JPS63158130A - Catalyst for purifying exhaust gas - Google Patents

Catalyst for purifying exhaust gas

Info

Publication number
JPS63158130A
JPS63158130A JP61306973A JP30697386A JPS63158130A JP S63158130 A JPS63158130 A JP S63158130A JP 61306973 A JP61306973 A JP 61306973A JP 30697386 A JP30697386 A JP 30697386A JP S63158130 A JPS63158130 A JP S63158130A
Authority
JP
Japan
Prior art keywords
catalyst
carrier
exhaust gas
element selected
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61306973A
Other languages
Japanese (ja)
Inventor
Koji Yamamura
康治 山村
Koichi Tachibana
立花 弘一
Shigeo Kondo
繁雄 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TECH RES ASSOC CONDUCT INORG COMPO
Original Assignee
TECH RES ASSOC CONDUCT INORG COMPO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TECH RES ASSOC CONDUCT INORG COMPO filed Critical TECH RES ASSOC CONDUCT INORG COMPO
Priority to JP61306973A priority Critical patent/JPS63158130A/en
Publication of JPS63158130A publication Critical patent/JPS63158130A/en
Pending legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE:To enhance purifying capacity of CO and HC, by forming a catalyst for purifying exhaust gas by supporting an oxide catalyst containing cobalt by a carrier containing one or more element selected from among Ni, Fe and Ti as a constitutional element. CONSTITUTION:A catalyst for purifying exhaust gas is prepared by supporting an oxide catalyst represented by formula I (wherein A is at least one element selected from among Ce, Sr, Ca and Ba, Me is at least one element selected from among Fe, Mn, Cr and V, 0<=x<=1 and 0<=y<=1) by a carrier containing at least one element selected from among Ni, Fe and Ti as a constitutional element. In this case, the oxide catalyst is supported by the carrier through the reaction with the contact part of the carrier and a product low in catalytic activity is not generated and, even when the catalyst is baked to the carrier, catalytic activity is not lowered.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は各種の燃焼機器や内燃機関の排気ガスに含まれ
るCo、HC等の有害ガスを002やH2Oに変化させ
るとともに、還元雰囲気下ではNOxも浄化することの
できる触媒体に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention converts harmful gases such as Co and HC contained in the exhaust gas of various combustion devices and internal combustion engines into 002 and H2O, and also converts NOx in a reducing atmosphere. This invention relates to a catalyst body that can be purified.

従来の技術 従来、この種の触媒としてはPt、Pd等の貴金属触媒
やCuo9Mno2.co304等の酸化物触媒が用い
られている。前者は、三元触媒として用いられており、
Co、HC等の酸化や還元雰囲気下でのNo 浄化を行
うことができるが高価である。後者! は、高温、還元雰囲気下では容易に還元され触媒活性が
低下するので主として酸素存在下でのC09HC等の酸
化触媒として用いられている。゛発明が解決しようとす
る問題点 触媒を実際に使用する場合、触媒材料を触媒担体に担持
する必要がある。通常、アルミナやシリカ等を主成分と
するセラミックス製担体に担持す、るがコバルト酸化物
を含む触媒あるいはコバルトを含む複合酸化物からなる
触媒の場合、コバルトがアルミナやシリカ等と高温で容
易に反応し触媒活性の低い複合酸化物を生成する0また
、セラミックス製担体の場合、衝撃に対してもろく、機
械加工が容易でない欠点を有している。
BACKGROUND OF THE INVENTION Conventionally, this type of catalyst includes noble metal catalysts such as Pt and Pd, Cuo9Mno2. Oxide catalysts such as CO304 are used. The former is used as a three-way catalyst,
Although it is possible to perform No purification in an oxidizing or reducing atmosphere using Co, HC, etc., it is expensive. the latter! is easily reduced and its catalytic activity decreases at high temperatures and in a reducing atmosphere, so it is mainly used as an oxidation catalyst for CO9HC and the like in the presence of oxygen. Problems to be Solved by the Invention When the catalyst is actually used, it is necessary to support the catalyst material on a catalyst carrier. Usually, catalysts containing cobalt oxide or composite oxides containing cobalt are supported on a ceramic carrier mainly composed of alumina, silica, etc., but cobalt easily forms with alumina, silica, etc. at high temperatures. Furthermore, in the case of a ceramic carrier, it has the disadvantage that it is brittle against impact and cannot be easily machined.

