JPS63159232A - Production apparatus for optical fiber preform - Google Patents

Production apparatus for optical fiber preform

Info

Publication number
JPS63159232A
JPS63159232A JP30605886A JP30605886A JPS63159232A JP S63159232 A JPS63159232 A JP S63159232A JP 30605886 A JP30605886 A JP 30605886A JP 30605886 A JP30605886 A JP 30605886A JP S63159232 A JPS63159232 A JP S63159232A
Authority
JP
Japan
Prior art keywords
exhaust
chamber
inert gas
sintering
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30605886A
Other languages
Japanese (ja)
Inventor
Masayuki Ishikura
昌幸 石倉
Seisuke Tsuda
津田 誠輔
Katsuhisa Kimura
勝久 木村
Yoshinori Kikukawa
菊川 良宜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Cable Industries Ltd
Original Assignee
Mitsubishi Cable Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Cable Industries Ltd filed Critical Mitsubishi Cable Industries Ltd
Priority to JP30605886A priority Critical patent/JPS63159232A/en
Publication of JPS63159232A publication Critical patent/JPS63159232A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01446Thermal after-treatment of preforms, e.g. dehydrating, consolidating, sintering
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01446Thermal after-treatment of preforms, e.g. dehydrating, consolidating, sintering
    • C03B37/0146Furnaces therefor, e.g. muffle tubes, furnace linings

Abstract

PURPOSE:To obtain optical fibers having excellent characteristics, by controlling supply of an inert gas according to internal pressure of a sintering chamber, etc., to keep the internal pressure at a constant value so as to prevent entry of impurities from the outside into the sintering chamber. CONSTITUTION:This production apparatus for optical fiber preforms in formed from the first and second vent cylindrical units 5 and 6, the first, second and third lid units 9, 10 and 11, an inert gas supply passage 22, a flow control valve 23 provided therein, pressure detector 19, a controller 20 for controlling the above-mentioned valve 23 by an output from the pressure detector 9 and a vent passage 27. The above-mentioned lid units 9, 10 and 11 have respective through-holes 12-14 for passing a seed rod 3 therethrough and divide a sintering chamber 15 from the first vent chamber 16 and the outside from the second vent chamber 17. When the pressure of the afore-mentioned sintering chamber 15 is increased, the volume of an inert gas is reduced.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、光フアイバ母材スートを脱水ガラス化して光
フアイバ母材を得る光ファイバ母材製造S!四に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention is directed to optical fiber preform production S! in which an optical fiber preform is obtained by dehydrating and vitrifying an optical fiber preform soot! This is related to the fourth issue.

(従来技術とその問題点) 光ファイバの母材を製造する方法として、$102に屈
折率調整用のドーパントとしてのGeO2を分布させた
多孔質ガラス微粒体からなる光フアイバ母材スートを、
焼結炉で焼結して脱水ガラス化づ′る方法がある。
(Prior art and its problems) As a method for manufacturing an optical fiber base material, an optical fiber base material suit consisting of porous glass fine particles in which GeO2 as a dopant for adjusting the refractive index is distributed in $102 is used.
There is a method of dehydration and vitrification by sintering in a sintering furnace.

この様な方法により光フアイバ母材を製造するには、従
来第2図に示すように、光ファイバは材スート50を先
端部に形成した石英ガラスからなる種棒51を先端側か
ら焼結炉の炉心管52に挿入し、炉心管52の下端から
Heガスと脱水剤としてのC12ガスとを供給し、種棒
51を回転させながら徐々に下降させ、ヒータ53によ
り加熱することにより光フアイバ母材スート50を脱水
ガラス化して光フアイバ母材54を得ていた。そして炉
心管52内のHe及びC12ガスは、排気筒体55に接
続された排気流路56を介して排気処理装置により吸引
していた。なお炉心管52の内部と排気筒体55の内部
とは蓋体57により区画され、排気筒体55の内部と大
気との間は蓋体58により区画されており、蓋体57及
び蓋体58には種棒51が貫通する透孔が穿設されてい
る。
In order to manufacture an optical fiber base material by such a method, conventionally, as shown in FIG. Helium gas and C12 gas as a dehydrating agent are supplied from the lower end of the furnace core tube 52, the seed rod 51 is rotated and gradually lowered, and heated by the heater 53 to form an optical fiber motherboard. The optical fiber base material 54 was obtained by dehydrating and vitrifying the material soot 50. The He and C12 gases in the reactor core tube 52 were sucked by an exhaust treatment device through an exhaust flow path 56 connected to the exhaust cylinder body 55. Note that the inside of the reactor core tube 52 and the inside of the exhaust cylinder 55 are partitioned by a lid 57, and the inside of the exhaust cylinder 55 and the atmosphere are partitioned by a lid 58. A through hole is bored through the seed rod 51.

