JPS6182843A - Catalytic body for purifying waste gas - Google Patents

Catalytic body for purifying waste gas

Info

Publication number
JPS6182843A
JPS6182843A JP59203448A JP20344884A JPS6182843A JP S6182843 A JPS6182843 A JP S6182843A JP 59203448 A JP59203448 A JP 59203448A JP 20344884 A JP20344884 A JP 20344884A JP S6182843 A JPS6182843 A JP S6182843A
Authority
JP
Japan
Prior art keywords
catalyst
composite oxide
exhaust gas
waste gas
noble metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59203448A
Other languages
Japanese (ja)
Other versions
JPH0464738B2 (en
Inventor
Koichi Tachibana
立花 弘一
Koji Yamamura
康治 山村
Satoshi Sekido
聰 関戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DOUDENSEI MUKI KAGOUBUTSU GIJUTSU KENKYU KUMIAI
Original Assignee
DOUDENSEI MUKI KAGOUBUTSU GIJUTSU KENKYU KUMIAI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DOUDENSEI MUKI KAGOUBUTSU GIJUTSU KENKYU KUMIAI filed Critical DOUDENSEI MUKI KAGOUBUTSU GIJUTSU KENKYU KUMIAI
Priority to JP59203448A priority Critical patent/JPS6182843A/en
Publication of JPS6182843A publication Critical patent/JPS6182843A/en
Publication of JPH0464738B2 publication Critical patent/JPH0464738B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE:To upgrade the low-temp. activity and the heat deteriorative resistance of the titled catalyst by forming the catalyst for purifying a waste gas from both a composite oxide catalyst consisting of two-component system of an oxide shown by the specified general formula plus SrTiO3 and a promotor consisting of noble metals. CONSTITUTION:A catalyst for purifying a waste gas is formed from both a composite oxide catalyst consisting of two-component system of an oxide shown by a formula (Me is Fe, Mn, Cr and V, 0<x<1.) plus SrTiO3 and a promotor consisting of noble metals. For example, the catalyst for purifying the waste gas is formed from both a noble metal catalyst layer 1 dispersed uniformly with an deposited with 6mg Pd catalyst on 0.5g alumina fiber (about 3mumphi Xabout <=10ml bulk) and a composite oxide catalyst layer 2 deposited similarly with 1.5g composite oxide consisting of 40mol% La0.35Sr0.65Co0.7Fe0.3O3 plus 60mol% SiTiO3 on 1.5g bulk.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、各種の燃焼機器から排出される排気ガス中の
有害ガス成分を浄化処理する触媒体に関するものである
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a catalyst body that purifies harmful gas components in exhaust gas discharged from various combustion equipment.

従来例の構成とその問題点 各種の燃焼機器(ガス・石油ストーブ、ボイラ−1動車
エンジンなど)から排出される排気ガスの主要な有害ガ
ス成分であるCoとNOxを同時に浄化処理する触媒と
して、ペロブスカイト型複合酸化物であるL a 1−
x S r 1+x Co 1 ++ x Me x 
03 (M eはFe、庵、Cr、Vから選ぶ一種の元
素、0くxく1)とSrTiO3とから成る2成分系の
複合酸化物触媒が提案されている。該触媒は前者の酸素
イオン導電性に基つく触媒作用を後者が増幅するという
原理に基づいていて、貴金属に匹敵する特性を示すほか
、耐熱性に富み、安価であるという優れた触媒であるが
、100℃前後における低温域の厘(媒活性が概して低
いという欠点を有していたつ発明の目的 本発明は、上記の問題にかんがみて、低温触媒活性を向
上させた優れた排気ガス浄化用触媒体を提供しようとす
るものである。
Conventional structure and problems As a catalyst that simultaneously purifies Co and NOx, which are the main harmful gas components of exhaust gas emitted from various combustion equipment (gas/oil stoves, boiler-1 vehicle engines, etc.), L a 1- which is a perovskite type complex oxide
x S r 1+x Co 1 ++ x Me x
A two-component composite oxide catalyst consisting of 03 (Me is an element selected from Fe, Cr, V, 0 x 1) and SrTiO3 has been proposed. This catalyst is based on the principle that the latter amplifies the catalytic action of the former based on oxygen ion conductivity, and is an excellent catalyst that exhibits properties comparable to those of precious metals, is highly heat resistant, and is inexpensive. Object of the Invention In view of the above problems, the present invention provides an excellent exhaust gas purifying catalyst with improved low-temperature catalyst activity. It is intended to provide a medium.