問題点を解決するための手段 本発明は上記の問題点を解決するために触媒担体として
Ni、Fe、Tiから選ぶ少くとも一種の元素を構成要
素とし、それにコバルトを含む酸化触媒を担持させたも
のである。
Means for Solving the Problems In order to solve the above problems, the present invention uses at least one element selected from Ni, Fe, and Ti as a catalyst carrier, and supports an oxidation catalyst containing cobalt on it. It is something.

作  用 本発明になる触媒体は、熱により生成される金属担体表
面の酸化物と酸化コバルトを含む酸化物触媒及び一般式
La1−rAxCo1□MeyO3−δ(AはCe。
Function The catalyst body of the present invention is an oxide catalyst containing an oxide on the surface of a metal carrier generated by heat and cobalt oxide, and a general formula La1-rAxCo1□MeyO3-δ (A is Ce).

Ca、Baから選ぶ少くとも一種の元素、MeはFe。At least one element selected from Ca and Ba; Me is Fe.

Mn、Cr、Vから選ぶ少くとも一種の元素、0≦x≦
1.0≦y≦1)で表わされる酸化物触媒とをその接触
部分において反応させて担持するものであるが、アルミ
ナやシリカと異なシ触媒活性の低い生成物を生ずること
がなく、触媒を担体に焼付けてもほとんど触媒活性が低
下することがない。また金属担体として耐熱性金属を用
いれば高温雰囲気での使用にも十分機械的強度をもった
触媒体を得ることができ、しかも穴あけ、打抜き9曲げ
などの機械加工が金属担体であることから容易にできる
At least one element selected from Mn, Cr, and V, 0≦x≦
The catalyst is supported by reacting with the oxide catalyst represented by 1.0≦y≦1) in the contact area, but unlike alumina and silica, it does not produce products with low catalytic activity, and the catalyst is Even if the carrier is baked, the catalytic activity hardly decreases. In addition, if a heat-resistant metal is used as the metal carrier, it is possible to obtain a catalyst body with sufficient mechanical strength for use in a high-temperature atmosphere, and machining processes such as drilling, punching, and bending are easy because the metal carrier is used. Can be done.

実施例 本実施例では、各金属塩を均一に混合溶解した水溶液か
ら水酸化ナトリウム、アミン類としゆう酸を用いて各金
属のしゅう酸塩及び水酸化物を沈殿させ、空気中で焼成
してL ao 、 sS r o 、5Coo3−δ酸
化物触媒を合成した。
Example In this example, oxalates and hydroxides of each metal were precipitated from an aqueous solution containing uniformly mixed and dissolved metal salts using sodium hydroxide, amines, and citric acid, and then calcined in air. L ao , sS r o , 5Coo3-δ oxide catalysts were synthesized.

上記酸化物触媒を水に分散し、発泡ニッケルよりなる担
体に含浸し、乾燥後熱処理して焼付は触媒体を作製した
。このように作製した触媒体の排ガス浄化能と熱に対す
る触媒特性の安定性を調べた0 排ガス浄化能試験として、該触媒体を管状電気炉にとう
した石英ガラス管内に設置し、空気とCOハ、からなる
混合ガス、空気とl5O−C4H10//N2からなる
混合ガスを用いて各温度におけるCO及びZ So −
C4H、。の酸化率の測定を行った。また、熱に対する
触媒特性の安定性の確認試験として、触媒体をaOO℃
雰囲気下におき1o時間おきに300℃でのCOの酸化
率の測定を行った。比較のためにムライト製担体゛に同
重量の酸化物触媒を担持した触媒体についても同様の試
験を行った。
The above-mentioned oxide catalyst was dispersed in water, impregnated into a support made of foamed nickel, dried, and then heat-treated to produce a baked catalyst body. The exhaust gas purification ability of the catalyst body prepared in this way and the stability of the catalytic properties against heat were investigated.0 As an exhaust gas purification ability test, the catalyst body was placed in a quartz glass tube placed in a tubular electric furnace, and air and CO were removed. , CO and Z So − at each temperature using a mixed gas consisting of air and l5O−C4H10//N2.
C4H. The oxidation rate was measured. In addition, as a test to confirm the stability of the catalyst properties against heat, the catalyst body was
The oxidation rate of CO was measured at 300° C. every 1 hour in an atmosphere. For comparison, a similar test was conducted on a catalyst body in which the same weight of oxide catalyst was supported on a mullite carrier.

