JPS63157811A - Converter for preventing corrosion of furnace wall by secondary combustion - Google Patents

Converter for preventing corrosion of furnace wall by secondary combustion

Info

Publication number
JPS63157811A
JPS63157811A JP61303366A JP30336686A JPS63157811A JP S63157811 A JPS63157811 A JP S63157811A JP 61303366 A JP61303366 A JP 61303366A JP 30336686 A JP30336686 A JP 30336686A JP S63157811 A JPS63157811 A JP S63157811A
Authority
JP
Japan
Prior art keywords
converter
exhaust gas
blowing
refractory
carbonaceous material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61303366A
Other languages
Japanese (ja)
Other versions
JP2541200B2 (en
Inventor
Takeyuki Hirata
平田 武行
Minoru Ishikawa
稔 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP30336686A priority Critical patent/JP2541200B2/en
Publication of JPS63157811A publication Critical patent/JPS63157811A/en
Application granted granted Critical
Publication of JP2541200B2 publication Critical patent/JP2541200B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • Y02W30/54

Landscapes

  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Abstract

PURPOSE:To prevent the corrosion of refractory in inner wall of converter caused by endothermic reaction between CO2 and C in high temp. exhaust gas, by lining the part exposed to the high temp. gas in the inner wall of converter with a carbonaceous material or further arranging tuyeres for blowing carbon powder. CONSTITUTION:Pre-refined molten iron and scrap are charged in the converter 1 providing an oxygen top blowing lance 5 and bottom blowing tuyeres 6, to produce molten steel through decarbonizing reaction by the oxygen blowing. In this case, in order to prevent the corrosion of refractory in the inner wall of converter caused by high temp. exhaust gas, the carbon powder, such as coke, coal, etc., is lined together with binder on the part exposed to the highest temp. in the inner wall of converter, to form carbon lining 2. Or further, the tuyeres 4 for blowing carbon powder are arranged to blow the carbon powder in the high temp. exhaust gas, CO2 in the exhaust gas is reacted with the carbon material in the lining 2 or the carbon material from the tuyeres 4 and the endothermic reaction of CO2 + C 2CO is generated caused to lower the exhaust gas temp., and so the corrosion of refractory in the furnace is prevented and the CO concentration in recovered exhaust gas is increased, to recover as high caloric gas.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 この発明は、炉壁耐火物の溶損を防止すると共に、カロ
リーの高い排ガスの回収を可能にした転炉に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a converter that prevents melting of furnace wall refractories and enables recovery of high-calorie exhaust gas.

〈背景技術〉 転炉製鋼法の発達に伴い鉄鋼産業に“銑鋼−貫体制”が
確立されて久しく、鋼の生産能率は飛躍的な向上を遂げ
てきたが、近年、世界的に景気の低迷期を迎えるに及ん
で綱の需要も一次の無制限状態から着実な安定化傾向を
たどるようになってきた。
<Background technology> With the development of the converter steel manufacturing method, the "pig steel throughput system" was established in the steel industry for a long time, and steel production efficiency has improved dramatically. However, in recent years, the global economy has As we entered a period of stagnation, the demand for ropes began to follow a steady trend of stabilization from the initially unlimited state.

このようなことから、最近、高炉銑の生産量抑制策が採
られる傾向となり、同時に布中スクラップが大量に出回
ってその価格も安定化してきたこともあって、転炉製鋼
原料としてのスクラップの使用割合を増加し、更に鉄鉱
石やマンガン鉱石をも配合する転炉操業法の確立が検討
され始めてきた。
For these reasons, there has been a recent tendency to take measures to control the production of blast furnace pig iron, and at the same time, a large amount of cloth scrap has become available and its price has stabilized, resulting in the use of scrap as a raw material for converter steelmaking. Studies have begun to consider establishing a converter operating method that increases the proportion of iron ore used and also incorporates iron ore and manganese ore.

