発明で使用する火炎面を2個形成す
る多重管バーナ部の一例を示す端面図、第3図、第4図
は多孔質母材の製造実験の結果を示すもので、第3図は
ガラス原料ガスの線速度v1と反応収率の関係を示すグ
ラフ、第4図はバーナ内・外周側部の水素ガスの線速度
V2 、V3の比V3 /V2と反応収率の関係を示す
グラフ、第5図はクラッド合成時のバーナ設置を示す正
面図、第6図は従来用いていた原料ガス供給系を示す構
成図である。 なお、図中10は容器、11は原料ガス輸送ライン、v
lはガラス原料ガスの線速度、■2は内周側部の水素ガ
スの線速度、■3は外周側部の水素ガスの線速度、bは
多重管バーナ部である。
FIG. 1 is a configuration diagram showing a frit gas supply system suitable for the present invention, FIG. 2 is an end view showing an example of a multi-tube burner section forming two flame surfaces used in the present invention, and FIG. 3 , Fig. 4 shows the results of a manufacturing experiment for a porous base material, Fig. 3 is a graph showing the relationship between the linear velocity v1 of frit gas and the reaction yield, and Fig. 4 shows the inside and outer peripheral side of the burner. A graph showing the relationship between the linear velocity V2 of hydrogen gas, the ratio V3 /V2 of V3, and the reaction yield. Figure 5 is a front view showing the burner installation during cladding synthesis. Figure 6 is the conventional raw material gas supply. FIG. 2 is a configuration diagram showing the system. In addition, in the figure, 10 is a container, 11 is a raw material gas transportation line, and v
1 is the linear velocity of the frit gas, 2 is the linear velocity of the hydrogen gas on the inner circumferential side, 3 is the linear velocity of the hydrogen gas on the outer circumferential side, and b is the multi-tube burner section.

Claims (2)

【特許請求の範囲】[Claims] (1)気体のガラス原料ガスを燃焼バーナに供給し、火
炎加水分解反応により発生したスートを堆積させて多孔
質母材を形成する光ファイバ母材の製造方法において、
上記燃焼バーナが同心円状の多重管バーナ部を有し、そ
の中心の第1層からガラス原料ガスを流出させると共に
水素ガスと酸素ガスとからなる燃料ガスをノズルの内周
側部と外周側部の二箇所から流出させる二重火炎バーナ
であり、多重管バーナ部の第1層のガラス原料ガスの線
速度をv_1、内周側部から流出させる水素ガスの線速
度をv_2、外周側部から流出させる水素ガスの線速度
をv_3としたとき、その関係を0.5m/s<v_1
<1.0m/sでかつ1<v_3/v_2<2としたこ
とを特徴とする光ファイバ母材の製造方法。
(1) A method for producing an optical fiber preform in which a gaseous frit gas is supplied to a combustion burner and soot generated by a flame hydrolysis reaction is deposited to form a porous preform.
The above-mentioned combustion burner has a concentric multi-tube burner section, in which the frit gas flows out from the first layer at the center, and the fuel gas consisting of hydrogen gas and oxygen gas is transferred to the inner circumferential side and the outer circumferential side of the nozzle. It is a double flame burner in which the linear velocity of the frit gas in the first layer of the multi-tube burner section is v_1, the linear velocity of the hydrogen gas flowing out from the inner circumferential side is v_2, and the linear velocity of the hydrogen gas flowing out from the outer circumferential side is v_1. When the linear velocity of hydrogen gas to flow out is v_3, the relationship is 0.5 m/s<v_1
<1.0 m/s and 1<v_3/v_2<2.
(2)上記多重管バーナ部の第1層から流出するガラス
原料ガスが、SiCl_4、GeCl_4等の液体材料
を高温加熱した気体原料にこれを多重管バーナ部まで輸
送する原料ガス輸送ラインの途中にてArガス等の不活
性ガスを付加させたものであることを特徴とする特許請
求の範囲第1項記載の光ファイバ母材の製造方法。
(2) The frit gas flowing out from the first layer of the multi-tube burner section is placed in the middle of the raw material gas transportation line that transports liquid materials such as SiCl_4 and GeCl_4 to the multi-tube burner section as gaseous raw materials heated to high temperatures. 2. The method of manufacturing an optical fiber preform according to claim 1, wherein an inert gas such as Ar gas is added thereto.
JP30632486A 1986-12-24 1986-12-24 Production of optical fiber preform Pending JPS63159234A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30632486A JPS63159234A (en) 1986-12-24 1986-12-24 Production of optical fiber preform

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30632486A JPS63159234A (en) 1986-12-24 1986-12-24 Production of optical fiber preform

Publications (1)

Publication Number Publication Date
JPS63159234A true JPS63159234A (en) 1988-07-02

Family

ID=17955739

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30632486A Pending JPS63159234A (en) 1986-12-24 1986-12-24 Production of optical fiber preform

Country Status (1)

Country Link
JP (1) JPS63159234A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005005331A1 (en) * 2003-07-10 2005-01-20 Shin-Etsu Chemical Co., Ltd. Method of manufacturing optical fiber base material
CN107857470A (en) * 2017-12-07 2018-03-30 长飞光纤光缆股份有限公司 A kind of VAD prepares the blowtorch of large core fiber mother metal

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005005331A1 (en) * 2003-07-10 2005-01-20 Shin-Etsu Chemical Co., Ltd. Method of manufacturing optical fiber base material
EP1650172A4 (en) * 2003-07-10 2006-08-23 Shinetsu Chemical Co Method of manufacturing optical fiber base material
CN100412015C (en) * 2003-07-10 2008-08-20 信越化学工业株式会社 Method of manufacturing optical fiber base material
CN107857470A (en) * 2017-12-07 2018-03-30 长飞光纤光缆股份有限公司 A kind of VAD prepares the blowtorch of large core fiber mother metal

Similar Documents

Publication Publication Date Title
JP3705169B2 (en) Method for producing porous glass body
RU2243944C2 (en) Method of production of optical fiber billet and design of torch to realize the method
JPS63159234A (en) Production of optical fiber preform
US4312654A (en) Method and apparatus for making large diameter optical waveguide preforms
JPH0324417B2 (en)
US4781740A (en) Method for producing glass preform for optical fiber
JP3953820B2 (en) Method for manufacturing optical fiber porous preform
JP3118822B2 (en) Method for manufacturing glass articles
JP3517848B2 (en) Manufacturing method of optical fiber preform
JP2938688B2 (en) Manufacturing method of preform for optical fiber
JPH06227825A (en) Production of porous glass preform
JP3078590B2 (en) Manufacturing method of synthetic quartz glass
JP3176949B2 (en) Method for producing porous silica preform
JPS6172645A (en) Manufacture of optical fiber preform
JPH05147965A (en) Production of glass base material
JPH04228443A (en) Burner for producing optical fiber preform
JP3188515B2 (en) Burner for synthesis of silica fine particles
JPS61183140A (en) Production of base material for optical fiber
JP3169561B2 (en) Method for producing glass particle deposit
JPH04243929A (en) Production of matrix for optical fiber
JPH02133331A (en) Production of fine glass particle-deposited body
JPS6228100B2 (en)
JPS6287429A (en) Method for producing optical fiber preform and apparatus therefor
JPH04228442A (en) Production of optical preform
JPS61186239A (en) Production of parent material for optical fiber and burner therefor