各温度におけるCOの酸化率の結果を第1図に、各温度
における1so−C4H1゜の酸化率の結果を第2図に
、また、800℃雰囲気下での触媒特性の安定性の結果
を第3図にそれぞれ示した。Co及び1so−C4H1
゜の酸化率は、次式より求めた。
The results of the oxidation rate of CO at each temperature are shown in Figure 1, the results of the oxidation rate of 1so-C4H1° at each temperature are shown in Figure 2, and the results of the stability of catalyst properties in an atmosphere of 800°C are shown in Figure 1. They are shown in Figure 3. Co and 1so-C4H1
The oxidation rate in ° was calculated from the following formula.

第1図と第2図に示した結果より発泡ニッケルを担体と
した触媒体は、ムライト製担体を用いた触媒体より60
〜100℃低い温度がらCo、is。
From the results shown in Figures 1 and 2, the catalyst body using foamed nickel as a carrier was 60% lower than the catalyst body using mullite carrier.
Co, is at ~100°C lower temperature.

−C4H1゜の酸化が起こり、担持による触媒能の低下
はほとんど認められなかった。また、第3図の熱に対す
る触媒特性の安定性の結果からも発泡ニッケルを担体と
した触媒体の方が触媒活性の低い化合物を生成すること
がないためムライト製担体を用いた触媒体よりも安定し
ていることが認められる。
-C4H1° oxidation occurred, and almost no decrease in catalytic ability was observed due to the support. Also, from the results of the stability of catalyst properties against heat shown in Figure 3, the catalyst using foamed nickel as a carrier does not produce compounds with low catalytic activity, so it is better than the catalyst using mullite as a carrier. It is recognized that it is stable.

次に、酸素量に対してCO量の過剰な還元雰囲気にNo
x/N2ガスを混合し、各温度におけるNOx消去率の
測定を行った。その結果を第4図に示した。NO工消去
率は次式より求めた。
Next, the No.
x/N2 gas was mixed and the NOx elimination rate was measured at each temperature. The results are shown in Figure 4. The NO eradication rate was determined from the following formula.

NOx消去率についても第4図より発泡ニッケルを担体
とした触媒体の方が60℃程度低い温度よりNo工を消
去した。
Regarding the NOx elimination rate, FIG. 4 shows that the catalyst body using foamed nickel as a carrier eliminated NOx at a temperature about 60° C. lower.

以上のように本発明になる触媒体は、排ガス中のCo 
、 HC(還元雰囲気ではN0x)の浄化能が高く、熱
に対しても安定である。さらに、実施例ではL a o
 、 s S r o 、 6COOa −,5酸化物
触媒を発泡ニッケルに担持した場合について述べたが、
コバルトを含む酸化物触媒、AにSrのかわシにCe。
As described above, the catalyst body of the present invention can reduce CO in exhaust gas.
, has a high purifying ability for HC (N0x in a reducing atmosphere) and is stable against heat. Furthermore, in the example, L a o
, s S r o , 6COOa -,5 oxide catalyst is supported on foamed nickel,
An oxide catalyst containing cobalt, consisting of A, Sr, and Ce.

Ca、Baを添加した場合、Co f M eとしてF
e、Mn。
When Ca and Ba are added, F as Co f M e
e, Mn.

、Cr、Vで置換した場合にも同様な効果が得られた。, Cr, and V were substituted with similar effects.