また排気流路56には手動バルブ59が設置されている
Further, a manual valve 59 is installed in the exhaust flow path 56.

しかし、炉心管52の内圧は、排気側吸引圧の変動や、
種棒51のゆがみや径の不均一に起因する種棒51と蓋
体57との間隙の変化や、炉心管52内部の温度変化に
よる排気ガス実体積の変動等により変動する。
However, the internal pressure of the reactor core tube 52 is affected by fluctuations in the suction pressure on the exhaust side,
It fluctuates due to changes in the gap between the seed rod 51 and the lid body 57 due to distortion or nonuniform diameter of the seed rod 51, and fluctuations in the actual volume of exhaust gas due to temperature changes inside the core tube 52.

このように炉心管52の内圧が変化すれば、光フアイバ
母材スート50の脱水ガラス化工程中に脱水効果が変動
し、光フアイバ母材54から得られる光ファイバの長手
方向の損失特性が低下する。
If the internal pressure of the reactor core tube 52 changes in this way, the dehydration effect will vary during the dehydration and vitrification process of the optical fiber preform soot 50, and the loss characteristics in the longitudinal direction of the optical fiber obtained from the optical fiber preform 54 will deteriorate. do.

また脱水ガラス化工程中に屈折率調整用のドーパントと
してのGeO2の一部が塩化反応により飛散して所望の
屈折率になるのであるが、炉心管52の内圧変動により
この反応速度即ち飛散量が変化し、その結果、光フアイ
バ母材54の屈折率差や屈折率分布形状が長手方向に変
化し、光フアイバ母材54から得られる光ファイバの伝
送特性が低下する。また炉心管52の内圧と炉シールガ
ス圧との差が±20履H20以上の状態で運転すると、
長時間の脱水ガラス化工程中に炉心管52が変形し、破
壊に至る。またたとえば排気負圧変動が激しい場合は、
ガス流の脈動現象が起こり、蓋体57の透孔部で吸排交
番(息つき)し、炉心管52内に排気が逆流して、外部
から空気や金属イオン等の不純物が侵入する危険性があ
る。
Also, during the dehydration and vitrification process, a part of GeO2 as a dopant for adjusting the refractive index is scattered due to the chlorination reaction to achieve the desired refractive index, but due to internal pressure fluctuations in the core tube 52, the rate of this reaction, that is, the amount of scattering is As a result, the refractive index difference and the refractive index distribution shape of the optical fiber preform 54 change in the longitudinal direction, and the transmission characteristics of the optical fiber obtained from the optical fiber preform 54 deteriorate. In addition, if the operation is performed in a state where the difference between the internal pressure of the furnace core tube 52 and the furnace seal gas pressure is ±20 mm or more,
During the long dehydration and vitrification process, the furnace core tube 52 deforms and breaks. For example, if the exhaust negative pressure fluctuates rapidly,
A pulsation phenomenon occurs in the gas flow, and the gas flow alternates between suction and exhaust (breathing) at the through hole of the lid body 57, and the exhaust gas flows back into the reactor core tube 52, creating a risk of impurities such as air and metal ions entering from the outside. be.

しかしながら従来の光フアイバ母材製造装置では、手動
バルブ59の開度を調整して排気ガスの総量を変えるこ
とにより炉心管52の内圧を調整し、安定化していたの
で、排気側の吸引圧の変動等に対応することができず、
炉心管52の内圧を一定にすることができないという問
題があった。
However, in the conventional optical fiber base material manufacturing equipment, the internal pressure of the reactor core tube 52 was adjusted and stabilized by adjusting the opening degree of the manual valve 59 and changing the total amount of exhaust gas. Unable to respond to changes, etc.
There was a problem in that the internal pressure of the furnace core tube 52 could not be made constant.