発明の構成 本発明は、La1−xSr1+xCo1−エMexO3
(MeはFe、Mn、Cr、Vから選ぶ一種の元素、 
O(x (1)とSrTiO3の2成分系からなる触媒
に、助触媒として貴金属を添加併用した構成をとり、低
温活性を大きく改善するとともに、耐熱劣化性を有し、
かつ安価な触媒体を実現するものである。  一実施例
の説明 第1図は実施例1を示す触媒体の概略断面図である。矢
印は排気ガスの流れを表わしている。1は貴金属触媒層
である。パラジウム触媒6〜をアルミナ繊維(約3μm
φ×約10−以下、バルクという)0.5Pに均一に分
散担持したものからなっている。2は複合酸化物触媒層
である。LaO,35S r o、 s 、Co o、
 7 F @ o 、 30340 fno 1%と5
rTi○36omo1%とからなる複合酸化物1.52
を同様に、1.52のバルクに担持したものである。な
お、いずれも、所定量になるように調製した触媒成分分
散ポリビニルアルコール溶液をバルクに含浸し、乾燥後
SOO℃30分焼成して作製したものであり、以下の実
施例等も同じ方法で作製した。
Structure of the Invention The present invention provides La1-xSr1+xCo1-eMexO3
(Me is an element selected from Fe, Mn, Cr, and V,
The catalyst consists of a two-component system of O(x (1) and SrTiO3, with the addition of noble metals as a co-catalyst, which greatly improves low-temperature activity and has heat deterioration resistance.
Moreover, an inexpensive catalyst body can be realized. Description of one embodiment FIG. 1 is a schematic sectional view of a catalyst body showing a first embodiment. The arrows represent the flow of exhaust gas. 1 is a noble metal catalyst layer. Palladium catalyst 6~ is mixed with alumina fiber (approximately 3μm
The material is uniformly dispersed and supported on 0.5P (hereinafter referred to as bulk). 2 is a composite oxide catalyst layer. LaO, 35S r o, s, Co o,
7 F@o, 30340 fno 1% and 5
Composite oxide 1.52 consisting of rTi○36omo1%
Similarly, the bulk of 1.52 is supported. All of these samples were prepared by impregnating the bulk with a catalyst component-dispersed polyvinyl alcohol solution prepared to a predetermined amount, drying, and then baking at SOO℃ for 30 minutes.The following examples were also prepared using the same method. did.

第2図は実施例2を示す。3は実施例1で使用した複合
酸化物0.376Fとパラジウム触媒6■からなる均一
な混合物を0.5 fのバルクに担持してなる触媒層、
4は複合酸化物1.1261Fを1.61のバルクに担
持してなる触媒層をそれぞれ表わす。
FIG. 2 shows Example 2. 3 is a catalyst layer formed by supporting a homogeneous mixture of 0.376F of the composite oxide used in Example 1 and 6cm of palladium catalyst on a bulk of 0.5F;
4 represents a catalyst layer formed by supporting a composite oxide of 1.1261F on a bulk of 1.61.

第3図は実施例3を示す。この場合は触媒層全体が複合
酸化物1.67とパラジウム触媒6ηからなる均一な混
合物を2fのバルクに担持したものになっている。
FIG. 3 shows Example 3. In this case, the entire catalyst layer is made up of a 2f bulk supported on a homogeneous mixture consisting of 1.67% of the composite oxide and 6η of the palladium catalyst.

