JPS6315821B2 - - Google Patents

Info

Publication number
JPS6315821B2
JPS6315821B2 JP56002678A JP267881A JPS6315821B2 JP S6315821 B2 JPS6315821 B2 JP S6315821B2 JP 56002678 A JP56002678 A JP 56002678A JP 267881 A JP267881 A JP 267881A JP S6315821 B2 JPS6315821 B2 JP S6315821B2
Authority
JP
Japan
Prior art keywords
power
frequency
load
storage battery
power storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56002678A
Other languages
Japanese (ja)
Other versions
JPS57116550A (en
Inventor
Yoshinao Sano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP56002678A priority Critical patent/JPS57116550A/en
Publication of JPS57116550A publication Critical patent/JPS57116550A/en
Publication of JPS6315821B2 publication Critical patent/JPS6315821B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)

Description

【発明の詳細な説明】 本発明は電力貯蔵用電池を利用した電力系統の
周波数改善方式に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a frequency improvement method for a power system using a power storage battery.

近年、電源中に占める火力、原子力等の大規模
な汽力発電の比重が増加の一途にあるが、これら
汽力発電は定常的に定格出力運転に適しているた
め、夜間の余剰電力を貯え、昼間のピーク時に電
力を放出する負荷応答特性、部分負荷特性の優れ
た電力貯蔵設備が必要となつてくる。現在は揚水
発電がこの役割を果しているが、揚水発電所の立
地は必ずしも十分とはいえず、汽力発電の比重増
加にともなつて、揚水発電に匹敵する他の電力貯
蔵方式が求められている。このような電力貯蔵方
式の有力な代替案として、ナトリウム・硫黄電池
レドツクス・フロー電池等の電力貯蔵用電池が考
えられる。これら電池は、電池反応の特徴から負
荷速応性に優れ、部分負荷でも効率は低下せず、
過負荷にも耐えられる。したがつて、負荷応答特
性と部分負荷特性の悪い汽力発電設備を高効率の
定格で運用し、負荷変動を電池に負担させること
により、系統周波数の改善等を図り、系統全体の
効率を高めることが期待できる。また、電力貯蔵
用電池は、回転部分が少なく、燃焼を全くともな
わず汚染源がないので、都市近傍や都市内設置が
可能であり、遠隔地揚水発電方式に比し、送電損
失を減少できる。以上のような理由により、系統
周波数の改善方式として、電力貯蔵電池を利用す
ることは非常に有益である。
In recent years, the proportion of large-scale steam power generation such as thermal power and nuclear power in power sources has been increasing, but since these steam power generation systems are suitable for constant rated output operation, surplus power at night can be stored and used during the day. There is a need for power storage equipment with excellent load response characteristics and partial load characteristics that discharge power at peak times. Currently, pumped storage power generation plays this role, but the locations of pumped storage power plants are not necessarily sufficient, and as the proportion of steam power generation increases, other power storage methods comparable to pumped storage power generation are required. . Power storage batteries such as sodium-sulfur batteries, redox flow batteries, etc. can be considered as potential alternatives to such power storage systems. These batteries have excellent load response due to the characteristics of the battery reaction, and their efficiency does not decrease even under partial load.
Can withstand overload. Therefore, by operating steam power generation equipment with poor load response characteristics and partial load characteristics at a high efficiency rating and having batteries bear the burden of load fluctuations, it is possible to improve the system frequency and increase the efficiency of the entire system. can be expected. In addition, power storage batteries have few rotating parts, do not involve any combustion, and are not a source of pollution, so they can be installed near or within cities, and can reduce power transmission losses compared to remote pumped storage power generation systems. For the above reasons, it is very beneficial to use power storage batteries as a system frequency improvement method.