(問題点を解決するための手段) 上記問題点を解決するため、本発明の光フアイバ母材製
造装置は、焼結炉の焼結室を形成する炉心管の上側に配
置されて第1の排気室を形成する第1の排気筒体と、こ
の第1の排気筒体の上側に配置されて第2の排気室を形
成する第2の排気筒体と、種棒が貫通する透孔を有し且
つ前記焼結室と第1の排気室とを区画する第1の蓋体と
、前記種棒が貫通する透孔を有し且つ前記第1の排気室
と第2の排気室とを区画する第2の蓋体と、前記種棒が
貫通する透孔を有し且つ前記第2の排気室と外部とを区
画する第3の蓋体と、前記第2の排気室に不活性ガスを
供給する不活性ガス供給流路と、この不活性ガス供給流
路に配置された流量調節弁と、前記焼結室の圧力を検出
する圧力検出器と、この圧力検出温からの信号により前
記焼結室の圧力に応じて前記流量調節弁を制御する制御
装置と、前記第1の排気室と排気処理装置とを連通させ
る排気流路とを設け、前記焼結室の圧力が増加したとき
には前記第2の排気室に供給する不活性ガスの量を減少
させ、前記焼結室の圧力が減少したときには前記第2の
排気室に供給する不活性ガスの是を増加させる構成とし
たものである。
(Means for Solving the Problems) In order to solve the above problems, the optical fiber preform manufacturing apparatus of the present invention is arranged above the core tube forming the sintering chamber of the sintering furnace, A first exhaust cylinder body forming an exhaust chamber, a second exhaust cylinder body disposed above the first exhaust cylinder body forming a second exhaust chamber, and a through hole through which the seed rod passes. a first lid body that has a first lid body that partitions the sintering chamber and a first exhaust chamber; and a first lid body that has a through hole through which the seed rod passes and that divides the first exhaust chamber and the second exhaust chamber. a third lid having a through hole through which the seed rod passes and partitioning the second exhaust chamber from the outside; and a third lid that partitions the second exhaust chamber with an inert gas. an inert gas supply channel for supplying the sintering chamber, a flow control valve disposed in the inert gas supply channel, a pressure detector for detecting the pressure in the sintering chamber, and a signal from the detected pressure temperature to detect the pressure in the sintering chamber. A control device that controls the flow rate adjustment valve according to the pressure in the sintering chamber, and an exhaust flow path that communicates the first exhaust chamber and the exhaust treatment device are provided, and when the pressure in the sintering chamber increases, The amount of inert gas supplied to the second exhaust chamber is reduced, and when the pressure in the sintering chamber decreases, the amount of inert gas supplied to the second exhaust chamber is increased. be.

(作用) 焼結室に供給されたガスは、第1の蓋体と種棒との間隙
から第1の排気室に至り、排気処理装置により排気流路
を通って吸引排気される。そして焼結室の圧力は圧力検
出器により検出され、制御装置は圧力検出器からの信号
に応じて流量調節弁を制御して、焼結室の圧力が増加し
たときには第2の排気室に供給する不活性ガスの量を減
少させ、焼結室の圧力が減少したときには第2の排気室
に供給する不活性ガスの偵を増加させて、炉心管の内圧
を一定に保つ。
(Function) The gas supplied to the sintering chamber reaches the first exhaust chamber through the gap between the first lid and the seed rod, and is sucked and exhausted through the exhaust flow path by the exhaust treatment device. Then, the pressure in the sintering chamber is detected by a pressure detector, and the control device controls the flow control valve according to the signal from the pressure detector, so that when the pressure in the sintering chamber increases, the pressure is supplied to the second exhaust chamber. When the pressure in the sintering chamber decreases, the amount of inert gas supplied to the second exhaust chamber is increased to keep the internal pressure of the furnace tube constant.

(実施例) 以下、本発明の一実施例を第1図に基づいて説明する。(Example) An embodiment of the present invention will be described below with reference to FIG.

