JPS62162636A - Sintering apparatus for porous preform for optical fiber - Google Patents

Sintering apparatus for porous preform for optical fiber

Info

Publication number
JPS62162636A
JPS62162636A JP484486A JP484486A JPS62162636A JP S62162636 A JPS62162636 A JP S62162636A JP 484486 A JP484486 A JP 484486A JP 484486 A JP484486 A JP 484486A JP S62162636 A JPS62162636 A JP S62162636A
Authority
JP
Japan
Prior art keywords
core tube
furnace core
gas
partition member
optical fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP484486A
Other languages
Japanese (ja)
Other versions
JPH0629149B2 (en
Inventor
Tsutomu Yabuki
矢吹 勉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP484486A priority Critical patent/JPH0629149B2/en
Publication of JPS62162636A publication Critical patent/JPS62162636A/en
Publication of JPH0629149B2 publication Critical patent/JPH0629149B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01486Means for supporting, rotating or translating the preforms being formed, e.g. lathes
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01446Thermal after-treatment of preforms, e.g. dehydrating, consolidating, sintering
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01446Thermal after-treatment of preforms, e.g. dehydrating, consolidating, sintering
    • C03B37/0146Furnaces therefor, e.g. muffle tubes, furnace linings

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

PURPOSE:To stabilize inner pressure of a furnace core tube during the sintering and vitrification of a porous preform for an optical fiber and to eliminate the disturbance of refractive index distribution of an optical fiber preform, by placing a partition member to control the flow rate of gas at a downstream side of a target holding the porous preform based on a He+Cl2 gas stream in the furnace core tube. CONSTITUTION:A He+Cl2 gas is introduced into a furnace core tube 5 from its bottom 6 and exhausted from its top 7. A target 4 holding a porous preform 3 is inserted from above into the core tube 5 against the gas stream to effect the sintering of the preform. A partition member 11 to control the flow rate of the gas is placed in the furnace core tube 5 at the downstream side of the target 4 based on the above gas stream. The flow rate of the He+Cl2 gas in the furnace core tube 5 can be maintained at a nearly definite level by the gap formed between the partition member 11 and the inner wall of the furnace core tube 5. The flow rate is independent upon the position or volume change of the porous preform 3.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は光ファイバ用多孔質母Hの焼結装置に係り、特
にVAD法等で形成された多孔質母材を透明ガラス化す
る焼結装置の炉芯管内圧の安定化に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a sintering device for a porous matrix H for optical fibers, and in particular to a sintering device for transparently vitrifying a porous matrix formed by a VAD method or the like. Related to stabilizing the internal pressure of the furnace core tube of the device.

[従来の技術] 光ファイバ母材の製造において、VAD法等により形成
された多孔質母材を透明ガラス化するために従来第4図
に示すような焼結装置が用いられていた。ダなわら、ま
ず引上ロッド1の先端にターゲットボルダ−2が設置さ
れ、このターゲットホルダー2に多孔質母材3がIt積
しているターゲット4を取り付ける。次に、これらを炉
芯管5の内部に挿入した後、炉芯管5下部の吸気口6が
らHeガスおよびC12ガスを流し込み、内圧調整弁7
でガス排気孔径を調整することによって炉芯管5の内圧
を所定の値(+2〜5#1111120程度)に保持J
る。そして、ロッド1を回転しながら一定速度で引き下
げ、炉芯′t25の外側部に設置されているカーボンヒ
ータ8により多孔質母材3を約1800℃に加熱して透
明ガラス化された光ファイバ母材9を得ていた。
[Prior Art] In the production of optical fiber preforms, a sintering apparatus as shown in FIG. 4 has been conventionally used to turn a porous preform formed by VAD or the like into transparent glass. First, a target boulder 2 is installed at the tip of the pulling rod 1, and a target 4 on which a porous base material 3 is stacked is attached to the target holder 2. Next, after inserting these into the inside of the furnace core tube 5, He gas and C12 gas are poured into the intake port 6 at the bottom of the furnace core tube 5, and the internal pressure regulating valve 7
By adjusting the gas exhaust hole diameter, the internal pressure of the furnace core tube 5 is maintained at a predetermined value (approximately +2 to 5
Ru. Then, the rod 1 is rotated and lowered at a constant speed, and the porous base material 3 is heated to about 1800° C. by the carbon heater 8 installed on the outside of the furnace core 't25, thereby forming a transparent vitrified optical fiber base. Material 9 was obtained.