このような電力貯蔵用電池を利用した電力系統
周波数改善方式として第1図に示すようなものが
ある。すなわち周波数検出器2では、電力系統8
の系統周波数が検出され、周波数信号aとして出
力される。周波数信号aは周波数設定bとの偏差
をとられ、周波数改善指令cとして制御装置7に
入力される。制御装置7では、周波数改善指令c
はまず自動電力制御装置3に入力され、補償演算
をされた後、位相指令dとして位相制御回路4へ
出力される。位相制御回路4は、位相指令dを入
力され、ゲート指令eをゲート回路5に出力す
る。ゲート回路5は、ゲート指令eを入力されゲ
ートパルスfを交直順逆変換器1へ送る。交直順
逆変換器1はゲートパルスfを入力され、このゲ
ートパルスfに応じた、従つて結局は、周波数改
善指令cに応じた電力を電力系統8と電力貯蔵用
電池6との間でやり取りさせる。すなわち、電力
系統8の系統周波数が周波数設定bよりも高い場
合には、系統周波数と周波数設定bとの偏差に比
例した有効電力が電力系統8で余剰に存在してい
るから、電力系統8の余剰な交流電力を交直順逆
変換器1で直流電力に変換し、電力貯蔵用電池6
へ充電する。逆に系統周波数が周波数設定bより
低い場合には、電力系統8側で有効電力が欠乏し
ていることになるから、この欠乏分に相応した直
流電力を電力貯蔵用電池6から放電し、交直順逆
変換器1で交流電力に変換し、電力系統8に供給
する。電力貯蔵用電池6、交直順逆変換器1とも
速応性に優れているため、電力系統8の発電機に
よる周波数改善では十分応じられないような周期
の短い周波数変動に対しても速やかに応答し、周
波数変動を抑制することができる。
There is a power system frequency improvement method using such a power storage battery as shown in FIG. That is, in the frequency detector 2, the power system 8
The system frequency of is detected and output as a frequency signal a. The frequency signal a is deviated from the frequency setting b and is input to the control device 7 as a frequency improvement command c. In the control device 7, the frequency improvement command c
is first input to the automatic power control device 3, subjected to compensation calculation, and then output to the phase control circuit 4 as a phase command d. The phase control circuit 4 receives the phase command d and outputs the gate command e to the gate circuit 5. The gate circuit 5 receives a gate command e and sends a gate pulse f to the AC/DC forward converter 1. The AC/DC order inverter 1 receives the gate pulse f, and exchanges power between the power system 8 and the power storage battery 6 in accordance with the gate pulse f, and therefore, in the end, in accordance with the frequency improvement command c. . In other words, when the grid frequency of the power system 8 is higher than the frequency setting b, there is a surplus of active power in the power system 8 that is proportional to the deviation between the grid frequency and the frequency setting b. Excess AC power is converted to DC power by an AC/DC forward/inverter 1, and then converted to DC power by a power storage battery 6.
Charge to. Conversely, if the system frequency is lower than the frequency setting b, it means that there is a shortage of active power on the power system 8 side, so DC power corresponding to this shortage is discharged from the power storage battery 6, and the AC/DC power is The forward/reverse converter 1 converts the power into AC power and supplies it to the power system 8. Since both the power storage battery 6 and the AC/DC forward converter 1 have excellent quick response, they can quickly respond to short-cycle frequency fluctuations that cannot be adequately addressed by frequency improvement by the generator of the power system 8. Frequency fluctuations can be suppressed.

しかし、以上に述べた第1図の方式には次のよ
うな欠点がある。以下にその欠点を第2図を用い
て説明する。一般に、交直順逆変換器1としては
サイリスタ変換器を用いるが、サイリスタ変換器
には制御上の問題として点弧角の制限があり、小
電力の変換に限界がある。すなわち、第2図に示
すように位相指令dがdml<d<dplの範では、
サイリスタが転流失敗する懸念があり、したがつ
て変換電力PがPml<P<Pplの範囲では電力変
換制御が不能となる。このため、第1図に示した
方式では、周波数設定bの近辺での細かな系統周
波数改善ができない。
However, the method shown in FIG. 1 described above has the following drawbacks. The disadvantages thereof will be explained below using FIG. Generally, a thyristor converter is used as the AC/DC order inverter 1, but the thyristor converter has a limitation on the firing angle as a control problem, and there is a limit to the conversion of small power. That is, as shown in Fig. 2, when the phase command d is in the range dml<d<dpl,
There is a concern that the thyristor may fail in commutation, and therefore power conversion control becomes impossible when the converted power P is in the range of Pml<P<Ppl. For this reason, the system shown in FIG. 1 cannot make detailed system frequency improvements in the vicinity of frequency setting b.

本発明の目的は電力系統と交直順逆変換器を介
して接続された電力貯蔵用電池に並列に直流負荷
系を接続し、この直流負荷系には電力貯蔵用電池
から電力を供給するようになし、電力系統と電力
貯蔵用電池側との電力変換が常に順変換領域で行
われ、かつ変直順逆変換器の制御不能帯以上で制
御するようにした周波数改善方式を得るにある。
The object of the present invention is to connect a DC load system in parallel to a power storage battery connected to the power system via an AC/DC forward/reverse converter, and to supply power from the power storage battery to this DC load system. Another object of the present invention is to obtain a frequency improvement method in which power conversion between the power system and the power storage battery side is always performed in the forward conversion region, and control is performed above the uncontrollable band of the variable forward/reverse converter.