第1図は本発明の一実施例における光フアイバ母材製造
装置の概略構成図で、1は焼結炉の炉心管であり、この
炉心管1には、下端からHeガスと脱水剤としてのCI
□ガスとが供給され、また先端に光フアイバ母材スート
2が形成された種棒3の先端部が上側から挿入されてい
る。また前記炉心管1は、中間部適所の外側にカーボン
ヒータ等のヒータ4が設置されており、上側に例えば石
英ガラス等からなる第1の排気筒体5が連結されている
。この第1の排気筒体5の上には第2の排気筒体6が一
体に形成されており、前記第1の排気筒体5の側面には
管状のガス排出部7が突設され、前記第2の排気筒体6
の側面には管状の不活性ガス導入部8が突設されている
。前記第1の排気筒体5の下端フランジ部には第1の蓋
体9が、前記第2の排気筒体6の下端7ランジ部には第
2の蓋体10が、前記第2の排気筒体6の上端フランジ
部には第3の蓋体11がそれぞれ載置されている。これ
ら第1〜第3の蓋体9〜11は、周方向2つ割りの円板
状で、中心部に前記種棒3が1通ずる透孔12〜14を
有している。前記第1の蓋体9は前記炉心管1により形
成される焼結室15と前記第1の排気筒体5により形成
される第1の排気室16とを区画しており、前記第2の
蓋体9は前記第1の排気室16と前記第2の排気筒体6
により形成される第2の排気室17とを区画しており、
前記第3の蓋体11は前記第2の排気室17と大気とを
区画している。前記焼結室15は、一端が閉塞された管
路18に連通しており、この管路18には指示計器付の
圧力検出119が設置されている。この圧力検出器19
は制御装置20に接続されており、圧力検出器19と制
御装置20との接続点には設定器21が接続されている
FIG. 1 is a schematic configuration diagram of an optical fiber preform manufacturing apparatus according to an embodiment of the present invention, and 1 is a core tube of a sintering furnace. C.I.
□ gas is supplied, and the tip of a seed rod 3 having an optical fiber base material soot 2 formed at its tip is inserted from above. Further, in the furnace core tube 1, a heater 4 such as a carbon heater is installed outside at a proper position in the middle portion, and a first exhaust cylinder body 5 made of, for example, quartz glass is connected to the upper side. A second exhaust cylinder 6 is integrally formed on the first exhaust cylinder 5, and a tubular gas discharge part 7 is protruded from the side surface of the first exhaust cylinder 5. Said second exhaust cylinder body 6
A tubular inert gas introduction part 8 is provided protruding from the side surface of the inert gas introduction part 8. A first lid body 9 is attached to the lower end flange portion of the first exhaust tube body 5, a second lid body 10 is attached to the lower end 7 flange portion of the second exhaust tube body 6, and a second lid body 10 is attached to the lower end flange portion of the second exhaust tube body 6. Third lid bodies 11 are placed on the upper end flange portions of the cylinder body 6, respectively. These first to third lid bodies 9 to 11 have a disc shape divided into two in the circumferential direction, and have through holes 12 to 14 in the center through which the seed rod 3 passes. The first lid body 9 partitions a sintering chamber 15 formed by the furnace core tube 1 and a first exhaust chamber 16 formed by the first exhaust cylinder body 5. The lid body 9 connects the first exhaust chamber 16 and the second exhaust cylinder body 6.
and a second exhaust chamber 17 formed by
The third lid 11 separates the second exhaust chamber 17 from the atmosphere. The sintering chamber 15 communicates with a conduit 18 whose one end is closed, and a pressure detector 119 with an indicator is installed in this conduit 18. This pressure detector 19
is connected to a control device 20, and a setting device 21 is connected to a connection point between the pressure detector 19 and the control device 20.

前記不活性ガス導入部8は不活性ガス供給流路22を介
して図外の不活性ガス供給装置に接続されており、不活
性ガス供給流路22には前記制御装置20により制御さ
れる流m*節弁23が設置されている。前記ガス排出部
7は先端部が排気箱24に貫入しており、この排気箱2
4は不活性ガス流入部25と排気ガス流出部26とを有
している。
The inert gas introduction section 8 is connected to an inert gas supply device (not shown) via an inert gas supply channel 22, and the inert gas supply channel 22 has a flow controlled by the control device 20. An m* moderation valve 23 is installed. The tip of the gas exhaust section 7 penetrates into the exhaust box 24, and the gas exhaust section 7 penetrates into the exhaust box 24.
4 has an inert gas inlet 25 and an exhaust gas outlet 26.

前記不活性ガス流入部25は図外の管路を介して前記不
活性ガス供給装置に接続されており、前記排気ガス流出
部26は排気流路27を介して排気処理装置28に接続
されている。なお29は光ファイバ母材スート2が脱水
ガラス化されてできた光フアイバ母材である。
The inert gas inlet 25 is connected to the inert gas supply device via a pipe (not shown), and the exhaust gas outlet 26 is connected to an exhaust treatment device 28 via an exhaust flow path 27. There is. Note that 29 is an optical fiber preform made by dehydrating and vitrifying the optical fiber preform soot 2.