[発明が解決しようとする問題点] ところで、多孔質母材3は通常約60〜10#の外径を
有づるが、加熱されて透明ガラス化すると収縮し、製造
された光ファイバ母材9は多孔質母材3の約10分の1
の大きさとなる。従って、ロッド1により多孔質母材3
が引き下げられて焼結工程が始まると、それに伴って炉
芯管5内のガスの流れ方が経時的に変化しあるいは煙突
効果による部分的な圧力変動が生じやすく、内圧調整弁
7が設けられているにも拘らず、炉芯管5の内圧は変動
し、その大きさを差圧計10で測定したところほぼ1〜
2s+lhO程度にまで達することがわかった。
[Problems to be Solved by the Invention] By the way, the porous preform 3 normally has an outer diameter of about 60 to 10#, but when heated to become transparent vitrified, it contracts, and the manufactured optical fiber preform 9 is about 1/10 of porous base material 3
The size will be . Therefore, the porous base material 3 is
When the pressure is lowered and the sintering process begins, the flow of gas in the furnace core tube 5 changes over time or local pressure fluctuations are likely to occur due to the chimney effect, so an internal pressure regulating valve 7 is provided. Despite this, the internal pressure of the furnace core tube 5 fluctuates, and when its magnitude was measured with a differential pressure gauge 10, it was approximately 1 to 1.
It was found that it reached about 2s+lhO.

この炉芯管内圧は、多孔lL1母材3内に含有され多孔
質母材3の屈折率分布を決定するドーパントであるGC
02817の蒸発の割合およびCI!2ガスとの反応の
瓜合いを左右するものである。このため、炉芯管内圧が
変動すると多孔質母材3内のG(302の濃度が変化す
るので、焼結された光ファイバ母材9は長手方向におい
て不均一な屈折率分布を右することになる。
This furnace core tube internal pressure is caused by GC, which is a dopant contained in the porous 1L1 base material 3 and determines the refractive index distribution of the porous base material 3.
Evaporation rate and CI of 02817! It influences the coordination of the reactions with the two gases. Therefore, when the internal pressure of the furnace core tube changes, the concentration of G (302) in the porous preform 3 changes, so the sintered optical fiber preform 9 has a non-uniform refractive index distribution in the longitudinal direction. become.

このように従来は炉芯管内圧の変動に伴って光ファイバ
母材の屈折率分布の均一性および再現性が劣化するとい
う問題点があった。
As described above, there has been a conventional problem in that the uniformity and reproducibility of the refractive index distribution of the optical fiber preform deteriorate due to fluctuations in the internal pressure of the furnace core tube.

[発明の目的1 本発明の目的は、上記した従来技術の問題点を解間し、
多孔質母材焼結時の炉芯管内圧を安定化して屈折率分布
に乱れのない良質な光ファイバ母材を製造し得る光ファ
イバ用多孔質母材焼結装置を提供することにある。
[Objective of the invention 1 The object of the present invention is to solve the problems of the prior art described above,
An object of the present invention is to provide an apparatus for sintering a porous preform for an optical fiber, which can produce a high-quality optical fiber preform without disturbance in the refractive index distribution by stabilizing the internal pressure of a furnace core tube during sintering of the porous preform.

[発明の概要1 上記の目的を達成するために、本発明は、炉芯管内のl
Ie+C12ガス流に対して多孔質母材を保持するター
ゲットより下流側にガス流σを制御づ゛るための仕切部
材を設けたものである。
[Summary of the Invention 1 In order to achieve the above object, the present invention provides
A partition member for controlling the gas flow σ is provided downstream from the target holding the porous base material with respect to the Ie+C12 gas flow.

[実施例] 以下、本発明の実施例について添付図面を参照して説明
する。
[Examples] Examples of the present invention will be described below with reference to the accompanying drawings.

第1図は本発明の一実施例に係る光ファイバ用多孔質母
材焼結装置の概略構成図である。図中、1は引上ロッド
であり、引上ロッド1の先端に内径15M、外径20#
lIIのターゲットホルダー2が設置され、さらにター
ゲットホルダー2の上部に第2図に示すような外径85
M、厚さ5INRの円盤状の仕切部材11が設けられて
いる。なお、これら引上ロッド1.ターゲットホルダー
2および仕切部材11は石英ガラスからなっている。一
方、5は内径90調、外径95#Im、長さ1500m
の石英ガラス製炉芯管で、ガス供給装置(図示せず)に
よって炉芯管下部に設【プられた吸気口6からIle+
α2ガスを導入し、」二部に設けられた内圧調整弁7を
介して排気する。さらに、炉芯管5の下部には内圧の変
動を測定する差圧計10が、また炉芯管5の外側部には
加熱用のカーボンヒータ8がそれぞれ設置されている。
FIG. 1 is a schematic diagram of a porous preform sintering apparatus for optical fibers according to an embodiment of the present invention. In the figure, 1 is a lifting rod, and the tip of the lifting rod 1 has an inner diameter of 15M and an outer diameter of 20mm.
A target holder 2 of III is installed, and an outer diameter 85 as shown in FIG.
A disk-shaped partition member 11 having a diameter of 5 INR and a thickness of 5 INR is provided. In addition, these lifting rods 1. The target holder 2 and the partition member 11 are made of quartz glass. On the other hand, 5 has an inner diameter of 90cm, an outer diameter of 95#Im, and a length of 1500m.
This is a quartz glass furnace core tube.
α2 gas is introduced and exhausted through an internal pressure regulating valve 7 provided in the second part. Further, a differential pressure gauge 10 for measuring fluctuations in internal pressure is installed at the lower part of the furnace core tube 5, and a carbon heater 8 for heating is installed at the outside of the furnace core tube 5.