以下、第3図および第4図を用いて本発明を説
明する。第3図は本発明の一実施例を示す構成図
である。本発明の要点は電力貯蔵用電池6と並列
に直流負荷系9が接続されている点と、第1図の
方式で交直順逆変換器1を使用していたのに対し
て、より構成の簡単な交直順変換器10を使用し
ている点と、周波数信号aと周波数設定bとの偏
差が調整ゲイン11で重み係数を掛けられ、更に
電力設定hだけバイアスをかけられる構成になつ
ている点である。
The present invention will be explained below using FIGS. 3 and 4. FIG. 3 is a configuration diagram showing an embodiment of the present invention. The key points of the present invention are that a DC load system 9 is connected in parallel with the power storage battery 6, and that the configuration is simpler than that of the system shown in FIG. The difference between the frequency signal a and the frequency setting b is multiplied by a weighting coefficient by the adjustment gain 11, and the configuration is such that a bias is further applied by the power setting h. It is.

本発明の直流負荷系9としては、比較的大容量
の直流負荷である電気鉄道、圧延ミル、電気炉等
である。第3図に示した本発明の一実施例では、
一般的な直流負荷系として直流負荷15の電圧を
電圧検出器16で検出し、電圧検出器16の出力
mと電圧設定lの偏差nが零になるようチヨツパ
制御装置13でチヨツパ14を制御するような直
流負荷系であるが、直流負荷系9は必ずしもこの
構成に規定されない。また、第3図では電力貯蔵
用電池6に並列に接続された直流負荷系9は単一
となつているが、直流負荷系9は複数であつても
かまわない。
The DC load system 9 of the present invention includes an electric railway, a rolling mill, an electric furnace, etc., which are relatively large-capacity DC loads. In one embodiment of the invention shown in FIG.
As a general DC load system, a voltage detector 16 detects the voltage of a DC load 15, and a chopper controller 13 controls the chopper 14 so that the deviation n between the output m of the voltage detector 16 and the voltage setting l becomes zero. However, the DC load system 9 is not necessarily defined in this configuration. Further, in FIG. 3, there is a single DC load system 9 connected in parallel to the power storage battery 6, but there may be a plurality of DC load systems 9.

次に第3図に示した本発明の一実施例の作用に
ついて説明する。電力系統8から系統周波数が周
波数検出器2で検出され、周波数信号aとして出
力される。周波数信号aは周波数設定bとの偏差
をとられ、周波数偏差信号gとして調整ゲイン1
1へ入力される。調整ゲイン11は周波数偏差信
号gを入力され、この周波数偏差信号gに重み係
数を乗じ、偏差信号iとして出力する。偏差信号
iは電力設定hを加えられ、周波数改善指令cと
して制御装置7に入力される。制御装置7では第
1図に示した従来例と同様の過程を踏んでゲート
パルスfを交直順変換器10へ出力する。交直順
変換器10はゲートパルスfを入力され、ゲート
パルスfに応じて電力系統8側の交流電力を直流
電力に変換して電力貯蔵用電池6および直流負荷
系9よりなる直流系へ供給する。
Next, the operation of the embodiment of the present invention shown in FIG. 3 will be explained. A system frequency from the power system 8 is detected by the frequency detector 2 and output as a frequency signal a. The frequency signal a is deviated from the frequency setting b, and the adjustment gain is 1 as the frequency deviation signal g.
1. The adjustment gain 11 receives the frequency deviation signal g, multiplies this frequency deviation signal g by a weighting coefficient, and outputs the result as a deviation signal i. A power setting h is added to the deviation signal i, and the resultant signal is inputted to the control device 7 as a frequency improvement command c. The control device 7 outputs the gate pulse f to the AC/DC converter 10 through the same process as in the conventional example shown in FIG. The AC/DC forward converter 10 receives the gate pulse f, converts the AC power on the power system 8 side into DC power according to the gate pulse f, and supplies the DC power to the DC system consisting of the power storage battery 6 and the DC load system 9. .

