JPH06338341A - Fuel cell power generation facility and operation thereof - Google Patents

Fuel cell power generation facility and operation thereof

Info

Publication number
JPH06338341A
JPH06338341A JP5126771A JP12677193A JPH06338341A JP H06338341 A JPH06338341 A JP H06338341A JP 5126771 A JP5126771 A JP 5126771A JP 12677193 A JP12677193 A JP 12677193A JP H06338341 A JPH06338341 A JP H06338341A
Authority
JP
Japan
Prior art keywords
load
power
fuel cell
output
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5126771A
Other languages
Japanese (ja)
Inventor
Takao Sato
隆雄 佐藤
Shinichi Nagano
伸一 永野
Susumu Horiuchi
進 堀内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP5126771A priority Critical patent/JPH06338341A/en
Publication of JPH06338341A publication Critical patent/JPH06338341A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04574Current
    • H01M8/04589Current of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04544Voltage
    • H01M8/04559Voltage of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04574Current
    • H01M8/04582Current of the individual fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • H01M8/04753Pressure; Flow of fuel cell reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/249Grouping of fuel cells, e.g. stacking of fuel cells comprising two or more groupings of fuel cells, e.g. modular assemblies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To enable power supply at high efficiency and high reliability without forcing heavy operational condition to a formation apparatus even for a load in which dc and ac roads co-exist by output-controlling a cell itself in a controllable range even when the capacities of the dc, ac loads are changed regardless of the condition of the cell side. CONSTITUTION:The output current value of each fuel cell is detected by current detectors AD1-ADn, and an output voltage value is detected by a detector VD, while calculation is carried out in a controller CTL. A power inverter 1 is used to output power according to the expression: (the output power of the power inverter) = (output voltage set value) - (d.c. load power), within an upper limit value of the total output power of the cell that can be generated at the time. The total power that can be generated can exceed the d.c. load capacity, and the increase/decrease in the d.c. road is corrected by a.c. load, with the cell output unchanged. The output of the device 1 is controlled based on the expression even when the a.c. load is increased or decreased. When, on contrary, the power is to be generated from the cell side, the openings of valves V11-Vn2 are controlled and the power generated is determined as a set value.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は燃料電池発電設備および
その運転方法に係り、特に複数台の燃料電池が並設運転
され、かつ負荷に直流負荷と交流負荷とが混在している
燃料電池発電設備およびその運転方法に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fuel cell power generation facility and a method of operating the same, and more particularly to a fuel cell power generation in which a plurality of fuel cells are operated in parallel and a load is a mixture of a DC load and an AC load. The present invention relates to equipment and its operating method.

【0002】[0002]

【従来の技術】燃料電池は、燃料と酸化剤とを電気化学
的に反応させて直流の出力電力を得るものであり、他の
電源設備と大きく異なるところは、静止型で効率が高い
こと、それに運転に伴って電解質の減少などにより性能
が変化することである。
2. Description of the Related Art A fuel cell electrochemically reacts a fuel and an oxidant to obtain a direct current output power, and is largely different from other power supply facilities in that it is a static type and has high efficiency. In addition, the performance changes due to the decrease of electrolyte and so on with the operation.

【0003】燃料電池より発生した直流電力は、逆変換
装置を用いて交流に変換し、交流負荷に供給するのが一
般的である。
DC power generated from a fuel cell is generally converted into AC using an inverse converter and supplied to an AC load.

【0004】又燃料電池の定格出力を上回る負荷がある
場合には、商用の電力系統と連系し、不足分を系統電力
で賄うようにし、逆に負荷が電池出力を下回った場合に
は、系統側に電力を逆に送電する、いわゆる逆潮流運転
をすることも行われている。
Further, when there is a load exceeding the rated output of the fuel cell, it is connected to a commercial power system so that the shortage is covered by the system power. Conversely, when the load falls below the battery output, The so-called reverse flow operation is also performed in which electric power is transmitted to the grid side in reverse.

【0005】[0005]

【発明が解決しようとする課題】ところで、計算機やO
A機器などその内部に半導体をもつ負荷などでは、電源
として直流電源が必要であるが、一般には交流電源を整
流、安定化してこれらの負荷に供給している。そのため
燃料電池の直流電力をこれらの負荷に供給する場合の全
損失は、直流→交流変換の段階で発生する損失と、交流
→直流変換及び安定化の段階で発生する損失の和にな
り、負荷が大きくなると無視できない値となる。
By the way, a computer and an O
A load such as a device A having a semiconductor therein requires a DC power supply as a power supply, but in general, an AC power supply is rectified and stabilized and supplied to these loads. Therefore, the total loss in the case of supplying the DC power of the fuel cell to these loads is the sum of the loss that occurs at the DC → AC conversion stage and the loss that occurs at the AC → DC conversion and stabilization stage. When becomes large, the value cannot be ignored.

【0006】一般にビルやホテルなどでは計算機やOA
機器などの直流負荷があり、さらにエレベ−タやポンプ
などの交流負荷も混在している。これらの負荷電力は時
々刻々変化している。また特に計算機やOA機器用の直
流電源は、瞬時といえども停電しないことが望ましいこ
とは当然である。
Generally, in buildings and hotels, computers and OA
There are DC loads such as equipment, and AC loads such as elevators and pumps are also mixed. These load powers are changing every moment. In addition, it is natural that it is desirable that the DC power supply for computers and office automation equipment does not have a power failure even for an instant.