次に作用を説明する。まず第1〜第3のa体9〜11を
取外しておき、先端部に光フアイバ母材スート2を形成
した種棒3を先端側を下向きにして図外のチャック装置
に装着する。そして光フアイバ母材スート2部分が焼結
室15の上端部に位置するように種棒3を下降させ、第
1の蓋体9を第1の排気筒体5の下端7ランジ部に載置
し、第2の蓋体10を第2の排気筒体6の下端7ランジ
部に載置し、第3の蓋体11を第2の排気筒体6の上端
フランジ部に載置する。この状態で焼結室15にHeガ
ス及び脱水剤としてのCI2ガスを供給し、ヒータ4で
焼結室15を加熱して、種棒3を軸芯回りに回転させな
がら徐々に下降させると、光フアイバ母材スート2が先
端側から徐々に脱水ガラス化されて体積が減少し、光フ
ァイバ母材29になる。このとき、焼結室15に供給さ
れたガスは、種棒3と第1の蓋体9との間隙から第1の
排気室16に流入し、ガス排出部7を通って排気される
。そして、焼結室15の内圧が圧力検出器19により検
出され、圧力検出器19の信号が制御装設20に供給さ
れて、それにより制御装置20は流量調節弁23を制御
する。即ち、焼結室15の内圧が設定器21で設定した
設定値よりも大きい場合、制御装置20は流量調節弁2
3を絞って排気室15へのHe或はAr等或はこれらを
混合した不活性ガスの流入面を減少させ、逆に焼結室1
5の内圧が設定器21で設定した設定値よりも小さい場
合、制御装置20は流量調節弁23を更に開放して第2
の排気室17への不活性ガスの流入量を増加させる。こ
れにより第2の排気室17の内圧が制御され、第2の排
気室17から種棒3と第2の蓋体10との間隙を通って
第1の排気室16に流入する不活性ガスの流通が変化し
、これにより第1の排気室16の内圧が変化し、焼結室
15から種棒3と第1の蓋体9との間隙を通って第1の
排気室16に流入する排気ガスの流量が変化して、焼結
室15の内圧が一定に保たれる。
Next, the effect will be explained. First, the first to third A bodies 9 to 11 are removed, and the seed rod 3 having the optical fiber base material soot 2 formed at its tip is mounted on a chuck device (not shown) with its tip facing downward. Then, the seed rod 3 is lowered so that the optical fiber base material soot 2 portion is located at the upper end of the sintering chamber 15, and the first lid body 9 is placed on the lower end 7 flange portion of the first exhaust cylinder body 5. Then, the second lid body 10 is placed on the lower end 7 flange portion of the second exhaust cylinder body 6, and the third lid body 11 is placed on the upper end flange portion of the second exhaust cylinder body 6. In this state, He gas and CI2 gas as a dehydrating agent are supplied to the sintering chamber 15, the sintering chamber 15 is heated by the heater 4, and the seed rod 3 is gradually lowered while rotating around its axis. The optical fiber preform soot 2 is gradually dehydrated and vitrified from the tip side to reduce its volume and become an optical fiber preform 29. At this time, the gas supplied to the sintering chamber 15 flows into the first exhaust chamber 16 through the gap between the seed rod 3 and the first lid 9 and is exhausted through the gas exhaust section 7. Then, the internal pressure of the sintering chamber 15 is detected by a pressure detector 19, and a signal from the pressure detector 19 is supplied to a control device 20, whereby the control device 20 controls the flow rate regulating valve 23. That is, when the internal pressure of the sintering chamber 15 is greater than the set value set by the setting device 21, the control device 20 controls the flow rate control valve 2.
3 to reduce the inflow surface of an inert gas such as He or Ar or a mixture of these into the exhaust chamber 15, and conversely, the sintering chamber 1
5 is smaller than the set value set by the setting device 21, the control device 20 further opens the flow rate control valve 23 to open the second flow control valve 23.
The amount of inert gas flowing into the exhaust chamber 17 is increased. As a result, the internal pressure of the second exhaust chamber 17 is controlled, and the inert gas flowing from the second exhaust chamber 17 into the first exhaust chamber 16 through the gap between the seed rod 3 and the second lid 10 is controlled. The flow changes, thereby changing the internal pressure of the first exhaust chamber 16, and the exhaust gas flowing from the sintering chamber 15 into the first exhaust chamber 16 through the gap between the seed rod 3 and the first lid body 9. The internal pressure of the sintering chamber 15 is kept constant by changing the gas flow rate.

一方、ガス排出部7から排気箱24の内部に流入した排
気ガスと不活性ガスとの混合排気ガスは、不活性ガス流
入部25から供給されるHe或はAr等或はこれらの混
合ガスからなる不活性ガスとともに排気ガス流出部26
から吸引排気される。
On the other hand, the mixed exhaust gas of exhaust gas and inert gas that has flowed into the inside of the exhaust box 24 from the gas discharge section 7 is mixed with He, Ar, etc., or a mixture thereof supplied from the inert gas inflow section 25. Exhaust gas outlet 26 together with inert gas
It is sucked and exhausted from.