以上の第3図で示す本発明の説明の中で、調整
ゲイン11で周波数偏差信号gに乗ぜられる重み
係数は、電力系統8の電力容量や、本発明の系統
周波数改善系12の他に複数存在する本発明と同
様なあるいは異なつた系統周波数改善系(図示せ
ず)の吸収あるいは放出可能な有効電力量の総量
や、本発明の系統周波数改善系12での電力貯蔵
用電池6の容量、直流負荷系9の負荷容量等で決
まる係数で、各々の電力系統周波数改善系が、電
力系統8の周波数変動で生ずる全有効電力変動の
どれ程の割合を負担するかを規定する。また、変
動有効電力の分担を複数の電力系統周波数改善系
間で最適にするよう、前記重み係数は可変である
としてもよい。また周波数の変動により電力の変
動を検出するようにしたが、直接電力の変動を検
出するようにしてもよい。
In the above description of the present invention shown in FIG. The total amount of active power that can be absorbed or released by existing grid frequency improvement systems (not shown) similar to or different from the present invention, the capacity of the power storage battery 6 in the grid frequency improvement system 12 of the present invention, A coefficient determined by the load capacity of the DC load system 9, etc. defines how much of the total active power fluctuation caused by the frequency fluctuation of the power system 8 is borne by each power system frequency improvement system. Further, the weighting coefficient may be variable so as to optimize the sharing of the variable active power among the plurality of power system frequency improvement systems. Furthermore, although power fluctuations are detected based on frequency fluctuations, power fluctuations may also be detected directly.

次に第4図を用いて、第3図で示した本発明の
一実施例の動作を以下に説明する。第4図で、P
は位相指令dに応じて交直順変換器10で電力系
統8側から電力貯蔵用電池6と直流負荷系9より
なる直流系へ供給される有効電力量を示す。仮に
電力系統8で周波数変動が全くない場合には、偏
差信号iの値は零となるから電力設定hに相応し
たPrefだけの有効電力が前記直流系に電力系統8
から供給される。次に電力系統8の周波数が周波
数設定bより上がつた場合には偏差信号iの値は
正となり、偏差信号iと電力設定hの和に相応し
た有効電力としてPhが電力系統8から前記直流
系へ供給される。逆に電力系統8の周波数が周波
数設定bより下がつた場合には偏差信号iの値は
負となり、有効電力Plが電力系統8から前記直流
系へ供給される。以上の説明で、Ph−Pref、
Pref−Plはそれぞれ電力系統8の周波数変動で生
じた電力系統8の有効電力の余剰分、欠乏分に比
例する。この比例の割合は第3図の説明で示した
ように調整ゲイン11で周波数偏差iに乗ぜられ
る重み係数によつて決まる。したがつて、本発明
の系統周波数改善系12および他の本発明と同様
なまたは異なつた複数の系統周波数改善系(図示
せず)の組合わせで電力系統8の有効電力変動の
補償を行う。
Next, using FIG. 4, the operation of the embodiment of the present invention shown in FIG. 3 will be described below. In Figure 4, P
represents the amount of active power supplied from the power system 8 side to the DC system consisting of the power storage battery 6 and the DC load system 9 by the AC/DC converter 10 in accordance with the phase command d. If there is no frequency fluctuation at all in the power system 8, the value of the deviation signal i will be zero, so the active power of Pref corresponding to the power setting h will be transferred to the DC system in the power system 8.
Supplied from. Next, when the frequency of the power system 8 rises above the frequency setting b, the value of the deviation signal i becomes positive, and the active power Ph corresponding to the sum of the deviation signal i and the power setting h is transmitted from the power system 8 to the DC current. supplied to the system. Conversely, when the frequency of the power system 8 falls below the frequency setting b, the value of the deviation signal i becomes negative, and active power Pl is supplied from the power system 8 to the DC system. With the above explanation, Ph−Pref,
Pref-Pl is proportional to the surplus and deficiency of the active power of the power system 8 caused by the frequency fluctuation of the power system 8, respectively. As shown in the explanation of FIG. 3, this proportion is determined by the weighting coefficient by which the frequency deviation i is multiplied by the adjustment gain 11. Therefore, active power fluctuations in the power system 8 are compensated for by a combination of the system frequency improvement system 12 of the present invention and a plurality of other system frequency improvement systems (not shown) similar to or different from the present invention.