【0007】燃料電池は、運転時間の経過と共に発生可
能な電力が変化する。図5および図6はその変化の状態
を示したもので、図中の曲線FC1のように運転初期に
は電解質の馴染等により同一ガス流、同一電流にもかか
わらず電圧が上昇し、発生可能な電力がある運転時間t
1まで増加するものもあれば、又曲線FC2のように運
転初期より単調に減少していくものもある。
In a fuel cell, the power that can be generated changes with the passage of operating time. 5 and 6 show the state of the change, and as shown by the curve FC1 in the figure, the voltage rises due to the familiarization of the electrolyte and the like even though the same gas flow and the same current are generated at the initial stage of operation, which can occur. Operating time t with sufficient power
Some increase up to 1, and some decrease monotonously from the initial stage of operation as shown by the curve FC2.

【0008】そしていずれのものも所定の時間t1
は、電解質の飛散などにより、同一電流値に対する電圧
が減少し、従って発生可能な電力が減少してくる。また
その減少割合は累計運転時間、容量あるいは製作時のバ
ラツキなどにより電池ごとに異なる。
In each case, after a predetermined time t 1 , the voltage for the same current value decreases due to the scattering of the electrolyte or the like, so that the power that can be generated decreases. In addition, the rate of decrease varies from battery to battery due to cumulative operating time, capacity, variations in manufacturing, and so on.

【0009】したがって複数の電池を並列接続して負荷
に電力を供給する場合は、その出力分担割合をその時点
で発生可能な電力に常時調整して運転することが必要と
なり、また他の電源設備と同様に燃料電池システムは、
年1回程度の頻度で定期的に健全性を確認し、消耗品補
充などを実施する定検が必要である。
Therefore, when a plurality of batteries are connected in parallel to supply electric power to the load, it is necessary to constantly adjust the output sharing ratio to the electric power that can be generated at that time for operation. Like the fuel cell system,
Regular inspections are required to check the soundness once a year and to replenish consumables.

【0010】以上のことより燃料電池から直流の形で発
生する電力をビルなどで使用するに際し、燃料電池の特
性が経時的に変化しても、構成機器に過酷な運転状態を
強いることなく、かつ高効率、高信頼度で直流交流混在
負荷に安価に供給可能な電力供給方法とその装置が望ま
れていた。
From the above, when the electric power generated in the form of direct current from the fuel cell is used in a building or the like, even if the characteristics of the fuel cell change with time, the constituent devices are not forced to operate under severe conditions. Further, there has been a demand for a power supply method and a device therefor capable of supplying DC / AC mixed loads at low cost with high efficiency and high reliability.

【0011】尚直流交流混在負荷に電力を供給するもの
としては、例えば特開平4−172924号公報に開示
されているように、負荷容量が燃料電池の出力を上回る
ときに交流負荷を商用系統側に切り替えて運転するも
の、また特開平4−222420号公報のように直流と
交流負荷とに電力を供給している状態で、直流負荷が増
大したとき、予め設定した出力容量以上の負荷の増減に
対して、交流負荷をオン、オフする制御手段を設けるよ
うにしたものがある。
As a means for supplying electric power to a DC / AC mixed load, for example, as disclosed in JP-A-4-172924, when the load capacity exceeds the output of the fuel cell, the AC load is connected to the commercial system side. When the DC load increases while the DC and AC loads are being supplied with electric power, as in Japanese Patent Application Laid-Open No. 4-222420, the load is increased or decreased by more than a preset output capacity. On the other hand, there is one in which a control means for turning on / off the AC load is provided.

【0012】さらに、複数台の燃料電池を安定に運転す
るために、予め定められた分担比に応じて負荷分担をす
るよう燃料または空気の流量を制御する特開昭60−3
7673号公報のものがあるが、燃料電池の特性は上述
のように経時的に変化するので、予め定められた分担比
に応じて負荷分担することは、逆変換装置や燃料供給設
備に無理を強いたりすることにつながるので望ましくな
い。
Further, in order to stably operate a plurality of fuel cells, the flow rate of fuel or air is controlled so that the load is shared according to a predetermined sharing ratio.
However, since the characteristics of the fuel cell change with time as described above, it is not possible for the inverse conversion device and the fuel supply equipment to share the load according to a predetermined share ratio. It is not desirable because it will lead to strong things.

【0013】本発明はこれらに鑑みなされたものでその
目的とするところは、直流負荷と交流負荷とが混在する
ような負荷に対し、たとえ燃料電池の特性が経時的に変
化しても、構成機器に過酷な運転状態を強いることな
く、かつ高効率、高信頼度で電力供給が可能なこの種設
備およびその運転方法を提供するにある。
The present invention has been made in view of the above, and an object thereof is to provide a structure in which a load such as a DC load and an AC load are mixed even if the characteristics of the fuel cell change with time. An object of the present invention is to provide this kind of equipment and its operating method capable of supplying electric power with high efficiency and reliability without imposing severe operating conditions on equipment.

【0014】[0014]

【課題を解決するための手段】すなわち本発明は複数の
燃料電池よりなる電池発電装置を、この電池発電装置の
発生可能な電気出力が、少なくとも1台の燃料電池が停
止の状態で直流負荷の容量以上となるように構成すると
ともに、この直流負荷に対して定電圧で電力を供給し、
かつそのときの余剰電力を交流負荷に供給するようにな
し所期の目的を達成するようにしたものである。
That is, the present invention provides a battery power generator comprising a plurality of fuel cells, and the electrical output that can be generated by the battery power generator is a DC load when at least one fuel cell is stopped. In addition to being configured to exceed the capacity, power is supplied to this DC load at a constant voltage,
Moreover, the surplus power at that time is supplied to the AC load to achieve the intended purpose.