中でも、溶銑処理により溶銑の熱源が低下した場合のス
クラップ比率上昇対策や鉄鉱石、マンガン鉱石等の増配
対策等としての“転炉への熱付与技術”が注目を集めて
おり、特に「転炉における脱炭操業時に発生したCOガ
スを炉内でCO□ガスにまで燃焼させる“二次燃焼法”
によって所要熱量を確保するのが最も有効かつ実用的で
ある」として、通常の主送酸ノズルの他にCOガス燃焼
用の02送給ノズルを配設した上吹ランスを用いて転炉
操業を行う方法や、炉肩部(絞り部)にCOガス燃焼用
の02送給ノズルを斜め下方に向けて配置した転炉を使
用する方法等、“二次燃焼法”に関する様々な提案がな
されている。
Among these, "heat application technology to converter" is attracting attention as a measure to increase the scrap ratio when the heat source of hot metal decreases due to hot metal processing and as a measure to increase the production of iron ore, manganese ore, etc. "Secondary combustion method" in which the CO gas generated during decarburization operations is combusted into CO□ gas in the furnace.
It is most effective and practical to secure the required amount of heat by Various proposals have been made regarding the "secondary combustion method," including a method using a converter in which the 02 feed nozzle for CO gas combustion is placed diagonally downward on the shoulder (throttle part) of the furnace. There is.

しかしながら、上述のような“二次燃焼法”を採用する
と +al  炉内での排ガス温度が上昇して耐火物の溶損
が増加する、 (bl  排ガス中のCO含有量が低下するためエネル
ギー回収の面で不利である、 等の新たな問題が生じ、操業コストの低減が厳しく問わ
れる転炉製鋼において上記“二次燃焼法”の実用化が達
成されたとは決して言い難い状況にあった。
However, if the above-mentioned "secondary combustion method" is adopted, the temperature of the exhaust gas in the furnace will increase and the erosion of the refractories will increase. New problems arose, such as disadvantageous aspects, and it was difficult to say that the above-mentioned "secondary combustion method" had been put to practical use in converter steelmaking, where reductions in operating costs were a critical issue.

しかも、このような“二次燃焼法”を積極的に促進しな
い場合でも、操業時の転炉自排ガス温度は1800℃前
後となるためにやはり耐火物溶損の懸念は絶えず付きま
とっており、その十分な対策が待ち望まれていたのであ
る。
Furthermore, even if such a "secondary combustion method" is not actively promoted, the temperature of the converter's own exhaust gas during operation is around 1800°C, so there is always concern about refractory erosion. Sufficient countermeasures have been awaited.

〈問題点を解決するための手段〉 本発明者等は、上述のような観点から、通常操業時はも
とより、二次燃焼比率を上昇させた操業時においても炉
内耐火物の溶損を殆んど生じることがなく、しかもエネ
ルギー回収率の点でも十分に満足し得る転炉を提供すべ
く鋭意研究を重ねた結果、以下に示されるような知見を
得たのである。
<Means for Solving the Problems> From the above-mentioned viewpoint, the present inventors have made it possible to minimize the erosion of refractories in the furnace not only during normal operation but also during operation with an increased secondary combustion ratio. As a result of extensive research in order to provide a converter that would not cause this to occur and would also be fully satisfactory in terms of energy recovery rate, the following findings were obtained.