すなわち、本実施例の焼結装置は第4図の従来例にJ3
いて、ターゲットボルダ−2の上部に仕切部材11を設
けたものである。この仕切部4411の外径(85mm
)は炉芯管5の内径(90IrIn)より小さく構成さ
れているので、仕切部材11と炉芯管5の内壁との間に
は一定の大きさの空隙が形成され、炉芯管5の下部から
導入されたlIe+cIL2ガスはこのわずかな空隙を
通って上部へと流れることとなる。このため、炉芯管5
内のlle+cQ2ガスの流量は多孔質母材の位置ある
いは体積変化に左右されず、仕切部材11とか芯管5の
内壁との間に形成された空隙によってほぼ一定に保持さ
れる。
That is, the sintering apparatus of this embodiment is similar to the conventional example shown in FIG.
A partition member 11 is provided above the target boulder 2. The outer diameter of this partition 4411 (85 mm
) is smaller than the inner diameter (90IrIn) of the furnace core tube 5, so a gap of a certain size is formed between the partition member 11 and the inner wall of the furnace core tube 5, and the lower part of the furnace core tube 5 is The lIe+cIL2 gas introduced from above flows upward through this slight gap. For this reason, the furnace core tube 5
The flow rate of the lle+cQ2 gas inside is not affected by the position or volume change of the porous base material, and is kept almost constant by the gap formed between the partition member 11 and the inner wall of the core tube 5.

次に、本実施例の動作を説明する。Next, the operation of this embodiment will be explained.

まず、多孔質母材3が堆積形成されている外径15am
の石英ガラス製ターゲット4をターゲットホルダー2に
取り付け、これらを炉芯管5内に1Φ入する。さらに、
ガス供給装置によって吸気口6がら流ffi 7.5〜
11 /winのIleガスおよびC12ガスを炉芯管
5内に送り込むと共に、内圧調整弁7によりガス排気孔
径を調整させて炉芯管5の内圧を+ 5#1IIIth
Oに保持させる。次に、引上ロッド1を約0.5rpm
の回転数で回転しながら速度1.5〜5#/1nで引ぎ
下げ、多孔質母材3を炉芯管5の外側部に設置されてい
るカーボンヒータ8によって約1800℃に加熱して透
明ガラス化し光ファイバ母材9を形成する。
First, the outer diameter of the porous base material 3 is 15 am.
A quartz glass target 4 is attached to the target holder 2, and these are inserted into the furnace core tube 5 by 1Φ. moreover,
The gas supply device allows the intake port 6 to flow ffi 7.5~
11/win Ile gas and C12 gas are fed into the furnace core tube 5, and the internal pressure of the furnace core tube 5 is increased by adjusting the gas exhaust hole diameter with the internal pressure regulating valve 7.
Hold O. Next, pull up the pulling rod 1 at about 0.5 rpm.
The porous base material 3 is heated to approximately 1800°C by the carbon heater 8 installed on the outside of the furnace core tube 5. The optical fiber preform 9 is formed into transparent glass.

上記の焼結装置を用いて長さ040mの多孔質母材を約
12時間にわたって焼結し、この間の炉芯管5の内圧変
動を差圧計10によって測定しICところ±0.211
11111120であった。従って、本実施例の装置で
は従来に比べて炉芯管の内圧変動が極めて小さくなって
いることがわかる。
A porous base material with a length of 040 m was sintered for about 12 hours using the above sintering apparatus, and the internal pressure fluctuation of the furnace core tube 5 during this period was measured by the differential pressure gauge 10, and the IC was ±0.211.
It was 11111120. Therefore, it can be seen that in the apparatus of this embodiment, the fluctuation in the internal pressure of the furnace core tube is extremely small compared to the conventional apparatus.