【0015】[0015]

【作用】すなわちこのような燃料電池発電設備である
と、燃料電池は交流負荷容量には無関係に最大直流負荷
容量とその時点で発生可能な最大出力電力の間で運転点
を任意に選択することができることになる。
[Function] That is, in such a fuel cell power generation facility, the fuel cell can arbitrarily select an operating point between the maximum DC load capacity and the maximum output power that can be generated at that time regardless of the AC load capacity. You will be able to

【0016】すなわち換言すれば直流、交流負荷容量が
電池側の都合とは無関係にかってに変化しても、電池は
それ自身が制御可能な範囲で出力を制御できることにな
り、したがって直流負荷と交流負荷とが混在するような
負荷に対し、たとえ燃料電池の特性が経時的に変化して
も、構成機器に過酷な運転状態を強いることなく、かつ
高効率、高信頼度で電力供給が可能となるのである。
That is, in other words, even if the DC and AC load capacities are changed irrespective of the convenience of the battery side, the battery can control the output within a range that can be controlled by the battery itself. Even if the characteristics of the fuel cell change over time, even if the load is mixed, it is possible to supply power with high efficiency and reliability without forcing the components to operate under severe conditions. It will be.

【0017】[0017]

【実施例】以下図示した実施例に基づいて本発明を詳細
に説明する。図1にはその装置の一つの例がブロック線
図で示されている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail with reference to the illustrated embodiments. One example of such a device is shown in FIG. 1 in a block diagram.

【0018】図中FC1〜FCnはn台の燃料電池であ
り、このNn台の燃料電池により電池発電装置が形成さ
れている。この燃料電池は酸化剤供給口Aと燃料供給口
F、それに弁V11〜Vn2を有しており、この弁によ
り酸化剤および燃料の量が調節される。
In the figure, FC1 to FCn are n fuel cells, and the Nn fuel cells form a cell power generator. This fuel cell has an oxidant supply port A, a fuel supply port F, and valves V11 to Vn2, and the valves control the amounts of the oxidant and the fuel.

【0019】燃料電池の電気出力側に接続されているC
1及びC2は順変換装置で、この出力側には直流負荷D
1,D2が接続されている。
C connected to the electric output side of the fuel cell
1 and C2 are forward converters, and a DC load D is provided on the output side.
1, D2 are connected.

【0020】CTLは電気出力に応じて弁V11〜Vn
2を制御する制御装置、Iは逆変換装置、S1,S2は
遮断器、ACLは交流負荷である。
CTL represents valves V11 to Vn according to the electric output.
2, I is an inverse converter, S1 and S2 are circuit breakers, and ACL is an AC load.

【0021】本実施例における電力供給システムは、複
数の独立な燃料電池FC1〜FCnが並列接続され、こ
れらの発生可能な電気出力の合計が1台停止時でも直流
負荷D1,D2の容量を上回るように形成される。そし
て1台の制御装置CTLの出力指令により全体の電池出
力が制御されている。
In the power supply system of this embodiment, a plurality of independent fuel cells FC1 to FCn are connected in parallel, and the total electrical output that can be generated exceeds the capacity of the DC loads D1 and D2 even when one unit is stopped. Is formed as. The entire battery output is controlled by an output command from one controller CTL.

【0022】燃料電池の発電効率は、一般に図4に示す
ように電気出力増大と共に大きくなり、ある値以上に出
力電力が大きくなると、効率が低下してくる特性を有し
ており、この出力−効率曲線に基づいて出力を制御する
ことにより、一定の範囲で効率も制御できる。
The power generation efficiency of a fuel cell generally increases as the electric output increases, as shown in FIG. 4, and when the output power exceeds a certain value, the efficiency decreases. By controlling the output based on the efficiency curve, the efficiency can be controlled within a certain range.

【0023】次にこのように構成された本発明装置の動
作について説明する。
Next, the operation of the apparatus of the present invention thus constructed will be described.

【0024】燃料電池FC1〜FCnは、既に機器の昇
温が完了しシステム内のプロセス機器が所定の動作に入
って出力運転状態にあるものとする。
In the fuel cells FC1 to FCn, it is assumed that the temperature rise of the equipment has already been completed and the process equipment in the system enters a predetermined operation and is in the output operation state.

【0025】順変換装置は、負荷の所要電圧レベルや容
量に応じて複数個設置されており、需要家は負荷の所要
入力電圧に応じて例えば順変換装置C1,C2のいずれ
かを選択して負荷を接続し、この負荷に直流電力を供給
する。
A plurality of forward converters are installed according to the required voltage level and capacity of the load, and the customer selects, for example, either of the forward converters C1 and C2 according to the required input voltage of the load. Connect a load and supply DC power to this load.

【0026】一方逆変換装置Iは、逆変換後の出力と商
用系統の周波数、電圧が同一となるよう制御し、しゃ断
器S1及びS2を投入して系統連系運転状態にある。
On the other hand, the inverse converter I is controlled so that the output after the inverse conversion and the frequency and voltage of the commercial system are the same, and the circuit breakers S1 and S2 are turned on to be in the system interconnection operation state.

【0027】このとき逆変換装置Iは、その時点の発生
可能な電池合計出力電力を上限値として、次式に従う電
力を出力するよう制御する。
At this time, the inverse converter I controls to output the electric power according to the following equation, with the total battery output power that can be generated at that time being the upper limit value.

【0028】[0028]

【数1】 逆変換装置出力電力=(出力電力設定値−直流負荷電力)………(1) すなわち出力電力設定値に対する制御を行うのは、逆変
換装置Iの出力電力のみで、直流側は制御しない。
## EQU00001 ## Inverter output power = (output power set value-DC load power) (1) That is, the output power set value is controlled only by the output power of the inverse converter I and on the DC side. Does not control.

【0029】ここで出力電力設定値の上限値となる発生
可能な電池合計出力電力Pxを定める要素として、本発
明装置では次の二つのことを考慮する。
Here, the following two factors are taken into consideration in the device of the present invention as factors that determine the total battery output power Px that can be generated, which is the upper limit value of the output power setting value.