従来例として、複合酸化物のみ1.52を22のバルク
に同様にして担持したものを作製した。
As a conventional example, a composite oxide of 1.52 was similarly supported on a bulk of 22.

次にこれらの触媒がもつ特性を示す。上に述べた構成に
なる触媒体を内径25調の石英ガラス管の反応容器に充
填し、電気炉内に設置して温度制御を行ないつつ触媒活
性を測定した。反応ガスにはCo 150ppm、 N
o240ppm、 N2残部からなる均一混合ガスを用
い、空間速度a、oooh  て触媒層に供給した。ガ
スの流れの方向は第1図等に示す矢印の向きで示す方向
である。第4図にCo除去率、第5図にNo生成率、第
6図にN2生成率をそれぞれ示す。
Next, we will show the characteristics of these catalysts. The catalyst body having the above-mentioned structure was filled into a reaction vessel made of a quartz glass tube with an inner diameter of 25 mm, and placed in an electric furnace to measure the catalytic activity while controlling the temperature. The reaction gas contains Co 150ppm, N
A homogeneous mixed gas consisting of O240ppm and the remainder N2 was supplied to the catalyst layer at a space velocity of a, oooh. The direction of gas flow is the direction indicated by the arrows shown in FIG. 1 and the like. FIG. 4 shows the Co removal rate, FIG. 5 shows the No production rate, and FIG. 6 shows the N2 production rate.

なお、Co除去率は (入ロCO濃度−出口CO濃度)/入口CO濃度×1o
O(憐、・・・・−(1) No生成率は 出口No濃度/入口N024度×100(絢  ・・・
・・・ (匂N2生成率は (入口NOx濃度−出口NOx濃度)/入口N○X濃度
×100(憐・・・・・・ (3) (但し、NoXia度=NOj3度十N○2儂度)てそ
れぞれ求めた。これらの諸特性のデータからも明らかな
ように、本発明になる触媒体はいずれも侵れた活性を示
すとともに、熱的にも安定した特性を示している。従来
例では1oo〜2Qo℃の活性が低い。また、図中、パ
ラジウム触媒(パラジウム触媒6 rrqを21のバル
クに前記の方法で担持)のみの特性も同時に示しだが、
全体に活性が低く、かつ高温で活性低下がみられる。活
性を向上させるためにはパラジウム触媒の量を増す必要
があるが、高価になることと、担持密度が増して焼結の
可能性が高まり、高温域での特性低下に結びつくことの
不利を伴なう。本発明になる触媒体においては、排気ガ
ス流路の上流側に低温活性に優れる貴金属触媒を位置さ
せることにより、低温で酸化反応が生じて反応熱が生じ
ると下流側に位置する複合酸化物が加熱され、複合酸化
物自身の触媒作用が引き続いて発現するという一連の触
媒作用を可能にしているものである。実施例2゜3のよ
うに複合酸化物と貴金属の混在する場所においても同様
のサイクルが生じている。従って、本触媒体においては
、全面反応を生ずるために必要な貴金属触媒は微量です
み、経済的にも有利なものになっている。また反応で生
じた熱は触媒層にほぼ均一に分散するため、貴金属触媒
自身の焼結度合が軽減される効果も生じ、複合酸化物の
高耐熱性と合わせて、熱劣化の防止、長寿命化も可能に
なっている。
The Co removal rate is (inlet CO concentration - outlet CO concentration)/inlet CO concentration x 1o
O (Ren,...-(1) No generation rate is outlet No concentration/inlet N024 degrees x 100 (Ayana...
... (The odor N2 production rate is (inlet NOx concentration - outlet NOx concentration) / inlet N○X concentration × 100 (mercy...) (3) (However, NoXia degree = NOj3 degrees ten N○2 儂As is clear from the data on these various properties, all of the catalyst bodies of the present invention exhibit superior activity and thermally stable properties. In the example, the activity is low at 1oo~2Qo℃.The figure also shows the characteristics of only the palladium catalyst (palladium catalyst 6rrq supported in the bulk of 21 by the above method).
Overall activity is low, and activity decreases at high temperatures. In order to improve the activity, it is necessary to increase the amount of palladium catalyst, but this comes with the disadvantages of being expensive and increasing the loading density, increasing the possibility of sintering, leading to deterioration of properties at high temperatures. Now. In the catalyst body of the present invention, by positioning a noble metal catalyst with excellent low-temperature activity on the upstream side of the exhaust gas flow path, when an oxidation reaction occurs at low temperature and reaction heat is generated, the composite oxide located on the downstream side This enables a series of catalytic actions in which the complex oxide itself is heated and its own catalytic action is subsequently developed. A similar cycle occurs also in a place where a composite oxide and a noble metal coexist as in Example 2.3. Therefore, in this catalyst body, only a very small amount of precious metal catalyst is required to cause a full-scale reaction, making it economically advantageous. In addition, the heat generated by the reaction is almost uniformly dispersed in the catalyst layer, which has the effect of reducing the degree of sintering of the precious metal catalyst itself, which, together with the high heat resistance of the composite oxide, prevents thermal deterioration and extends the lifespan. It is also possible to