なお、上記実施例では仕切部材11が円盤状をなして炉
芯管5の内壁との闇に空隙を形成したが、これに限るも
のではなく、例えば第3図のように少イ5くとも1つ以
上の通気孔12aが設けられている仕切部材12を用い
、この通気孔12aが上記の空隙の役目を果たすように
構成してもよい。
In the above embodiment, the partition member 11 has a disc shape and forms a gap between it and the inner wall of the furnace core tube 5, but the invention is not limited to this. For example, as shown in FIG. The partition member 12 may be provided with one or more ventilation holes 12a, and the ventilation holes 12a may serve as the voids described above.

ざらに、仕切部材をターゲットホルダー2に設置するの
ではなく、中心に引上ロッド1を通す孔が設けられてい
る仕切部材を炉芯管5の内壁に設置してもよい。ただし
、この場合には仕切部材を固定式とすると多孔質母材3
の挿入が妨げられてしまうので、例えば多孔質母材3を
挿入した後に絞り込めるような可変式の仕切部材が必要
となる。
In other words, instead of installing the partition member on the target holder 2, a partition member having a hole in the center through which the pulling rod 1 is passed may be installed on the inner wall of the furnace core tube 5. However, in this case, if the partition member is fixed, the porous base material 3
For example, a variable partition member that can be narrowed down after inserting the porous base material 3 is required.

[発明の効果] 以上説明したように本発明によれば次のごとぎ優れた効
果を発揮する。
[Effects of the Invention] As explained above, according to the present invention, the following excellent effects are exhibited.

(1)  仕切部材を設Gノることによって炉芯管内の
ガス流mを一定に保l!することができる。従って、多
孔質母材の位置および体積変化に拘らずに炉芯管の内圧
の安定化が達成される。
(1) By installing a partition member, the gas flow inside the furnace core tube can be kept constant! can do. Therefore, the internal pressure of the furnace core tube can be stabilized regardless of the position and volume change of the porous base material.

このため、屈折率分布に乱れがなく、伝送帯域および伝
送娼失等の特性が安定した光ファイバ母材を製造するこ
とができる。
Therefore, it is possible to manufacture an optical fiber preform with no disturbance in the refractive index distribution and with stable characteristics such as transmission band and transmission loss.

(b 炉芯管内に仕切部材を設けるだけCよいので、安
価に実施でさると共に既存設備にも容易に適用でき有用
性が高い。
(b) Since it is only necessary to provide a partition member within the furnace core tube, it can be implemented at low cost, and can be easily applied to existing equipment, making it highly useful.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の光ファイバ用多孔質母材焼結装置の一
実施例を示す概略構成図、第2図は第1図の実施例で用
いられた仕切部材の斜視図、第3図は仕切部材の変形例
を示す斜視図、第4図は従来の焼結装置を示す概略構成
図である。 図中、1は引上ロッド、2はターゲットホルダー、3は
多孔質母材、4はターゲット、5は炉芯管、6は吸気口
、7は内圧調整弁、8はカーボンヒータ、9は光ファイ
バ母材、10は差圧計、11J3よび12は仕切部材、
12aは通気孔である。
Fig. 1 is a schematic configuration diagram showing an embodiment of the porous preform sintering device for optical fibers of the present invention, Fig. 2 is a perspective view of a partition member used in the embodiment of Fig. 1, and Fig. 3 4 is a perspective view showing a modified example of the partition member, and FIG. 4 is a schematic configuration diagram showing a conventional sintering apparatus. In the figure, 1 is a pulling rod, 2 is a target holder, 3 is a porous base material, 4 is a target, 5 is a furnace core tube, 6 is an intake port, 7 is an internal pressure regulating valve, 8 is a carbon heater, and 9 is a light Fiber base material, 10 is a differential pressure gauge, 11J3 and 12 are partition members,
12a is a ventilation hole.

Claims (2)