即ち、 A)何れの形式の転炉であっても同様であるが、炉内高
温排ガスが直接接触する部位の耐火物内面に炭素質物質
をコーティングすると、高温排ガス中のCO,が前記炭
素質物質コーティング中のCと C+CO2→ 2  C0 なる吸熱反応を起こして耐火物近傍の温度を低下させる
こと、 B) この吸熱反応による耐火物近傍の温度低下1よ耐
火物溶損の防止に十分なものであり、これによって二次
燃焼比率を上昇させた転炉操業を行ったとしても炉内耐
火物の溶損は顕著に抑制されること、 C)  Lかも、前記吸熱反応によって排ガス中のco
ガスが増加するので排ガスのカロリーが上昇し、エネル
ギー回収の点からも極めて有利となること、 D) 更に、耐火物内面に炭素質物質をコーティングす
ることに加えて転炉の焼目下部に羽口を設け、転炉操業
時に該羽目から炭素質物質粉末を吹き込むと、この炭素
質物質粉末中のCも高温排ガス中のCOtと前記式で示
した吸熱反応を起こして炉内耐火物近傍の温度を低下す
るので、耐火物の溶損防止効果が一段と向上し、排ガス
のカロリーも一層上昇すること。
That is, A) The same applies to any type of converter, but if the inner surface of the refractory in the area that is in direct contact with the high-temperature exhaust gas in the furnace is coated with a carbonaceous material, the CO in the high-temperature exhaust gas will be absorbed by the carbonaceous material. The temperature near the refractory is lowered by causing an endothermic reaction with C in the substance coating: C + CO2 → 2 C0, and B) The temperature reduction near the refractory due to this endothermic reaction is sufficient to prevent corrosion of the refractory. Therefore, even if the converter is operated with an increased secondary combustion ratio, the melting loss of the refractories in the furnace will be significantly suppressed.
D) Furthermore, in addition to coating the inner surface of the refractory with a carbonaceous material, the calorie content of the exhaust gas increases due to the increase in gas, which is extremely advantageous from the point of view of energy recovery. When a port is provided and carbonaceous material powder is injected through the port during converter operation, the carbon in the carbonaceous material powder also causes an endothermic reaction with COt in the high-temperature exhaust gas as shown in the above equation, causing the carbonaceous material near the refractories in the furnace to react. Since the temperature is lowered, the effect of preventing melting and damage of refractories is further improved, and the calorie content of exhaust gas is further increased.

この発明は、上記知見に基づいてなされたものであり、 「第1図に示されるように、炉壁1内面の高温ガスに曝
される部位を炭素質物質でコーティング2して転炉(転
炉の基本的な形式は特定されるものではない)を構成す
るか、或いは第2図に示されるように、炉壁1内面の高
温ガスに曝される部位を炭素質物質でコーティング2す
ると共に、炉口3の下部に炭素質物質粉末吹き込み用羽
目4を設けて転炉を構成することにより、炉内耐火物の
溶損を効果的に防止し、かつカロリーの高い排ガスの回
収を可能ならしめた」点、 に特徴を有するものである。
This invention has been made based on the above knowledge, and is based on the following: ``As shown in Fig. 1, the area of the inner surface of the furnace wall 1 exposed to high temperature gas is coated with a carbonaceous material 2 to create a converter (converter). (The basic type of the furnace is not specified) or, as shown in FIG. By configuring a converter by providing a slat 4 for blowing carbonaceous material powder at the lower part of the furnace mouth 3, it is possible to effectively prevent the melting of the refractories in the furnace and to recover high-calorie exhaust gas. It is characterized by the following points:

ここで、第1図並びに第2図において、符号5で示され
るものは上吹酸素ランス、6は底吹羽口、7はスラグ、
そして8は溶銑又は溶鋼をそれぞれ示す。
Here, in FIGS. 1 and 2, the reference numeral 5 indicates a top-blown oxygen lance, 6 indicates a bottom-blown tuyere, 7 indicates a slag,
And 8 indicates molten pig iron or molten steel, respectively.

なお、前記「炉壁内面の高温ガスに曝される部位」とは
格別に特定されるものではないが、通常は第1図或いは
第2図で示したような炉口下部付近がこれに該当する。
Note that the above-mentioned "area exposed to high-temperature gas on the inner surface of the furnace wall" is not particularly specified, but usually corresponds to the area near the bottom of the furnace mouth as shown in Figures 1 and 2. do.

また、コーティング層を形成する炭素質物質としては−
クスや石炭粉等をあげることができ、コーティングには
、前記炭素質物質粉末をバインダー及び水分と混合した
後吹き付けして炉壁を構成する耐火物の所要部位内面に
塗布する等の手段を採用すれば良い。そして、炭素質物
質吹き込み用羽口から吹き込む炭素質物質としてはコー
クス粉或いは石炭粉等の平均粒径:0、125n+m程
度の粉末が好適である。
In addition, the carbonaceous material forming the coating layer is -
For coating, the carbonaceous material powder is mixed with a binder and water, and then sprayed to apply it to the inner surface of the required parts of the refractory material that makes up the furnace wall. Just do it. As the carbonaceous material to be blown in from the tuyeres for blowing carbonaceous material, powders such as coke powder or coal powder having an average particle size of about 0.125n+m are suitable.