次に、この熱安定性を比較したデータを示す。Next, data comparing this thermal stability will be shown.

前記の各触媒体を反応容器に入れて電気炉内に設置し、
前記混合ガスを流しながら、触媒層の温度を100℃*
 900 ’Cと交互に変える試験をSOOサイクル行
なった。
Each of the above-mentioned catalyst bodies is placed in a reaction container and placed in an electric furnace,
While flowing the mixed gas, the temperature of the catalyst layer was set to 100°C*
Tests were performed alternating with 900'C in SOO cycles.

100サイクル毎に20C)Cにおける触媒活性を測定
し、CO除去率を代表例として第7図に示した。パラジ
ウム触媒のみの場合にはごく初期に大きく活性が低下す
ることがわかるが、実施例の各触媒体は非常に安定した
性能を示している。
The catalytic activity at 20C)C was measured every 100 cycles, and the CO removal rate is shown in FIG. 7 as a representative example. In the case of using only a palladium catalyst, it can be seen that the activity decreases significantly in the very early stage, but each catalyst body of Examples shows very stable performance.

以上のように、本発明になる触媒体は、低温活性が優れ
るとともに、熱安定性にも優れた性質を示す。実施例で
は、複合酸化物としてMe = F eの場合を示しだ
が、Mn、Cr、Vの場合にも同様の結果を得ることが
できる。貴金属触媒として白金を用いても同様である。
As described above, the catalyst of the present invention exhibits excellent low-temperature activity and excellent thermal stability. In the examples, the case where Me=Fe is used as the composite oxide is shown, but similar results can be obtained with Mn, Cr, and V. The same holds true when platinum is used as the noble metal catalyst.

貴金属触媒も微量でよく、経済性にも富んでいる。担体
もバルクに限定するものではなく、セラミック、金属な
ど、用途により材質、形状、担持法を適宜選択すること
ができる。また、実施例では貴金属触媒を均一に分散担
持しだが、排気ガス流路の上流側の貴金属濃度を高く、
下流側になるほど低濃度になるような構成をと9、特性
を損わずに経済性を高めることもできる。
Only a small amount of precious metal catalyst is required, making it highly economical. The carrier is not limited to bulk, and the material, shape, and supporting method can be appropriately selected depending on the purpose, such as ceramic or metal. In addition, although the noble metal catalyst was uniformly dispersed and supported in the example, the noble metal concentration on the upstream side of the exhaust gas flow path was increased.
By creating a structure in which the concentration decreases toward the downstream side9, it is also possible to improve economic efficiency without impairing the characteristics.