【0030】一つは順変換及び逆変換装置の許容電力の
和Pc+Pi=Px1であり、二つ目は電池に燃料や空
気などを供給するプロセス機器の定格容量で定まるPx
2である。この中でPx1は、設計当初の容量値として
与え、経時変化はしないものとして取り扱う。次にPx
2はプロセス機器の定格容量は一定でかつ経時変化もし
ないものと考えてもよいが、前述のように電池の特性が
経時変化するため、それを考慮してつぎのように決定す
る。
One is the sum Pc + Pi = Px1 of the permissible power of the forward conversion device and the inverse conversion device, and the second is Px determined by the rated capacity of the process equipment that supplies fuel, air, etc. to the battery.
It is 2. Among these, Px1 is given as a capacitance value at the time of designing, and is treated as if it does not change with time. Then Px
No. 2 may be considered to have a constant rated capacity of the process equipment and not change with time. However, since the characteristics of the battery change with time as described above, it is determined as follows in consideration of this.

【0031】Px2を決定する必要のある場合として、
システムの起動時の場合と運転中の場合の二つがある。
When it is necessary to determine Px2,
There are two cases: when the system starts up and when it is running.

【0032】まず起動時については、電池の起動過程に
おいて燃料電池FC1〜FCnの機器昇温が完了し、バ
ルブV11〜Vn2の開度を所定開度とし、電池から内
部の補機動力を供給している待機運転状態に移行させ
て、それに相当する電流Isが流れるように一定の燃料
及び空気を供給する。
First, at the time of start-up, the device temperature rise of the fuel cells FC1 to FCn is completed in the process of starting the cells, the opening of the valves V11 to Vn2 is set to a predetermined opening, and the internal auxiliary power is supplied from the battery. Then, the fuel and air are supplied at a constant level so that the current Is corresponding to the current is flowed.

【0033】その結果電池はそれまでの累積運転時間や
バラツキなどにより、そのときの燃料及び空気流量に対
して運転開始初期の電流Isから変化する。このときの
各電池の出力電流を電流検出器AD1〜ADnで測定
し、制御装置内部に記憶していた初期値からの変化量を
計算して、当該電池の特性変化による出力補正係数α1
〜αnを次式から求める。
As a result, the battery changes from the current Is at the beginning of the operation with respect to the fuel and air flow rates at that time due to the accumulated operating time and variations. The output current of each battery at this time is measured by the current detectors AD1 to ADn, the amount of change from the initial value stored in the control device is calculated, and the output correction coefficient α1 due to the characteristic change of the battery is calculated.
~ Αn is obtained from the following equation.

【0034】[0034]

【数2】 i番目電池のαi(t)= (運転時間tにおける電流値)/(運転初期の電流値)………(2) このαi(t)が、αi(t)>1のときは、最大許容
出力は前述のPx1と定め、αi(t)<1のときは、
たとえば次式(3)による近似をしてPx2を定める。
## EQU00002 ## αi (t) of i-th battery = (current value at operating time t) / (current value at initial operation) ... (2) When αi (t) is αi (t)> 1 Defines the maximum allowable output as Px1 described above, and when αi (t) <1,
For example, Px2 is determined by approximation using the following equation (3).

【0035】[0035]

【数3】 [Equation 3]

【0036】次に、電池を一定出力で運転している場合
は、その時点の燃料または空気流量に対して、運転初期
の電流値とその時点の電流値が判るので上記(2)、
(3)式により、電力補正値αi(t)を決定できる。
Next, when the battery is operated at a constant output, the current value at the beginning of operation and the current value at that time can be known with respect to the fuel or air flow rate at that time.
The power correction value αi (t) can be determined by the equation (3).

【0037】このようにしてPxを決定した後は、制御
装置にそれを設定し、(1)式の演算をしながら逆変換
装置の出力を制御する。
After the Px is determined in this way, it is set in the control device and the output of the inverse conversion device is controlled while performing the calculation of the equation (1).

【0038】今、ある点を運転点として上記の制御をし
ながら運転している状態から、電池側の出力指令とは独
立に直流負荷が増減した場合について動作を説明する
と、それぞれの燃料電池の出力電流値を電流検出器AD
1〜ADnで、また出力電圧値を検出器VDで検出し、
制御装置内部で(1)式の演算を実行する。そして逆変
換装置Iに出力電力の増減指令を与え、逆変換装置Iは
それに応じて交流出力値を(1)式に従って変更する。
The operation will now be described for the case where the DC load is increased or decreased independently of the output command on the battery side from the state where the vehicle is operating while performing the above control with a certain point as the operating point. Output current value is detected by current detector AD
1 to ADn, and the output voltage value is detected by the detector VD,
The calculation of equation (1) is executed inside the control device. Then, the inverse converter I is given a command to increase or decrease the output power, and the inverse converter I changes the AC output value according to the equation (1) accordingly.

【0039】この場合、発生可能な合計電力が直流負荷
容量を上回るようにしてあり、かつ直流負荷の増減分を
交流負荷で補うのみであるため、電池出力は変化しな
い。
In this case, since the total power that can be generated is set to exceed the DC load capacity and the increase / decrease in the DC load is only compensated by the AC load, the battery output does not change.

【0040】また、逆に交流負荷が増減しても、逆変換
装置の出力は(1)式で与えられる値に制御されるのみ
であるため、電池出力は変化しない。そして逆に電池側
から発生電力を変更するときは、発電電力がPx以下で
あれば、制御装置の出力電力設定値に従い(1)式の演
算結果により、弁V11〜Vn2の開度を制御して、発
生電力を設定値に等しくなるよう制御する。
Conversely, even if the AC load increases or decreases, the battery output does not change because the output of the inverse conversion device is only controlled to the value given by the equation (1). On the contrary, when the generated power is changed from the battery side, if the generated power is equal to or lower than Px, the opening degree of the valves V11 to Vn2 is controlled according to the calculation result of the equation (1) according to the output power setting value of the control device. Then, the generated power is controlled to be equal to the set value.