【特許請求の範囲】[Claims] (1)炉芯管の下部よりHe+Cl_2ガスを導入する
と共に上部より排気しつつ多孔質母材を保持させたター
ゲットを上部から上記ガス流に向って挿入させて焼結す
る装置において、上記炉芯管内に、上記ガス流に対して
上記ターゲットより下流側にガス流量を制御するための
仕切部材が設けられていることを特徴とする光ファイバ
用多孔質母材焼結装置。
(1) In a device for sintering by introducing He+Cl_2 gas from the lower part of the furnace core tube and exhausting it from the upper part, a target holding a porous base material is inserted from the upper part toward the gas flow. A porous preform sintering device for an optical fiber, characterized in that a partition member for controlling the gas flow rate is provided in the tube on the downstream side of the target with respect to the gas flow.
(2)上記仕切部材が上記ターゲットを保持するターゲ
ットホルダーに設けられていることを特徴とする特許請
求の範囲第1項記載の光ファイバ用多孔質母材焼結装置
(2) The apparatus for sintering a porous preform for an optical fiber according to claim 1, wherein the partition member is provided on a target holder that holds the target.
JP484486A 1986-01-13 1986-01-13 Porous base material sintering machine for optical fiber Expired - Lifetime JPH0629149B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP484486A JPH0629149B2 (en) 1986-01-13 1986-01-13 Porous base material sintering machine for optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP484486A JPH0629149B2 (en) 1986-01-13 1986-01-13 Porous base material sintering machine for optical fiber

Publications (2)

Publication Number Publication Date
JPS62162636A true JPS62162636A (en) 1987-07-18
JPH0629149B2 JPH0629149B2 (en) 1994-04-20

Family

ID=11594989

Family Applications (1)

Application Number Title Priority Date Filing Date
JP484486A Expired - Lifetime JPH0629149B2 (en) 1986-01-13 1986-01-13 Porous base material sintering machine for optical fiber

Country Status (1)

Country Link
JP (1) JPH0629149B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62144945U (en) * 1986-03-07 1987-09-12
EP0628521A1 (en) * 1993-06-08 1994-12-14 Sumitomo Electric Industries, Ltd Apparatus for vitrifying soot preform for optical fiber
JP2007145671A (en) * 2005-11-29 2007-06-14 Sumitomo Electric Ind Ltd Heating furnace, method for heating glass and method for maintaining heating furnace
EP2789590A1 (en) * 2013-04-10 2014-10-15 Shin-Etsu Chemical Co., Ltd. Sintering apparatus

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62144945U (en) * 1986-03-07 1987-09-12
JPH0711141Y2 (en) * 1986-03-07 1995-03-15 古河電気工業株式会社 Support bar for optical fiber base material manufacturing
EP0628521A1 (en) * 1993-06-08 1994-12-14 Sumitomo Electric Industries, Ltd Apparatus for vitrifying soot preform for optical fiber
US5513983A (en) * 1993-06-08 1996-05-07 Sumitomo Electric Industries, Inc. Apparatus for vitrifying soot preform for optical fiber
JP2007145671A (en) * 2005-11-29 2007-06-14 Sumitomo Electric Ind Ltd Heating furnace, method for heating glass and method for maintaining heating furnace
EP2789590A1 (en) * 2013-04-10 2014-10-15 Shin-Etsu Chemical Co., Ltd. Sintering apparatus

Also Published As

Publication number Publication date
JPH0629149B2 (en) 1994-04-20

Similar Documents

Publication Publication Date Title
US5676725A (en) Method of manufacturing single-mode optical fiber
JPS62162636A (en) Sintering apparatus for porous preform for optical fiber
JP2003252635A (en) Method and apparatus for manufacturing porous base material
US6834516B2 (en) Manufacture of optical fiber preforms using modified VAD
US20190112216A1 (en) Fabrication apparatus and fabrication method for porous glass base material
KR100554423B1 (en) method of controlling refractive index of optical fiber preform in MCVD and optical fiber made by the method
JPS5820744A (en) Preparation of parent material for optical fiber
JP3343079B2 (en) Optical fiber core member, optical fiber preform, and method of manufacturing the same
JP3169357B2 (en) Apparatus and method for sintering porous glass base material
JP4056778B2 (en) Manufacturing method of optical fiber preform
JPS63248733A (en) Production of single-mode optical fiber base material
JP3675581B2 (en) Method for synthesizing optical fiber base material and method for adjusting synthesis condition
JP6136467B2 (en) Manufacturing method of glass base material for optical fiber, glass base material for optical fiber, optical fiber, and calculation method of optical characteristics of optical fiber
JPS59137331A (en) Manufacture of base material for optical fiber
JPH05208840A (en) Method for optical fiber spinning and equipment therefor
JPS6046938A (en) Manufacture of optical fiber preform
JPS62162638A (en) Production of preform for optical fiber
JP2001089179A (en) Production device of porous preform for optical fiber
JP3953855B2 (en) Method for producing porous base material
JPS577834A (en) Manufacture of preform for optical fiber
JP2713366B2 (en) Manufacturing method of optical fiber preform
JPH0761830A (en) Production of single mode optical fiber preform
JPH04310531A (en) Production of optical fiber preform
JPS60251143A (en) Treatment of base material for optical glass
JPH05306137A (en) Apparatus for production of optical fiber base material