このように、焼結室15の内圧を検出してそれに応じて
第2の排気室17に供給する不活性ガスの流量を制御し
ているので、焼結室15の内圧を常に一定に保つことが
できる。しかも第2の排気室17を介して第1の排気室
16に不活性ガスを供給しているので、第1の排気室1
6の排気ガスは不活性ガスによりガス排出部7から排気
箱24側へ押出され、第1の排気室16には不活性ガス
が充満しているので、たとえ焼結室15の内圧が変動し
て焼結室15に第1の排気室16からガスが逆流しても
、焼結室15に空気或は金属イオン等の不純物が侵入す
ること全くない。特に、排気室を第1の排気室16と第
2の排気室17との2段構造としているので、焼結室1
5と大気との間の遮断は完璧であり、焼結室15に空気
が侵入するのを確実に阻止できる。しかも本実施例では
排気箱24を設け、この内部にも不活性ガス流入部25
から不活性ガスを供給しているので、排気室15及び排
気箱24の内部には不活性ガスが充満しており、焼結室
15への不純物の侵入をより確実に防止できる。この排
気箱24は、排気流路27を構成する管路内の金属イオ
ン等の不純物が焼結室15に侵入するのを防止するのに
特に有効である。
In this way, since the internal pressure of the sintering chamber 15 is detected and the flow rate of the inert gas supplied to the second exhaust chamber 17 is controlled accordingly, the internal pressure of the sintering chamber 15 can always be kept constant. I can do it. Moreover, since the inert gas is supplied to the first exhaust chamber 16 via the second exhaust chamber 17, the first exhaust chamber 1
The exhaust gas of No. 6 is pushed out from the gas exhaust part 7 to the exhaust box 24 side by the inert gas, and the first exhaust chamber 16 is filled with the inert gas, so even if the internal pressure of the sintering chamber 15 fluctuates. Even if gas flows back into the sintering chamber 15 from the first exhaust chamber 16, no impurities such as air or metal ions will enter the sintering chamber 15. In particular, since the exhaust chamber has a two-stage structure of the first exhaust chamber 16 and the second exhaust chamber 17, the sintering chamber 1
5 and the atmosphere is perfect, and air can be reliably prevented from entering the sintering chamber 15. Moreover, in this embodiment, an exhaust box 24 is provided, and an inert gas inlet 25 is also provided inside this box.
Since the inert gas is supplied from the inside of the exhaust chamber 15 and the exhaust box 24, the inert gas is filled inside the exhaust chamber 15 and the exhaust box 24, and it is possible to more reliably prevent impurities from entering the sintering chamber 15. This exhaust box 24 is particularly effective in preventing impurities such as metal ions in the pipe constituting the exhaust flow path 27 from entering the sintering chamber 15.

(別の実施例) 上記実施例においては、設定器21により焼結室15の
内圧の基準値を設定できるように構成したが、焼結室1
5の内圧の基準値が常に一定で変化させる必要のない場
合には、設定器21は設けなくてもよい。
(Another Example) In the above example, the reference value of the internal pressure of the sintering chamber 15 can be set using the setting device 21.
If the reference value of the internal pressure 5 is always constant and does not need to be changed, the setting device 21 may not be provided.

また上記実施例においては、排気箱24を設けて焼結室
15への不純物の侵入をより確実に防止できるようにし
ているが、この排気箱24は必ずしも設Gノる必要はな
い。
Further, in the above embodiment, the exhaust box 24 is provided to more reliably prevent impurities from entering the sintering chamber 15, but the exhaust box 24 does not necessarily have to be provided.

(発明の効果) 以上説明したように本発明によれば、焼結室の内圧を圧
力検出器で検出してそれに応じて制御装置により流量調
節弁を制御することにより第2の排気室に供給する不活
性ガスの流量を制御しているので、焼結室の内圧を常に
一定に保つことができる。しかも不活性ガス供給流路か
ら第2の排気室を介して第1の排気室に不活性ガスを供
給しているので、第1の排気室の排気ガスは不活性ガス
により排気流路側へ押出され、第1の排気室には不活性
ガスが充満しているので、たとえ焼結室の内圧が変動し
て焼結室に第1の排気室からガスが逆流しても、焼結室
に空気或は金属イオン等の不純物が侵入することは全く
ない。特に、排気室を第1の排気室と第2の排気室との
2段構造としているので、焼結室と大気との間の遮断は
完璧であり、焼結室に空気が侵入するのを確実に阻止で
きる。以上のことから、焼結室の内圧の変動に起因する
脱水ガラス化工程における脱水効果の変動や屈折率調整
用のドーパントの飛散量の変動がな(、非常に優れた特
性の光ファイバを得ることのできる光フアイバ母材を安
定して製造できる。
(Effects of the Invention) As explained above, according to the present invention, the internal pressure of the sintering chamber is detected by the pressure detector, and the control device controls the flow control valve accordingly, thereby supplying the gas to the second exhaust chamber. Since the flow rate of the inert gas is controlled, the internal pressure of the sintering chamber can be kept constant at all times. Moreover, since the inert gas is supplied from the inert gas supply channel to the first exhaust chamber via the second exhaust chamber, the exhaust gas in the first exhaust chamber is pushed out to the exhaust channel side by the inert gas. Since the first exhaust chamber is filled with inert gas, even if the internal pressure of the sintering chamber fluctuates and gas flows back into the sintering chamber from the first exhaust chamber, the first exhaust chamber is filled with inert gas. There is no intrusion of impurities such as air or metal ions. In particular, since the exhaust chamber has a two-stage structure consisting of a first exhaust chamber and a second exhaust chamber, the sintering chamber is completely isolated from the atmosphere, and air is prevented from entering the sintering chamber. It can definitely be stopped. From the above, it is possible to obtain an optical fiber with very excellent characteristics without fluctuations in the dehydration effect during the dehydration vitrification process or fluctuations in the amount of scattering dopant for adjusting the refractive index due to fluctuations in the internal pressure of the sintering chamber. It is possible to stably produce optical fiber base materials that can