【0041】本発明装置の動作は以上の通りであるが、
交流負荷ACLの負荷容量が(1)式で与えられる電力
よりも大きいときは、不足分は商用系統13から供給さ
れ、逆に小さいときは余剰分を商用系統13に送電す
る。
The operation of the device of the present invention is as described above.
When the load capacity of the AC load ACL is larger than the electric power given by the expression (1), the shortage is supplied from the commercial grid 13, and conversely, when it is small, the surplus is transmitted to the commercial grid 13.

【0042】したがって燃料電池は、交流負荷容量には
無関係に、最大直流負荷容量、その時点で発生可能な最
大出力電力の間で運転点を任意に選択することができる
ことになる。逆に云えば、直流、交流負荷容量が電池側
の都合とは無関係にかってに変化しても、電池はそれ自
身が制御可能な範囲で出力を制御できることになるので
ある。
Therefore, in the fuel cell, the operating point can be arbitrarily selected between the maximum DC load capacity and the maximum output power that can be generated at that time regardless of the AC load capacity. Conversely, even if the DC and AC load capacities change irrespective of the convenience of the battery side, the battery can control the output within a range that the battery itself can control.

【0043】本発明の装置は以上のように動作するた
め、燃料電池の特性が経時的に変化しても構成機器に過
酷な運転状態を強いることなく、各電池の出力を定格点
に保持することが可能であり、また直流負荷容量に対す
る最大定格出力を適切に選定することにより、図4に示
した効率最大点に出力を制御して、全体を効率最大点に
保持させることも可能である。
Since the device of the present invention operates as described above, the output of each cell is maintained at the rated point without forcing the constituent equipment to be in a severe operating state even if the characteristics of the fuel cell change with time. It is also possible to control the output to the maximum efficiency point shown in FIG. 4 and keep the entire efficiency at the maximum efficiency point by appropriately selecting the maximum rated output for the DC load capacity. .

【0044】次に燃料電池の定期検査などが必要になっ
た場合について説明する。本発明装置では、少なくとも
1台の燃料電池が停止、または待機運転状態(外部に電
力を出力していない運転状態)にあっても、設備容量を
直流負荷容量以上となるよう定めているため、例えば最
大容量の1台が停止状態になっても、(2),(3)式
に従いその時点の発生可能な合計電力を定め交流負荷へ
の供給電力を制御するので、直流負荷に電力を供給する
ことは何ら問題ない。
Next, a case where a periodical inspection of the fuel cell becomes necessary will be described. In the device of the present invention, even if at least one fuel cell is stopped or in the standby operation state (operation state in which electric power is not output to the outside), the facility capacity is determined to be equal to or higher than the DC load capacity, For example, even if one of the maximum capacity is stopped, the total power that can be generated at that time is determined according to the equations (2) and (3), and the power supplied to the AC load is controlled. Therefore, power is supplied to the DC load. There is nothing wrong with doing it.

【0045】なお以上の説明では複数の電池を1台の制
御装置で制御するよう説明してきたが、常にこのように
しなければならないわけではなく、例えば個別制御装置
を各燃料電池に持たせ、1台の統括制御装置を別設置す
ることもできる。
In the above description, a plurality of batteries are controlled by one controller, but it is not always necessary to do this. For example, each fuel cell may be provided with an individual controller. It is also possible to separately install the integrated control device of the stand.

【0046】また順変換装置C1、C2としては、従来
から使用されている図2に示すような回路が適用可能で
ある。この回路は図3に示すように電圧を制御すると
き、図2のトランジスタTRをオン、オフし、そのデユ
テイを制御する。本発明ではこれを複数個設け、所要電
圧が異なる負荷に電力を供給するとき、直流負荷電力制
御はせず、定電圧制御をするのみであるため、全体の直
流発生電力のバランス制御が不必要となる。
As the forward converters C1 and C2, a circuit conventionally used as shown in FIG. 2 can be applied. When controlling the voltage as shown in FIG. 3, this circuit turns on and off the transistor TR of FIG. 2 and controls its duty. In the present invention, when a plurality of these are provided and power is supplied to loads having different required voltages, DC load power control is not performed but only constant voltage control is performed, so balance control of the entire DC generated power is unnecessary. Becomes

【0047】このため、複数個の順変換装置は各々独立
に定電圧制御をすることが可能であり、一方の回路のト
ランジスタがオンのときは他方のトランジスタがオフと
なるよう、また純変換装置をさらに多数個設置するとき
も、それらが同一位相でオン、オフしないよう、スイッ
チングタイミングが相互に相補的になるよう制御する。
Therefore, each of the plurality of forward converters can independently perform constant voltage control so that the transistor of one circuit is turned on while the other transistor is turned off. Even when a large number of switches are installed, the switching timings are controlled so as to be complementary to each other so that they do not turn on and off in the same phase.

【0048】これにより電池から出力される直流電流の
リップル率を減少させ、電池の寿命を長くしてシステム
を高信頼化することも可能である。
As a result, the ripple rate of the direct current output from the battery can be reduced, the life of the battery can be lengthened, and the system can be made highly reliable.