また、金属担体としては、Fe(耐熱性ステンレス)。Moreover, as a metal carrier, Fe (heat-resistant stainless steel) is used.

Ti およびこれらを主成分として含む合金の場合にも
同様の効果を得ることができた。
Similar effects could be obtained in the case of Ti and alloys containing these as main components.

発明の効果 本発明は、金属をコバルト系酸化物触媒の触媒担体とし
て用いることで排ガス中のCo 、 HC(還元雰囲気
ではN0x)の浄化能も高く、熱に対しても触媒活性の
低い反応物を生成せず触媒特性の安定した触媒体を得る
ことができ、しかも、金属担体であることから穴あけ、
打抜き9曲げなどの機械加工を容易に行うことができる
Effects of the Invention The present invention uses a metal as a catalyst carrier for a cobalt-based oxide catalyst, which has a high ability to purify Co and HC (N0x in a reducing atmosphere) in exhaust gas, and is a reactant with low catalytic activity against heat. It is possible to obtain a catalyst body with stable catalytic properties without producing any
Machining such as punching and bending can be easily performed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の触媒体の各温度におけるC
Oの駿化率特性図、第2図は同触媒体の各温度における
1so−C4H1゜の酸化率特性図、第3図は同触媒体
の800°Cに対する安定性特性図、第4図は還元雰囲
気下での各温度におけるNo!消去率特性図である。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 温 潰 (”C) 第2図 温  り雫己   (Dこ、ン 第3図
Figure 1 shows the C of the catalyst body of one embodiment of the present invention at various temperatures.
Figure 2 is the oxidation rate characteristic diagram of 1so-C4H1° at various temperatures of the same catalyst, Figure 3 is the stability characteristic diagram of the same catalyst at 800°C, and Figure 4 is the characteristic diagram of the oxidation rate of O. No. at each temperature under reducing atmosphere! It is an erasure rate characteristic diagram. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 2 (D) Figure 3

Claims (2)

【特許請求の範囲】[Claims] (1)コバルトを含む酸化物触媒をNi、Fe、Tiか
ら選ぶ少くとも一種を構成要素とする担体に担持したこ
とを特徴とする排ガス浄化用触媒体。
(1) A catalyst body for exhaust gas purification, characterized in that an oxide catalyst containing cobalt is supported on a carrier having at least one component selected from Ni, Fe, and Ti.
(2)酸化物触媒が一般式La_1_−_xA_xCo
_1_−_yMe_yO_3_−_δ(ただしAはCe
、Sr、Ca、Baから選ぶ少くとも一種の元素、Me
はFe、Mn、Cr、Vから選ぶ少くとも一種の元素、
0≦x≦1、0≦y≦1)で表わされる酸化物であるこ
とを特徴とする特許請求の範囲第1項記載の排ガス浄化
用触媒体。
(2) The oxide catalyst has the general formula La_1_-_xA_xCo
_1_-_yMe_yO_3_-_δ (A is Ce
, at least one element selected from Sr, Ca, Ba, Me
is at least one element selected from Fe, Mn, Cr, and V,
The catalyst body for exhaust gas purification according to claim 1, characterized in that it is an oxide represented by 0≦x≦1, 0≦y≦1.
JP61306973A 1986-12-23 1986-12-23 Catalyst for purifying exhaust gas Pending JPS63158130A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61306973A JPS63158130A (en) 1986-12-23 1986-12-23 Catalyst for purifying exhaust gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61306973A JPS63158130A (en) 1986-12-23 1986-12-23 Catalyst for purifying exhaust gas

Publications (1)

Publication Number Publication Date
JPS63158130A true JPS63158130A (en) 1988-07-01

Family

ID=17963493

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61306973A Pending JPS63158130A (en) 1986-12-23 1986-12-23 Catalyst for purifying exhaust gas

Country Status (1)

Country Link
JP (1) JPS63158130A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5318937A (en) * 1990-06-21 1994-06-07 The United States Of America As Represented By The Administrator Of The U.S. Environmental Protection Agency Ruthenium-containing perovskite materials, catalysts and methods