ところで、炉口の下部に炭素質物質吹き込み用羽目を設
ける場合には、第2図で示す炉底からの高さ[HL)を 0.6Hv≦HL≦0.9Hv (但し、Hvは炉底から炉口までの高さ)の範囲とし、
また該羽目の水平角度〔θ〕を一156≦ θ ≦ 1
5゜ 範囲に設定するのが良い。なぜなら、炭素質物質吹き込
み用羽口の高さくHL)が炉底から炉口までの高さくH
V)の0.6倍未満であったり、羽目の水平角度〔θ〕
が一15″を下回ると、排ガス温度の低下によって溶鉄
・スラグへの熱供給が不足がちとなり、一方、前記高さ
HLが0.9Hvを越えたり、〔θ〕が15°を上回る
と炉内排ガス温度を低下させる効果が不十分となって羽
口設置に見合う耐火物溶損防止効果の向上が期待できな
くなるからである。
By the way, when providing a wall for blowing carbonaceous material at the lower part of the furnace mouth, the height [HL] from the hearth bottom shown in Fig. 2 should be set to 0.6Hv≦HL≦0.9Hv (however, Hv is the height from the hearth bottom (height from to the mouth of the furnace),
Also, the horizontal angle [θ] of the grain is -156≦θ≦1
It is best to set it within the 5° range. This is because the height of the tuyere for blowing carbonaceous material (HL) is the height from the furnace bottom to the furnace mouth (H).
V) is less than 0.6 times, or the horizontal angle of the grain [θ]
If the height HL exceeds 0.9Hv or [θ] exceeds 15°, the heat supply to the molten iron and slag tends to be insufficient due to the drop in exhaust gas temperature.On the other hand, if the height HL exceeds 0.9Hv or [θ] exceeds 15°, This is because the effect of lowering the exhaust gas temperature will be insufficient, and it will no longer be possible to expect an improvement in the effect of preventing corrosion of refractories commensurate with the installation of tuyeres.

次いで、この発明を実施例により具体的に説明する。Next, the present invention will be specifically explained with reference to Examples.

〈実施例〉 実施例 1 第1図に示すような10トン上・底側吹きの複合吹錬転
炉の炉壁内面の耐火物表面に、炉口から’A Hvの深
さに亘って5Mの厚さでC:85%。
<Example> Example 1 The refractory surface of the inner surface of the furnace wall of a 10 ton top/bottom blowing combined blowing converter as shown in Fig. C at thickness: 85%.

Sing:5.2%及びAβgos:3.1%を含む炭
素質粉末を塗布し、この転炉を使用して 溶銑量:8000hg、 溶銑温度:1280〜1295℃、 使用上吹酸素ランス:12φ×6孔×15°、吹錬時間
:15分 なる条件で脱燐溶銑の脱炭処理を行った。
Carbonaceous powder containing Sing: 5.2% and Aβgos: 3.1% was applied, and this converter was used to produce hot metal amount: 8000hg, hot metal temperature: 1280-1295℃, top-blown oxygen lance used: 12φ× Dephosphorization hot metal was decarburized under the following conditions: 6 holes x 15°, blowing time: 15 minutes.

一方、比較のため、炭素質物質粉末を内面に塗布しなか
った以外は上記と同様の従来の上・底側吹き複合吹錬転
炉を使用し、同様条件で脱燐溶銑の脱炭処理をも実施し
た。
On the other hand, for comparison, a conventional top/bottom blowing combined blowing converter similar to the one described above was used, except that the carbonaceous material powder was not applied to the inner surface, and decarburization of dephosphorized hot metal was carried out under the same conditions. was also carried out.

このときの焼目下部における耐火物表面最高到達温度、
耐火物の溶損量、並びに炉内排ガス成分の測定値を第1
表に示した。なお、耐火物の表面温度は、耐火物表面よ
り3nの深さに熱電対をセットして測定した。
At this time, the maximum temperature reached on the refractory surface at the bottom of the grill,
The amount of erosion of the refractories and the measured values of the exhaust gas components in the furnace are
Shown in the table. The surface temperature of the refractory was measured by setting a thermocouple at a depth of 3n from the surface of the refractory.