【0049】[0049]

【発明の効果】以上述べてきたように本発明は、複数の
燃料電池よりなる電池発電装置を、この電池発電装置の
発生可能な電気出力が、少なくとも1台の燃料電池が停
止の状態で直流負荷の容量以上となるように構成すると
ともに、この直流負荷に対して定電圧で電力を供給し、
かつそのときの余剰電力を交流負荷に供給するようにな
したから、直流、交流負荷容量が電池側の都合とは無関
係にかってに変化しても、電池はそれ自身が制御可能な
範囲で出力を制御できることになり、したがって直流負
荷と交流負荷とが混在するような負荷に対し、たとえ燃
料電池の特性が経時的に変化しても、構成機器に過酷な
運転状態を強いることなく、かつ高効率、高信頼度で電
力供給が可能なこの種燃料電池発電設備を得ることがで
きる。
As described above, according to the present invention, a battery power generating device comprising a plurality of fuel cells can be used in which the electrical output that can be generated by the battery power generating device is a direct current when at least one fuel cell is stopped. In addition to configuring the load to exceed its capacity, supply power to this DC load at a constant voltage,
And since the surplus power at that time is supplied to the AC load, even if the DC and AC load capacities change irrespective of the convenience of the battery side, the battery outputs within the range that can be controlled by itself. Therefore, even if the characteristics of the fuel cell change over time, a high load can be controlled without compromising the operating conditions of the components even if the characteristics of the fuel cell change over time. It is possible to obtain this kind of fuel cell power generation facility capable of supplying electric power with high efficiency and high reliability.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の燃料電池発電設備の一実施例を示すブ
ロック線図である。
FIG. 1 is a block diagram showing an embodiment of a fuel cell power generation facility of the present invention.

【図2】本発明の燃料電池発電設備に採用される順変換
装置の一実施例を示す線図である。
FIG. 2 is a diagram showing an example of a forward conversion device used in the fuel cell power generation facility of the present invention.

【図3】本発明の燃料電池発電設備に採用される順変換
装置の動作を説明する曲線図である。
FIG. 3 is a curve diagram illustrating the operation of the forward conversion device used in the fuel cell power generation facility of the present invention.

【図4】燃料電池の電気出力と効率との関係を示す曲線
図である。
FIG. 4 is a curve diagram showing a relationship between electric output and efficiency of a fuel cell.

【図5】燃料電池特性の経時変化を示す曲線図である。FIG. 5 is a curve diagram showing changes with time in fuel cell characteristics.

【図6】燃料電池の電圧と電流との経時変化の関係を示
す曲線図である。
FIG. 6 is a curve diagram showing a relationship of changes over time in voltage and current of a fuel cell.

【符号の説明】 FC1〜FCn…燃料電池、C1,C2…順変換装置、
D1,D2…直流負荷、CTL…制御装置、I…逆変換
装置、S1,S2…遮断器、ACL…交流負荷AD1,
AD2…電流検出器、VD…電圧検出器。
[Explanation of Codes] FC1 to FCn ... Fuel cells, C1, C2 ... Forward conversion device,
D1, D2 ... DC load, CTL ... Control device, I ... Inverse conversion device, S1, S2 ... Circuit breaker, ACL ... AC load AD1,
AD2 ... Current detector, VD ... Voltage detector.