次に直流負荷系9で必要な有効電力をPloadと
し、このPloadが変動し、かつPも電力系統8の
周波数変動に従つて変動した場合の前記直流系の
動作について説明する。このとき前記直流系へ電
力系統8から供給された有効電力PとPloadとの
差P−Ploadが正または零であれば、このP−
Ploadの有効電圧は電力貯蔵用電池6に充電さ
れ、Ploadの有効電力が直流負荷系9へ供給され
る。またP−Ploadが負の場合には|P−Pload
|の有効電力貯蔵用電池6から放電され、やはり
Ploadの有効電力が直流負荷系9へ供給される。
この際、Ploadが短い周期で変動しても、電力貯
蔵用電池6は負荷応答性が速いので、Ploadの変
動を吸収し、電力系統8に変動の影響を与えな
い。
Next, the effective power required by the DC load system 9 is defined as Pload, and the operation of the DC system when this Pload fluctuates and P also fluctuates in accordance with the frequency fluctuation of the power system 8 will be described. At this time, if the difference P-Pload between the active power P supplied from the power system 8 to the DC system and Pload is positive or zero, this P-
The active voltage of Pload is charged to the power storage battery 6, and the active power of Pload is supplied to the DC load system 9. Also, if P-Pload is negative, |P-Pload
| is discharged from the active power storage battery 6, and also
The active power of Pload is supplied to the DC load system 9.
At this time, even if Pload fluctuates in a short period, the power storage battery 6 has a fast load response, so it absorbs the Pload fluctuation and does not affect the power system 8 due to the fluctuation.

また、もともと、直流負荷系9の負荷容量はか
なり大きいので前記直流系へ電力系統8から供給
される有効電力もかなり大きくすることが可能で
ある。したがつて、電力系統8の周波数低下があ
つても、Plが電力制御不能限界Pplまでは落ちな
いようにPrefを設定しておけば、電力変換は常に
順変換領域で行ないかつ電力制御不能限界Pplを
超える領域で行うことが可能である。
Furthermore, since the load capacity of the DC load system 9 is originally quite large, the effective power supplied from the power system 8 to the DC system can also be considerably increased. Therefore, even if the frequency of the power system 8 decreases, if Pref is set so that Pl does not fall to the power uncontrollable limit Ppl, power conversion will always be performed in the forward conversion region and will remain within the power uncontrollable limit. It is possible to perform in areas exceeding Ppl.

以上のように本発明によれば、電力貯蔵用電池
6の負荷応答特性がよいことにより、直流負荷系
9の負荷変動の平坦化が可能であり、かつ交直変
換器として、交直順逆変換器1より構成の簡単な
交直順変換器10を使うことができ、更に電力貯
蔵用電池6の電池化学反応の特性からくる応答の
速い電力系統周波数改善が可能となり、その効果
は大である。
As described above, according to the present invention, since the power storage battery 6 has good load response characteristics, it is possible to flatten load fluctuations in the DC load system 9, and the AC/DC forward/inverse converter 1 can be used as an AC/DC converter. It is possible to use the AC/DC forward converter 10 with a simpler configuration, and it is also possible to improve the power system frequency with a quick response due to the characteristics of the battery chemical reaction of the power storage battery 6, which is highly effective.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、電力貯蔵用電池を用いた従来の電力
系統周波数改善方式の一般的構成例を示すブロツ
ク図、第2図は、第1図に示した方式の殖順逆変
換器の動作を示す説明図、第3図は本発明の電力
系統周波数改善方式の一実施例を示すブロツク
図、第4図は本発明の順変換器の動作を示す説明
図である。 1……交直順逆変換器、2……周波数検出器、
3……自動電力制御装置、4……位相制御回路、
5……ゲート回路、6……電力貯蔵用電池、7…
…制御装置、8……電力系統、9……直流負荷
系、10……交直順変換器、11……調整ゲイ
ン、12……系統周波数改善系、13……チヨツ
パ制御装置、14……チヨツパ、15……直流負
荷、16……電圧検出器。
Fig. 1 is a block diagram showing a general configuration example of a conventional power system frequency improvement method using a power storage battery, and Fig. 2 shows the operation of a multiplication order inverter of the method shown in Fig. 1. FIG. 3 is a block diagram showing an embodiment of the power system frequency improvement method of the present invention, and FIG. 4 is an explanatory diagram showing the operation of the forward converter of the present invention. 1... AC/DC order inverse converter, 2... Frequency detector,
3... automatic power control device, 4... phase control circuit,
5... Gate circuit, 6... Power storage battery, 7...
... Control device, 8 ... Power system, 9 ... DC load system, 10 ... AC/DC converter, 11 ... Adjustment gain, 12 ... System frequency improvement system, 13 ... Choppa control device, 14 ... Chotsupa , 15...DC load, 16...Voltage detector.