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58156350A (en) * 1982-03-12 1983-09-17 Matsushita Electric Ind Co Ltd Apparatus for purifying exhaust gas
JPS6030909A (en) * 1983-08-01 1985-02-16 Matsushita Electric Ind Co Ltd Method of cleaning exhaust gas from gas burner
JPS6082138A (en) * 1983-10-07 1985-05-10 Doudensei Muki Kagoubutsu Gijutsu Kenkyu Kumiai Catalyst body for purifying waste gas
JPS6118434A (en) * 1984-07-06 1986-01-27 Doudensei Muki Kagoubutsu Gijutsu Kenkyu Kumiai Catalytic body for purifying exhaust gas
JPS6197032A (en) * 1984-10-19 1986-05-15 Doudensei Muki Kagoubutsu Gijutsu Kenkyu Kumiai Catalyst body for purifying exhaust gas
JPS61283349A (en) * 1985-06-05 1986-12-13 Tech Res Assoc Conduct Inorg Compo Catalyst for purifying exhaust gas
JPS61283350A (en) * 1985-06-05 1986-12-13 Tech Res Assoc Conduct Inorg Compo Catalyst for purifying exhaust gas

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58156350A (en) * 1982-03-12 1983-09-17 Matsushita Electric Ind Co Ltd Apparatus for purifying exhaust gas
JPS6030909A (en) * 1983-08-01 1985-02-16 Matsushita Electric Ind Co Ltd Method of cleaning exhaust gas from gas burner
JPS6082138A (en) * 1983-10-07 1985-05-10 Doudensei Muki Kagoubutsu Gijutsu Kenkyu Kumiai Catalyst body for purifying waste gas
JPS6118434A (en) * 1984-07-06 1986-01-27 Doudensei Muki Kagoubutsu Gijutsu Kenkyu Kumiai Catalytic body for purifying exhaust gas
JPS6197032A (en) * 1984-10-19 1986-05-15 Doudensei Muki Kagoubutsu Gijutsu Kenkyu Kumiai Catalyst body for purifying exhaust gas
JPS61283349A (en) * 1985-06-05 1986-12-13 Tech Res Assoc Conduct Inorg Compo Catalyst for purifying exhaust gas
JPS61283350A (en) * 1985-06-05 1986-12-13 Tech Res Assoc Conduct Inorg Compo Catalyst for purifying exhaust gas

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5318937A (en) * 1990-06-21 1994-06-07 The United States Of America As Represented By The Administrator Of The U.S. Environmental Protection Agency Ruthenium-containing perovskite materials, catalysts and methods

Similar Documents

Publication Publication Date Title
US5185311A (en) Catalytic composite for purifying exhaust gases and a method for preparing the same
JPS58156350A (en) Apparatus for purifying exhaust gas
JPS61283348A (en) Oxidizing catalyst
JPS63158130A (en) Catalyst for purifying exhaust gas
JPS6054736A (en) Oxidation catalyst
JP3622211B2 (en) Methane oxidation method
JPH0435744A (en) Catalytic body for purification of exhaust gas
JPS63158132A (en) Catalyst for purifying exhaust gas
JP2895114B2 (en) Exhaust gas purification catalyst
JPH0563222B2 (en)
JPS63305940A (en) Catalytic body for purifying exhaust gas
JPH01304048A (en) Catalyst for purifying exhaust gas
JPH074527B2 (en) Combustible gas oxidation catalyst
JPH02115041A (en) Perovskite oxidation catalyst
JPH0377642A (en) Catalyst for purification of exhaust gas
JPS6182843A (en) Catalytic body for purifying waste gas
JPH04371229A (en) Catalyst composition
JPS63158131A (en) Catalyst for purifying exhaust gas
JPH02149346A (en) Exhaust gas purifying catalyst
JPH01270943A (en) Perovskite oxidation catalyst
JPS59222214A (en) Reducing method of nox
JPH05168937A (en) Exhaust gas purifying catalyst
JPH05253483A (en) Catalyst composition
JPH04367727A (en) Catalyst composition
JPH04367731A (en) Catalyst composition