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 複数台の燃料電池が接続された電池発電
装置を備え、該電池発電装置から直流負荷と交流負荷が
混在する負荷に電力を供給するようになした燃料電池発
電設備において、 前記電池発電装置を、該電池発電装置の発生可能な電気
出力が、少なくとも1台の燃料電池が停止の状態で前記
直流負荷の容量以上となるように構成するとともに、該
直流負荷に対して定電圧で電力を供給し、かつそのとき
の余剰電力を前記交流負荷に供給するようにしたことを
特徴とする燃料電池発電設備。
1. A fuel cell power generation facility comprising a battery power generation device to which a plurality of fuel cells are connected, wherein the battery power generation device supplies power to a load in which a DC load and an AC load are mixed. The battery generator is configured such that the electric output that can be generated by the battery generator is equal to or higher than the capacity of the DC load when at least one fuel cell is stopped, and a constant voltage is applied to the DC load. And a surplus power at that time is supplied to the AC load.
【請求項2】 複数台の燃料電池が並列接続された電池
発電装置を備え、該電池発電装置から直流負荷と交流負
荷が混在する負荷に電力を供給するようになした燃料電
池発電設備において、 前記電池発電装置を、該電池発電装置のその時点におけ
る発生可能な電気出力が、少なくとも1台の燃料電池が
停止若しくは待機の状態で前記直流負荷の容量以上とな
るように構成するとともに、該直流負荷に対して一定の
電力を供給し、かつそのときの余剰電力を逆変換装置に
より交流に変換し、交流負荷または商用系統に供給する
ようにしたことを特徴とする燃料電池発電設備。
2. A fuel cell power generation facility comprising a battery power generation device in which a plurality of fuel cells are connected in parallel, and power is supplied from the battery power generation device to a load in which a DC load and an AC load are mixed. The battery power generator is configured such that the electric power that can be generated at that time of the battery power generator is equal to or higher than the capacity of the DC load when at least one fuel cell is in a stopped or standby state. A fuel cell power generation facility characterized in that a certain amount of electric power is supplied to a load, and surplus electric power at that time is converted into alternating current by an inverse conversion device and supplied to an alternating current load or a commercial system.
【請求項3】 複数台の燃料電池が並列接続された電池
発電装置と、 該電池発電装置の直流出力電圧を負荷が要求する定電圧
に変換する順変換装置と、 前記電池発電装置の直流出力電圧を交流電圧に変換する
逆変換装置と、 該逆変換装置の出力を商用系統と同期連系させるための
連系手段と、を備え、前記電池発電装置から直流負荷と
交流負荷が混在する負荷に電力を供給するように形成さ
れている燃料電池発電設備において、 前記電池発電装置を、該電池発電装置のその時点におけ
る発生可能な電気出力が、少なくとも1台の燃料電池が
停止若しくは待機の状態で前記直流負荷の容量以上とな
るように構成するとともに、該直流負荷に対しては前記
順変換装置を介して一定の電圧を供給し、 かつ交流負荷若しくは商用系統に対しては、その時点に
おける電池発電装置の発生可能な電力を限度としての余
剰電力を、前記逆変換装置により交流に変換して供給す
るようにしたことを特徴とする燃料電池発電設備。
3. A battery power generator in which a plurality of fuel cells are connected in parallel, a forward converter for converting a DC output voltage of the battery power generator into a constant voltage required by a load, and a DC output of the battery power generator. A load including an inverse conversion device for converting a voltage to an AC voltage and an interconnection unit for synchronously interconnecting the output of the inverse conversion device with a commercial system, and a load in which a DC load and an AC load are mixed from the battery generator. In the fuel cell power generation facility configured to supply electric power to the battery power generation device, the battery power generation device is configured such that at that time, at least one fuel cell is in a stopped or standby state. Is configured so that the capacity is equal to or greater than the capacity of the DC load, a constant voltage is supplied to the DC load via the forward conversion device, and a constant voltage is supplied to the AC load or a commercial system. The surplus power of the generator can power the cell system at the time a limit, a fuel cell power plant, characterized in that it has to supply is converted to AC by the inverters.
【請求項4】 前記順変換装置が複数個設けられ、かつ
夫々は異なる出力電圧を有するように形成されてなる請
求項3記載の燃料電池発電設備。
4. The fuel cell power generation equipment according to claim 3, wherein a plurality of the forward conversion devices are provided, and each of them has a different output voltage.
【請求項5】 前記順変換装置はその出力電圧値により
流通角を制御するチョッパ方式であり、かつそのスイッ
チング状態が相補的に制御されてなる請求項3記載の燃
料電池発電設備。
5. The fuel cell power generation facility according to claim 3, wherein the forward conversion device is a chopper system in which the flow angle is controlled by the output voltage value thereof, and the switching state thereof is complementarily controlled.
【請求項6】 夫々酸化剤および燃料が制御供給される
複数台の燃料電池が並列接続された電池発電装置と、 該電池発電装置の直流出力電圧を負荷が要求する定電圧
に変換する順変換装置と、 前記電池発電装置の直流出力電圧を交流電圧に変換する
逆変換装置と、を備え、前記電池発電装置から直流負荷
と交流負荷が混在する負荷に電力を供給するように形成
されている燃料電池発電設備において、 前記電池発電装置を、該電池発電装置のその時点におけ
る発生可能な電気出力が、少なくとも1台の燃料電池が
停止若しくは待機の状態で前記直流負荷の容量以上とな
るように構成するとともに、該直流負荷に対しては前記
順変換装置を介して一定の電圧を供給し、 かつ交流負荷に対しては、その時点における電池発電装
置の発生可能な電力を限度としての余剰電力から供給す
るようにしたことを特徴とする燃料電池発電設備。
6. A battery power generator in which a plurality of fuel cells, each of which is supplied with an oxidant and a fuel, are connected in parallel, and a forward conversion for converting a DC output voltage of the battery power generator into a constant voltage required by a load. And a reverse converter for converting a DC output voltage of the battery power generator into an AC voltage, and is configured to supply power from the battery power generator to a load in which a DC load and an AC load are mixed. In the fuel cell power generation facility, the battery power generation device is configured so that the electric power that can be generated at that time of the battery power generation device is equal to or higher than the capacity of the DC load when at least one fuel cell is stopped or on standby. A constant voltage is supplied to the DC load through the forward converter, and the AC load can generate the power that can be generated by the battery generator at that time. Fuel cell power plant, characterized in that it has to be supplied from the surplus power as a limit.
【請求項7】 前記電池発電装置の酸化剤および燃料供
給量を制御する装置に、前記余剰電力が交流負荷より大
きい値となるとき、この値がほぼ零になるよう複数の燃
料電池の効率最大点を各々の出力−効率曲線より求め、
燃料供給量の減少量を配分するように制御する酸化剤燃
料制御装置を設けてなる請求項5記載の燃料電池発電設
備。
7. A device for controlling an oxidant and a fuel supply amount of the battery power generation device, wherein when the surplus power has a value larger than an AC load, the maximum efficiency of a plurality of fuel cells is set so that the value becomes almost zero. Obtain points from each output-efficiency curve,
The fuel cell power generation facility according to claim 5, further comprising an oxidant fuel control device that controls so as to distribute the reduction amount of the fuel supply amount.
【請求項8】 複数台の燃料電池が並列接続された電池
発電装置と、 該電池発電装置の直流出力電圧を負荷が要求する定電圧
に変換する順変換装置と、 前記電池発電装置の直流出力電圧を交流電圧に変換する
逆変換装置と、を備え、前記電池発電装置から直流負荷
と交流負荷が混在する負荷に電力を供給するように形成
されている燃料電池発電設備において、 前記電池発電装置を、該電池発電装置の発生可能な電気
出力が、少なくとも1台の燃料電池が停止の状態で前記
直流負荷の容量以上となるように構成するとともに、該
直流負荷に対しては前記順変換装置による定電圧で電力
を供給し、かつそのときの余剰電力を前記逆変換装置に
より交流に変換し、前記交流負荷に供給するようにした
ことを特徴とする燃料電池発電設備の運転方法。
8. A battery power generator in which a plurality of fuel cells are connected in parallel, a forward converter for converting a DC output voltage of the battery power generator into a constant voltage required by a load, and a DC output of the battery power generator. A reverse conversion device for converting a voltage into an alternating voltage, wherein the battery generation device is configured to supply electric power from the battery generation device to a load in which a DC load and an AC load are mixed. Is configured so that the electrical output that can be generated by the cell power generation device is equal to or greater than the capacity of the DC load when at least one fuel cell is stopped, and the forward conversion device for the DC load. The method for operating a fuel cell power generation facility is characterized in that power is supplied at a constant voltage in accordance with 1., and surplus power at that time is converted into alternating current by the inverse conversion device and supplied to the alternating current load.
【請求項9】 前記余剰電力が交流負荷より大きい値と
なるとき、この値がほぼ零になるよう複数の燃料電池の
効率最大点を各々の出力−効率曲線より求め、燃料供給
量の減少量を配分するように制御してなる請求項8記載
の燃料電池発電設備の運転方法。
9. The maximum efficiency point of a plurality of fuel cells is calculated from each output-efficiency curve so that when the surplus power becomes a value larger than an AC load, this value becomes approximately zero, and the amount of decrease in the fuel supply amount is reduced. 9. The method for operating a fuel cell power generation facility according to claim 8, wherein the fuel cell power generation facility is controlled so as to be distributed.
【請求項10】 前記各燃料電池のその時点における発
生可能な電力を、同一燃料または酸化剤流量に対する各
燃料電池の電圧−電流値から出力補正係数として求め、
出力補正係数≧1のときは順変換及び逆変換装置の許容
電力の和となし、出力補正係数<1のときは該出力補正
係数に応じて発生可能な各燃料電池電力を推定し、制御
装置の出力電力設定値とするようにした請求項8記載の
燃料電池発電設備の運転方法。
10. The electric power that can be generated at that time of each fuel cell is obtained as an output correction coefficient from the voltage-current value of each fuel cell for the same fuel or oxidant flow rate,
When the output correction coefficient ≧ 1, the sum of the allowable powers of the forward conversion and inverse conversion devices is used. When the output correction coefficient <1, each fuel cell power that can be generated according to the output correction coefficient is estimated, and the control device 9. The method for operating a fuel cell power generation facility according to claim 8, wherein the output power set value is set to 10.
JP5126771A 1993-05-28 1993-05-28 Fuel cell power generation facility and operation thereof Pending JPH06338341A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5126771A JPH06338341A (en) 1993-05-28 1993-05-28 Fuel cell power generation facility and operation thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5126771A JPH06338341A (en) 1993-05-28 1993-05-28 Fuel cell power generation facility and operation thereof