Claims (1)

【特許請求の範囲】[Claims] 1 電力系統から交流直流変換器を介して電力を
蓄積する電力貯蔵用電池と、この電力貯蔵用電池
に接続され常時は前記交流直流変換器を介して前
記電力系統から供給される電力を消費する直流負
荷系と、前記電力系統から供給される電力量を制
御する制御装置とを有し、前記電力系統の周波数
が基準周波数より大のときはその偏差分に相当す
る電力量だけ前記電力貯蔵用電池に蓄積し、前記
周波数が前記基準周波数より小のときはその偏差
分に相当する電力量だけ前記電力系統からの受電
を減じ、その減じた電力量を前記電力貯蔵用電池
から前記直流負荷へ供給するようにした周波数改
善方式。
1. A power storage battery that stores power from the power grid via an AC/DC converter, and a power storage battery that is connected to the power storage battery and normally consumes power supplied from the power grid via the AC/DC converter. It has a DC load system and a control device that controls the amount of power supplied from the power system, and when the frequency of the power system is higher than the reference frequency, only the amount of power corresponding to the deviation is used for the power storage. stored in a battery, and when the frequency is smaller than the reference frequency, the power received from the power system is reduced by an amount of power corresponding to the deviation, and the reduced amount of power is transferred from the power storage battery to the DC load. frequency improvement method.
JP56002678A 1981-01-13 1981-01-13 Frequency improving system Granted JPS57116550A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56002678A JPS57116550A (en) 1981-01-13 1981-01-13 Frequency improving system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56002678A JPS57116550A (en) 1981-01-13 1981-01-13 Frequency improving system

Publications (2)

Publication Number Publication Date
JPS57116550A JPS57116550A (en) 1982-07-20
JPS6315821B2 true JPS6315821B2 (en) 1988-04-06

Family

ID=11535957

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56002678A Granted JPS57116550A (en) 1981-01-13 1981-01-13 Frequency improving system

Country Status (1)

Country Link
JP (1) JPS57116550A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3311299A1 (en) * 1983-03-28 1984-10-04 Siemens AG, 1000 Berlin und 8000 München Method and device for stabilising the frequency and voltage of a network which is supplied from a drive set
JP4155674B2 (en) * 1999-07-22 2008-09-24 関西電力株式会社 Frequency control device for power system including secondary battery
JP5597208B2 (en) * 2009-12-15 2014-10-01 日本碍子株式会社 Secondary battery control device and secondary battery control method

Also Published As

Publication number Publication date
JPS57116550A (en) 1982-07-20

Similar Documents

Publication Publication Date Title
US10756544B2 (en) Energy storage system and management method thereof
US20030015876A1 (en) Electric power variation compensating device
JP2003339118A (en) Distributed power supply system
KR20170129456A (en) Battery energy storage system
US20240204535A1 (en) Power supply system, power supply method, and power supply apparatus
US11929621B2 (en) Power control apparatus, control method for power control apparatus, and distributed power generating system
CN111414036B (en) Device and method for controlling MPPT (maximum power point tracking) of power supply system for satellite
JPH08251827A (en) Combined cycle power generation system
JPS6315821B2 (en)
KR102238340B1 (en) PCS Droop Control Device and Energy Storage System using the Same
Nayar Control and interfacing of bi-directional inverters for off-grid and weak grid photovoltaic power systems
JPH05252671A (en) Control system for photovoltaic power generation
JP2520963B2 (en) Fuel cell DC parallel operation system
CN110943459B (en) Parallel operation control method and system for multiple reactive power compensation devices based on voltage response
Waqar et al. Transformer overloading control by controlling the operational-modes of high-power converters
JP3488348B2 (en) DC power supply device combined with solar cell and control method thereof
JPH06338341A (en) Fuel cell power generation facility and operation thereof
JP2938084B2 (en) DC power supply system with multiple batteries
JPH0261227B2 (en)
CN115800311B (en) Island wind-solar-diesel storage power supply system and control method thereof
CN115882516B (en) Photovoltaic grid-connected control device and method for high-efficiency photovoltaic charging control
Fukumoto et al. The demonstration and operation of a vanadium flow battery system for microgrid application
JPH09233705A (en) Decentralized power generation system
Behera et al. Power Distribution Control and Performance Assessment of a Wind Energy fed Microgrid Integrated with Hybrid Energy Storage System
EP4283813A1 (en) Water electrolysis system managing power supply of renewable energy