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例における光フアイバ母材製造
装置の概略構成図、第2図は従来の光フアイバ母材製造
5A置の概略構成図である。 1・・・炉心管、3・・・種棒、5・・・第1の排気筒
体、6・・・第2の排気筒体、9・・・第1の蓋体、1
0・・・第2の蓋体、11・・・第3の蓋体、12〜1
4・・・透孔、15・・・焼結室、16・・・第1の排
気室、17・・・第2の排気室、19・・・圧力検出器
、2o・・・制御装置、22・・・不活性ガス供給流路
、23・・・流量調節弁、27・・・排気流路、28・
・・排気処理装置特許出願人 三菱電線工業株式会社 1 + ) 代理人 弁理士 大食忠孝、−・7′。 、L、・、、、、;i 小1rシ1 15 ・・・玩粕工
FIG. 1 is a schematic diagram of an optical fiber preform manufacturing apparatus according to an embodiment of the present invention, and FIG. 2 is a schematic diagram of a conventional optical fiber preform manufacturing apparatus 5A. DESCRIPTION OF SYMBOLS 1... Furnace core tube, 3... Seed rod, 5... First exhaust tube body, 6... Second exhaust tube body, 9... First lid body, 1
0...Second lid body, 11...Third lid body, 12-1
4... Through hole, 15... Sintering chamber, 16... First exhaust chamber, 17... Second exhaust chamber, 19... Pressure detector, 2o... Control device, 22... Inert gas supply flow path, 23... Flow rate adjustment valve, 27... Exhaust flow path, 28.
... Exhaust treatment device patent applicant: Mitsubishi Cable Industries, Ltd. 1 +) Agent: Patent attorney: Tadataka Oshiki, - 7'. ,L,・,,,,;i Elementary 1r shi1 15...Toy Kasuko

Claims (1)

【特許請求の範囲】[Claims] 焼結炉の焼結室を形成する炉心管の上側に配置されて第
1の排気室を形成する第1の排気筒体と、この第1の排
気筒体の上側に配置されて第2の排気室を形成する第2
の排気筒体と、種棒が貫通する透孔を有し且つ前記焼結
室と第1の排気室とを区画する第1の蓋体と、前記種棒
が貫通する透孔を有し且つ前記第1の排気室と第2の排
気室とを区画する第2の蓋体と、前記種棒が貫通する透
孔を有し且つ前記第2の排気室と外部とを区画する第3
の蓋体と、前記第2の排気室に不活性ガスを供給する不
活性ガス供給流路と、この不活性ガス供給流路に配置さ
れた流量調節弁と、前記焼結室の圧力を検出する圧力検
出器と、この圧力検出器からの信号により前記焼結室の
圧力に応じて前記流量調節弁を制御する制御装置と、前
記第1の排気室と排気処理装置とを連通させる排気流路
とを設け、前記焼結室の圧力が増加したときには前記第
2の排気室に供給する不活性ガスの量を減少させ、前記
焼結室の圧力が減少したときには前記第2の排気室に供
給する不活性ガスの量を増加させる構成としたことを特
徴とする光ファイバ母材製造装置。
A first exhaust cylinder body is arranged above the furnace core tube forming the sintering chamber of the sintering furnace and forms a first exhaust chamber, and a second exhaust cylinder body is arranged above the first exhaust cylinder body. The second forming the exhaust chamber
an exhaust cylinder body, a first lid body having a through hole through which the seed rod passes and partitioning the sintering chamber and the first exhaust chamber, and a through hole through which the seed rod penetrates; a second lid that partitions the first exhaust chamber and the second exhaust chamber; and a third lid that has a through hole through which the seed rod passes and that partitions the second exhaust chamber from the outside.
a lid body, an inert gas supply channel for supplying inert gas to the second exhaust chamber, a flow rate control valve disposed in the inert gas supply channel, and a pressure in the sintering chamber detected. a control device that controls the flow rate adjustment valve according to the pressure in the sintering chamber based on a signal from the pressure detector; and an exhaust flow that communicates the first exhaust chamber and the exhaust treatment device. a channel for reducing the amount of inert gas supplied to the second exhaust chamber when the pressure in the sintering chamber increases, and supplying the inert gas to the second exhaust chamber when the pressure in the sintering chamber decreases. 1. An optical fiber preform manufacturing apparatus characterized by being configured to increase the amount of inert gas supplied.
JP30605886A 1986-12-22 1986-12-22 Production apparatus for optical fiber preform Pending JPS63159232A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30605886A JPS63159232A (en) 1986-12-22 1986-12-22 Production apparatus for optical fiber preform