第1表に示される結果からも、炭素質物質を炉壁内面に
コーティングした本発明に係る転炉を使用すると、従来
の転炉を使用した場合に比べて耐火物の溶損量を著しく
低減できることが明らかである。
The results shown in Table 1 also show that when the converter according to the present invention, in which the inner surface of the furnace wall is coated with carbonaceous material, is used, the amount of corrosion of refractories is significantly reduced compared to when a conventional converter is used. It is clear that it can be done.

実施例 2 第1図に示すような10トン上・底側吹きの複合吹錬転
炉の炉壁内面の耐火物表面に、炉口から’A Hvの深
さに亘って3酊の厚さでC:85%。
Example 2 A 10-ton top/bottom blowing combined blowing converter as shown in Fig. 1 was coated with a refractory material on the inner surface of the furnace wall to a depth of 300 mm from the furnace mouth to a depth of 'A Hv. C: 85%.

SiO□:5.2%及びAβgozF3.1%を含む炭
素質粉末を塗布すると共に、炉の上部に炭素質物質粉末
吹き込み用羽目を設置しくHL=0.8HV、θ=10
°)、この転炉を使用して炭素質物質粉末吹き込み用羽
口から粉コークス(−60メツシユ、C量:88%)を
吹き込みつつ(吹き込み量:60kg)、溶銑量:80
00kf、 溶銑温度:1290〜1310℃、 使用上吹酸素ランス:14φ×3孔×10°及び9φ×
6孔×20°1 吹錬時間:15分 なる条件で脱燐溶銑の脱炭処理を行った。
A carbonaceous powder containing 5.2% SiO□ and 3.1% AβgozF was applied, and a slat for blowing carbonaceous material powder was installed in the upper part of the furnace.HL=0.8HV, θ=10
), using this converter, while blowing coke powder (-60 mesh, C amount: 88%) from the tuyere for blowing carbonaceous material powder (injection amount: 60 kg), hot metal amount: 80 kg.
00kf, hot metal temperature: 1290~1310℃, top-blown oxygen lance used: 14φ x 3 holes x 10° and 9φ x
Dephosphorization hot metal was decarburized under the following conditions: 6 holes x 20° 1 blowing time: 15 minutes.

一方、比較のため、炭素質物質粉末を内面に塗布せず、
しかも炭素質物質粉末吹き込み用羽目を設置しなかった
以外は上記と同様の従来の上・底側吹き複合吹錬転炉を
使用し、同様条件で脱燐溶銑の脱炭処理をも実施した。
On the other hand, for comparison, without applying carbonaceous material powder to the inner surface,
Moreover, the same conventional top/bottom side blowing combined blowing converter as above was used, except that no lining for blowing carbonaceous material powder was installed, and the decarburization treatment of dephosphorized hot metal was also carried out under the same conditions.

このときの短目下部における耐火物表面最高到達温度、
耐火物の溶損量、並びに炉内排ガス成分の測定値を第2
表に示した。なお、耐火物の表面温度は、実施例1と同
様、耐火物表面より3籠の深さに熱電対をセットして測
定した。
At this time, the maximum temperature reached on the refractory surface at the lower part of the short side,
The measured values of the amount of corrosion of the refractory and the components of the exhaust gas in the furnace are
Shown in the table. Note that the surface temperature of the refractory was measured by setting a thermocouple at a depth of three cages from the surface of the refractory, as in Example 1.

第2表に示される結果からも、炭素質物質を炉壁内面に
コーティングすると共に、炭素質物質粉末吹き込み用羽
目を設置した本発明に係る転炉を使用すると、従来の転
炉を使用した場合に比べて耐火物の溶損量を著しく低減
できるばかりか、同時に排ガス中のCO量も上昇させる
ことができ、エネルギー回収面での効果も十分に期待し
得ることも明らかである。
The results shown in Table 2 also show that when using the converter according to the present invention, in which the inner surface of the furnace wall is coated with carbonaceous material and a siding for blowing carbonaceous material powder is used, compared to using the conventional converter. It is clear that not only can the amount of erosion of the refractory be significantly reduced compared to the previous method, but also the amount of CO in the exhaust gas can be increased at the same time, and that a sufficient effect in terms of energy recovery can be expected.