Publications (1)

Publication Number Publication Date
JPH06338341A true JPH06338341A (en) 1994-12-06

Family

ID=14943526

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5126771A Pending JPH06338341A (en) 1993-05-28 1993-05-28 Fuel cell power generation facility and operation thereof

Country Status (1)

Country Link
JP (1) JPH06338341A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004525594A (en) * 2001-02-13 2004-08-19 ユーティーシー フューエル セルズ,エルエルシー A system that supplies reliable power to important loads
WO2004082052A1 (en) * 2003-03-10 2004-09-23 The Japan Research Institute, Limited Power supply system
JP2005063901A (en) * 2003-08-19 2005-03-10 Matsushita Electric Ind Co Ltd Power supply device
US6981379B2 (en) 2003-07-23 2006-01-03 The Japan Research Institute, Limited Power supply system
WO2006006222A1 (en) * 2004-07-09 2006-01-19 Kajima Corporation Fuel cell system suppressing variation in power consumption of entire system, its controlling method and building structure
JP2008091351A (en) * 2007-12-27 2008-04-17 Equos Research Co Ltd Fuel cell system
CN100399614C (en) * 2004-04-21 2008-07-02 三星Sdi株式会社 Fuel cell system

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004525594A (en) * 2001-02-13 2004-08-19 ユーティーシー フューエル セルズ,エルエルシー A system that supplies reliable power to important loads
WO2004082052A1 (en) * 2003-03-10 2004-09-23 The Japan Research Institute, Limited Power supply system
US6981379B2 (en) 2003-07-23 2006-01-03 The Japan Research Institute, Limited Power supply system
JP2005063901A (en) * 2003-08-19 2005-03-10 Matsushita Electric Ind Co Ltd Power supply device
JP4583010B2 (en) * 2003-08-19 2010-11-17 パナソニック株式会社 Power supply control method
CN100399614C (en) * 2004-04-21 2008-07-02 三星Sdi株式会社 Fuel cell system
US8133627B2 (en) 2004-04-21 2012-03-13 Samsung Sdi Co., Ltd. Fuel cell system
WO2006006222A1 (en) * 2004-07-09 2006-01-19 Kajima Corporation Fuel cell system suppressing variation in power consumption of entire system, its controlling method and building structure
JP2008091351A (en) * 2007-12-27 2008-04-17 Equos Research Co Ltd Fuel cell system

Similar Documents

Publication Publication Date Title
US10404071B2 (en) Power system for multiple power sources
US6285572B1 (en) Method of operating a power supply system having parallel-connected inverters, and power converting system
JP4119081B2 (en) Power supply system with solar cell
US20090190375A1 (en) Converter control device
US9337682B2 (en) Charging control device, solar power generation system and charging control method
US7808129B2 (en) Fuel-cell based power generating system having power conditioning apparatus
JP4570245B2 (en) Distributed power system
JP2007157733A (en) Fuel cell power source device
CN105518962A (en) A fuel cell unit
KR20170013772A (en) Energy storge system and metoh for operating thereof
JP2006067760A (en) Distributed power supply unit
CN113748064B (en) Method and device for monitoring aircraft mixing
KR101849664B1 (en) Power applying apparatus and method for controlling connecting photo voltaic power generating apparatus
JPH06338341A (en) Fuel cell power generation facility and operation thereof
KR102180880B1 (en) Photovoltaic power generation system in which power converters are distributed
KR102238340B1 (en) PCS Droop Control Device and Energy Storage System using the Same
KR20190062812A (en) An energy storage system
Li et al. Autonomous energy management strategy for a hybrid power system of more-electric aircraft based on composite droop schemes
US7799476B2 (en) Fixed IDC operation of fuel cell power plant
KR101020200B1 (en) Power controlling method of Fuel cell and Fuel cell system
KR101799338B1 (en) Photovoltaic Power Generation System For Compensating Power Generation Loss
JP2520963B2 (en) Fuel cell DC parallel operation system
KR20100075117A (en) Emergency power supply apparatus using fuel cell
JPH0765851A (en) Dc output fuel cell system and its operation
WO2012063300A1 (en) Fuel cell output control device