発明の効果 複合酸化物を主触媒とし、微量の貴金属触媒を貴金属触
媒が排気ガス流路の上流側に位置するように添加併用し
た構成になる触媒体は、低温活性、熱安定性、経済性に
優れた性能を発揮するものである。
Effects of the Invention The catalyst body, which is composed of a composite oxide as the main catalyst and a trace amount of a precious metal catalyst added so that the precious metal catalyst is located upstream of the exhaust gas flow path, has low-temperature activity, thermal stability, and economic efficiency. It exhibits excellent performance.

【図面の簡単な説明】[Brief explanation of drawings]

第1図から第3図は本発明の異なる実施例の触媒体の概
略断面図、第4図は温度とCO除去率の関係図、第5図
は温度とNo生成率の関係図、第6図は温度とN2生成
率の関係図、第7図はC0除去率で示した熱安定性を表
わす図である。 1・・・・・・貴金属触媒層、2,4・・・・・・複合
酸化物触媒層、3・・・・・・貴金属触媒と複合酸化物
触媒の混合層。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 1   ? 第3図 第4図 200    400    600    800 
   10θO第5図 第6図 2(1θm     m     gtlO100t)
温 斐 じり 第7図 サイクル
1 to 3 are schematic cross-sectional views of catalyst bodies of different embodiments of the present invention, FIG. 4 is a relationship between temperature and CO removal rate, FIG. 5 is a relationship between temperature and No production rate, and FIG. The figure is a diagram showing the relationship between temperature and N2 production rate, and Figure 7 is a diagram showing thermal stability expressed in terms of C0 removal rate. 1... Noble metal catalyst layer, 2, 4... Composite oxide catalyst layer, 3... Mixed layer of noble metal catalyst and composite oxide catalyst. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 1? Figure 3 Figure 4 200 400 600 800
10θOFigure 5Figure 6Figure 2 (1θm m gtlO100t)
Onbijiri Figure 7 Cycle

Claims (4)

【特許請求の範囲】[Claims] (1)一般式La_(_1_−_x_)_/_2Sr_
(_1_+_x_)_/_2Co_1_−_xMe_x
O_3(MeはFe、Mn、Cr、Vから選ぶ一種の元
素、0<x<1)で表わされる酸化物とSrTiO_3
との2成分系からなる複合酸化物触媒と貴金属からなる
助触媒を併用することを特徴とする排気ガス浄化触媒体
(1) General formula La_(_1_-_x_)_/_2Sr_
(_1_+_x_)_/_2Co_1_-_xMe_x
Oxide represented by O_3 (Me is an element selected from Fe, Mn, Cr, and V, 0<x<1) and SrTiO_3
An exhaust gas purification catalyst body characterized in that a composite oxide catalyst consisting of a two-component system of and a co-catalyst consisting of a noble metal are used together.
(2)排気ガス流路の上流側に貴金属触媒が、下流側に
複合酸化物触媒が互いに接して位置する構成になること
を特徴とする特許請求の範囲第1項記載の排気ガス浄化
触媒体。
(2) The exhaust gas purification catalyst body according to claim 1, characterized in that the noble metal catalyst is located on the upstream side of the exhaust gas flow path, and the composite oxide catalyst is located in contact with each other on the downstream side of the exhaust gas flow path. .
(3)触媒体の排気ガス流路の上流側に位置する部分が
複合酸化物触媒と貴金属触媒の混合層から成り、それよ
り下流側が複合酸化物触媒のみから成る構成になること
を特徴とする特許請求の範囲第1項記載の排気ガス浄化
触媒体。
(3) The part of the catalyst body located on the upstream side of the exhaust gas flow path is composed of a mixed layer of a composite oxide catalyst and a noble metal catalyst, and the part downstream thereof is composed of only a composite oxide catalyst. An exhaust gas purification catalyst body according to claim 1.
(4)全体が複合酸化物触媒と貴金属触媒の混合体から
構成されることを特徴とする特許請求の範囲第1項記載
の排気ガス浄化触媒体。
(4) The exhaust gas purification catalyst body according to claim 1, characterized in that the entire body is composed of a mixture of a composite oxide catalyst and a noble metal catalyst.
JP59203448A 1984-09-28 1984-09-28 Catalytic body for purifying waste gas Granted JPS6182843A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59203448A JPS6182843A (en) 1984-09-28 1984-09-28 Catalytic body for purifying waste gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59203448A JPS6182843A (en) 1984-09-28 1984-09-28 Catalytic body for purifying waste gas