実施例 3 第1図に示すような10トン上・底側吹きの複合吹錬転
炉の炉壁内面の耐火物表面に、炉口から%Hvの深さに
亘って7鶴の厚さでC:85%。
Example 3 The refractory surface of the inner surface of the furnace wall of a 10 ton top/bottom blowing combined blowing converter as shown in Fig. 1 was coated with a thickness of 7 mm from the furnace mouth to a depth of %Hv. C: 85%.

5iOz:5.2%及びAJzOa:3.1%を含む炭
素質粉末を塗布した。
A carbonaceous powder containing 5.2% of 5iOz and 3.1% of AJzOa was applied.

次いで、この転炉を用い、脱燐銑を種湯として5000
kgのクロム鉱石(全Cr量:31%、全Fe量: 2
0.6%)を溶融還元した。このときの転炉操業条件は 種湯溶銑量:5oookg、 種湯溶銑温度:1250℃、 最終溶銑温度:1600℃、 使用上吹酸素ランス;12φ×6孔×15°、吹錬時間
:130分 であった。
Next, using this converter, 5,000 yen of dephosphorized pig iron was used as seed water.
kg of chromium ore (total Cr content: 31%, total Fe content: 2
0.6%) was melt-reduced. The converter operating conditions at this time were: Seed hot metal amount: 5ookg, Seed hot metal temperature: 1250℃, Final hot metal temperature: 1600℃, Top blowing oxygen lance used: 12φ x 6 holes x 15°, Blowing time: 130 minutes. Met.

一方、比較のため、炭素質物質粉末を内面に塗布しなか
った以外は上記と同様の従来の上・底側吹き複合吹錬転
炉を使用し、同様条件でクロム鉱石の還元処理を実施し
た。
On the other hand, for comparison, a conventional top/bottom blowing combined blowing converter similar to the one described above was used, except that the carbonaceous material powder was not applied to the inner surface, and chromium ore was reduced under the same conditions. .

このときの短目下部における耐火物表面最高利達温度、
耐火物の溶損量、並びに炉内排ガス成分の測定値を第3
表に示した。なお、耐火物の表面温度は、耐火物表面よ
り5mlの深さに熱電対をセットして測定した。
At this time, the maximum temperature reached on the refractory surface at the lower part of the short side,
The measured values of the amount of erosion of the refractories and the components of the exhaust gas in the furnace are
Shown in the table. The surface temperature of the refractory was measured by setting a thermocouple at a depth of 5 ml from the surface of the refractory.

第3表に示される結果からも明らかなように、この場合
にも、炭素質物質を炉壁内面にコーティングした本発明
に係る転炉を使用すると従来の転炉を使用した場合に比
べて耐火物の溶損量を著しく低減できることが分かる。
As is clear from the results shown in Table 3, in this case as well, the use of the converter according to the present invention, in which the inner surface of the furnace wall is coated with carbonaceous material, has better fire resistance than the case of using the conventional converter. It can be seen that the amount of erosion of objects can be significantly reduced.

〈効果の総括〉 上述のように、この発明によれば、既存の転炉をそのま
ま利用して炉壁耐火物の溶損が極力少なく、またカロリ
ーの高い排ガスの回収が可能な転炉を提供することがで
き、転炉操業効率の一層の向上、そして転炉操業コスト
の更なる低減を実現することが可能となるなど、産業上
極めて有用な効果がもたらされるのである。
<Summary of Effects> As described above, according to the present invention, it is possible to provide a converter that can use an existing converter as is, cause as little erosion of the furnace wall refractories as possible, and recover high-calorie exhaust gas. This brings about industrially extremely useful effects such as further improvement in converter operating efficiency and further reduction in converter operating costs.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明に係る「炉壁内面に炭素質物質コーテ
ィングを有する転炉」の−例を示す概略模式図、 第2図は、本発明に係る「炉壁内面に炭素質物質コーテ
ィングを有すると共に、炭素質物質粉末吹き込み用羽目
を備えた転炉」の−例を示す概略模式図である。 図面において、 ■・・・炉壁、 2・・・炭素質物質コーティング層、
3・・・炉口、 4・・・炭素質物質粉末吹き込み用羽目、5・・・上吹
酸素ランス、 6・・・底吹羽口、7・・・スラグ、 
     8・・・溶銑又は溶鋼。
FIG. 1 is a schematic diagram showing an example of a converter having a carbonaceous material coating on the inner surface of the furnace wall according to the present invention. FIG. 1 is a schematic diagram illustrating an example of a converter having a converter having a carbonaceous material powder and having a lining for blowing carbonaceous material powder. In the drawings, ■...furnace wall, 2...carbonaceous material coating layer,
3... Furnace mouth, 4... Window for blowing carbonaceous material powder, 5... Top blowing oxygen lance, 6... Bottom blowing tuyere, 7... Slag,
8... Hot metal or molten steel.