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30605886A JPS63159232A (en) 1986-12-22 1986-12-22 Production apparatus for optical fiber preform

Publications (1)

Publication Number Publication Date
JPS63159232A true JPS63159232A (en) 1988-07-02

Family

ID=17952540

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30605886A Pending JPS63159232A (en) 1986-12-22 1986-12-22 Production apparatus for optical fiber preform

Country Status (1)

Country Link
JP (1) JPS63159232A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0251436A (en) * 1988-08-11 1990-02-21 Fujikura Ltd Dehydrating sintering furnace for mother material of optical glass
EP1717212A1 (en) * 2005-04-29 2006-11-02 The Boc Group, Inc. Process for consolidating a glass optical fibre preform
CN104098255A (en) * 2013-04-10 2014-10-15 信越化学工业株式会社 Sintering apparatus
EP2805928A1 (en) * 2013-05-21 2014-11-26 Shin-Etsu Chemical Co., Ltd. Method and apparatus for sintering a glass preform for an optical fiber

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0251436A (en) * 1988-08-11 1990-02-21 Fujikura Ltd Dehydrating sintering furnace for mother material of optical glass
EP1717212A1 (en) * 2005-04-29 2006-11-02 The Boc Group, Inc. Process for consolidating a glass optical fibre preform
CN104098255A (en) * 2013-04-10 2014-10-15 信越化学工业株式会社 Sintering apparatus
EP2789590A1 (en) * 2013-04-10 2014-10-15 Shin-Etsu Chemical Co., Ltd. Sintering apparatus
JP2014201513A (en) * 2013-04-10 2014-10-27 信越化学工業株式会社 Sintering apparatus
EP2805928A1 (en) * 2013-05-21 2014-11-26 Shin-Etsu Chemical Co., Ltd. Method and apparatus for sintering a glass preform for an optical fiber
US9422185B2 (en) 2013-05-21 2016-08-23 Shin-Etsu Chemical Co., Ltd. Apparatus for sintering a glass preform for an optical fiber and sintering method thereof

Similar Documents

Publication Publication Date Title
JP2002531366A (en) Method for producing tubes made of vitreous material, in particular quartz glass
EP1440946B1 (en) Method and apparatus for processing a preform for an optical fibre using a burner
US4440556A (en) Optical fiber drawing using plasma torch
US4813989A (en) Apparatus for fabricating optical fiber preform
EP0231022B1 (en) Apparatus for the production of porous preform of optical fiber
US4428762A (en) Vapor-phase axial deposition system
EP0200215A1 (en) Raw material supplying device and process for using this device
JPS63159232A (en) Production apparatus for optical fiber preform
CA1290149C (en) Heat treating apparatus and method of operating heat treating apparatus
JP4165879B2 (en) Method and apparatus for manufacturing glass optical fiber preform by vapor phase growth method
JPS63159231A (en) Production apparatus for optical fiber preform
JPH0340932A (en) Accumulation device for glass fine particle
JPS61197439A (en) Production of porous glass rod and devices therefor
JP2005075682A (en) Method of manufacturing porous glass preform
JPH02212325A (en) Furnace for dehydrating and sintering optical fiber preform
EP0105926B1 (en) Vapor-phase axial deposition system
JP3788301B2 (en) Gas shunting device, porous glass base material manufacturing device, and porous glass base material manufacturing method
JPS5761641A (en) Manufacturing of optical fiber preform
JPS62162636A (en) Sintering apparatus for porous preform for optical fiber
JPS63285133A (en) Furnace for drawing optical fiber
JPS6126531A (en) Production of base material for optical fiber
JPS6044258B2 (en) synthesis torch
JPH06316422A (en) Producing device for glass preform
JPS60155538A (en) Production of porous preform for optical use
JPH02283632A (en) Deposition apparatus for fine glass particle