Publications (2)

Publication Number Publication Date
JPS6182843A true JPS6182843A (en) 1986-04-26
JPH0464738B2 JPH0464738B2 (en) 1992-10-15

Family

ID=16474283

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59203448A Granted JPS6182843A (en) 1984-09-28 1984-09-28 Catalytic body for purifying waste gas

Country Status (1)

Country Link
JP (1) JPS6182843A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61287427A (en) * 1985-06-12 1986-12-17 Ishikawajima Harima Heavy Ind Co Ltd Denitrating apparatus
JPH01168343A (en) * 1987-12-22 1989-07-03 Toyota Central Res & Dev Lab Inc Exhaust gas purifying catalyst
US5318937A (en) * 1990-06-21 1994-06-07 The United States Of America As Represented By The Administrator Of The U.S. Environmental Protection Agency Ruthenium-containing perovskite materials, catalysts and methods

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61287427A (en) * 1985-06-12 1986-12-17 Ishikawajima Harima Heavy Ind Co Ltd Denitrating apparatus
JPH01168343A (en) * 1987-12-22 1989-07-03 Toyota Central Res & Dev Lab Inc Exhaust gas purifying catalyst
JPH0586258B2 (en) * 1987-12-22 1993-12-10 Toyoda Chuo Kenkyusho Kk
US5318937A (en) * 1990-06-21 1994-06-07 The United States Of America As Represented By The Administrator Of The U.S. Environmental Protection Agency Ruthenium-containing perovskite materials, catalysts and methods

Also Published As

Publication number Publication date
JPH0464738B2 (en) 1992-10-15

Similar Documents

Publication Publication Date Title
JPS58156350A (en) Apparatus for purifying exhaust gas
JPS6135897B2 (en)
JPH0262301B2 (en)
US4448756A (en) Process for treatment of exhaust gases
EP2452746B1 (en) Particulate combustion catalyst
US20100047143A1 (en) Oxidation catalyst
JPS6182843A (en) Catalytic body for purifying waste gas
JP2004188388A (en) Filter for cleaning diesel exhaust gas and its production method
JPS6051543A (en) Oxidizing catalyst
JPH03106446A (en) Catalyst for purifying exhaust gas and preparation thereof
JP2004082000A (en) Exhaust gas cleaning catalyst
JPH05168950A (en) Combustion exhaust gas purification catalyst
JP3499350B2 (en) Exhaust gas purification method for internal combustion engine
JPS6118434A (en) Catalytic body for purifying exhaust gas
JP3338167B2 (en) Method for removing CO from lean combustion gas engine exhaust gas
JPH10309462A (en) Nmhc oxidation catalyst in combustion waste gas and removing method thereof
JPS6082138A (en) Catalyst body for purifying waste gas
JPS62250947A (en) Catalyst for simultaneous treatment of nitrogen oxide and carbon monoxide
JP2002331241A (en) Exhaust gas cleaning catalyst and exhaust gas cleaning material
JPH05253483A (en) Catalyst composition
JPS58122043A (en) Oxidation catalyst body
JPS63310615A (en) Particulate collecting filter
US20050220678A1 (en) Exhaust gas clarification catalyst carrying article
JPH01317541A (en) Oxidizing catalyst
JPH0549929A (en) Catalyst for purifying exhaust gas