Claims (2)

【特許請求の範囲】[Claims] (1)炉壁内面の高温ガスに曝される部位を炭素質物質
でコーティングして成ることを特徴とする転炉。
(1) A converter characterized in that a portion of the inner surface of the furnace wall exposed to high temperature gas is coated with a carbonaceous material.
(2)炉壁内面の高温ガスに曝される部位を炭素質物質
でコーティングすると共に、炉口の下部に炭素質物質粉
末吹き込み用羽口を設けて成ることを特徴とする転炉。
(2) A converter characterized in that a portion of the inner surface of the furnace wall exposed to high temperature gas is coated with a carbonaceous material, and a tuyere for injecting carbonaceous material powder is provided at the lower part of the furnace mouth.
JP30336686A 1986-12-19 1986-12-19 Converter for preventing melting of furnace wall due to high temperature gas Expired - Fee Related JP2541200B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30336686A JP2541200B2 (en) 1986-12-19 1986-12-19 Converter for preventing melting of furnace wall due to high temperature gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30336686A JP2541200B2 (en) 1986-12-19 1986-12-19 Converter for preventing melting of furnace wall due to high temperature gas

Publications (2)

Publication Number Publication Date
JPS63157811A true JPS63157811A (en) 1988-06-30
JP2541200B2 JP2541200B2 (en) 1996-10-09

Family

ID=17920125

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30336686A Expired - Fee Related JP2541200B2 (en) 1986-12-19 1986-12-19 Converter for preventing melting of furnace wall due to high temperature gas

Country Status (1)

Country Link
JP (1) JP2541200B2 (en)

Also Published As

Publication number Publication date
JP2541200B2 (en) 1996-10-09

Similar Documents

Publication Publication Date Title
USRE32247E (en) Process for the direct production of steel
US6379424B1 (en) Direct smelting apparatus and process
US6602321B2 (en) Direct smelting process
JPH079015B2 (en) Smelting reduction method for iron ore
JPS63157811A (en) Converter for preventing corrosion of furnace wall by secondary combustion
JPS62167811A (en) Melt reduction steel making method
JPS6167708A (en) Refining method of iron alloy
JPS63176407A (en) Production of molten iron
AU708381B2 (en) Continuous smelting and refining of iron
JP3645621B2 (en) Hot metal pretreatment method
JPH01252710A (en) Method for operating iron bath type smelting reduction furnace
JPH01195210A (en) Method for supplying coat to melting and reducing furnace for iron oxide
JPH01205019A (en) Smelting reduction method
JPH01191719A (en) Method for operating smelting reduction furnace
CA1098319A (en) Process for the direct production of steel
JPH01195211A (en) Method for melting and reducing iron oxide
JP2837282B2 (en) Production method of chromium-containing hot metal
WO1997023656A1 (en) Continuous smelting and refining of iron
JPH0619097B2 (en) Converter that prevents melting damage of furnace wall due to secondary combustion
JPH01275711A (en) Smelt-reduction method
JPH01283312A (en) Method for melting iron-contained cold material
JPH01252712A (en) Method for operating smelting reduction furnace
Marsuverskii Conversion pig iron production with the use of unfluxed pellets from Kachkanar's concentration plant
JPH01172504A (en) Smelting reduction method for cr raw ore
JPH01195214A (en) Operation of iron bath type melting and reducing furnace

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees