JPS63156981A - Heat pump type air conditioner - Google Patents

Heat pump type air conditioner

Info

Publication number
JPS63156981A
JPS63156981A JP30414286A JP30414286A JPS63156981A JP S63156981 A JPS63156981 A JP S63156981A JP 30414286 A JP30414286 A JP 30414286A JP 30414286 A JP30414286 A JP 30414286A JP S63156981 A JPS63156981 A JP S63156981A
Authority
JP
Japan
Prior art keywords
heat
control device
storage tank
heat storage
frequency control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30414286A
Other languages
Japanese (ja)
Inventor
寿夫 若林
宏治 室園
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP30414286A priority Critical patent/JPS63156981A/en
Publication of JPS63156981A publication Critical patent/JPS63156981A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、圧縮機を容量制御する周波数制御装置で発生
する熱を運転中に蓄熱しておき、熱源不足時にこれを冷
媒回路に回収利用することにより、除霜及び暖房立ち上
がり性能を改善したヒートポンプ式空気調和機に関する
ものである。
[Detailed Description of the Invention] Industrial Application Field The present invention stores heat generated by a frequency control device that controls the capacity of a compressor during operation, and collects and uses this heat in a refrigerant circuit when the heat source is insufficient. The present invention relates to a heat pump air conditioner with improved defrosting and heating start-up performance.

従来の技術 近年、周波数制御装置によシ圧縮機を大巾に容量制御で
きる、5EERや快適性に優れたと一トボンデエアコン
の普及が日ざましい。この周波数制御装置は、分離型エ
アコンの場合室外機に組み込まれ、また高密度化されて
おり、これを構成する多くの電気・電子部品、特にパワ
ートランジスタやリアクタ等は、信頼性の面からその放
熱が重要な問題となっている。しかし単に放熱だけなら
ファンの追加や通風回路の改善ですむが、ヒートポンプ
性能の向上からすれば、これらの発熱をその冷媒回路に
回収して利用すべきで、この目的のために以下に示す冷
凍サイクルが提案されている。
BACKGROUND OF THE INVENTION In recent years, bonded air conditioners have become increasingly popular due to their excellent 5EER and comfort, which allows the capacity of the compressor to be controlled over a wide range using a frequency control device. In the case of separate air conditioners, this frequency control device is built into the outdoor unit and has a high density, and many of the electrical and electronic components that make up this device, especially power transistors and reactors, are Heat dissipation has become an important issue. However, if you are just dissipating heat, you can add a fan or improve the ventilation circuit, but in order to improve the performance of the heat pump, it is necessary to recover this heat in the refrigerant circuit and use it. cycle is proposed.

第4図は従来の冷暖房装置における周波数制御装置の制
御回路を示すもので、1は商用電源、Dl、D2、・・
・・・・Dl2はダイオード、CHl、CH2はチョー
クコイル、C1、C2はコンデンサ、Trl、Tr2、
・・・・・・Tr7はトランジスタ、2はターミナル、
Bは圧縮機用モータ、Dは整流回路、Gはチョッパ回路
、■はブリッジインパーク回路、Eは速度信号回路、F
はチョッパ制御回路、Hはブリッジインバータ制御回路
である。商用電源1を、6つのダイオードD1〜D6と
チョークコイルCH1、コンデンサC1から成る整流回
路りにより直流電源に変換するとともに、速度信号回路
Eで発生した速度信号によりチョッパ制御回路Fにてチ
ョッパ回路GのトランジスタTr1を駆動し、先の直流
電源の電圧を制御し、それをチョークコイルCH2とコ
ンデンサC2で平滑化する。この調整平滑化された直流
電源をブリッジインパーク制御回路Hに入力し、直流電
圧に相当する周波数を発生し、ブリッジインパーク回路
IのトランジスタTr2〜Tr7を駆動して三相の矩形
波電源を発生させ、ターミナル2を介して圧縮機用モー
タBに電源を供給する。ここでトランジスタTr1〜T
r7やチョークコイルCH1、CH2等は多量の発熱を
生じ高温となるので、これらを効果的に冷却する必要が
ある。
Fig. 4 shows a control circuit of a frequency control device in a conventional heating and cooling system, where 1 is a commercial power source, Dl, D2,...
...Dl2 is a diode, CHl, CH2 is a choke coil, C1, C2 are capacitors, Trl, Tr2,
...Tr7 is a transistor, 2 is a terminal,
B is the compressor motor, D is the rectifier circuit, G is the chopper circuit, ■ is the bridge impark circuit, E is the speed signal circuit, F
is a chopper control circuit, and H is a bridge inverter control circuit. A commercial power supply 1 is converted to a DC power supply by a rectifier circuit consisting of six diodes D1 to D6, a choke coil CH1, and a capacitor C1, and a chopper control circuit F uses a speed signal generated by a speed signal circuit E to convert a chopper circuit G. The transistor Tr1 is driven to control the voltage of the DC power supply, and the voltage is smoothed by the choke coil CH2 and the capacitor C2. This adjusted and smoothed DC power supply is input to the bridge impark control circuit H, which generates a frequency corresponding to the DC voltage, and drives the transistors Tr2 to Tr7 of the bridge impark circuit I to generate a three-phase rectangular wave power supply. The compressor motor B is supplied with power through the terminal 2. Here, transistors Tr1 to T
Since r7, choke coils CH1, CH2, etc. generate a large amount of heat and reach high temperatures, it is necessary to cool them effectively.

第5図は従来の冷暖房装置の冷媒回路図を示したもので
、11は圧縮機、12は四方弁、13は室外熱交換器、
14.16は逆止弁、15.17はそれぞれ暖房用及び
冷房用絞り装置、18は室内熱交換器で、これらを順次
結合して冷媒回路を構成している。さらに冷房時、暖房
時ともに高圧液管となるM点と吸入管となるN点とを補
助絞り装置19を有する補助蒸発器20を介して結合し
、さらに補助蒸発器20と第4図に示した周波数制御装
置のトランジスタ等の発熱部21とを熱交換関係に配設
している。そして冷房時に圧縮機11から吐出された高
圧冷媒は、四方弁12、室外熱交換器13、逆止弁14
、冷房用絞り装置17、室内熱交換器18、四方弁12
と流れて圧縮機11に吸入される。同時に高圧液管のM
点より若干の高圧冷媒が補助絞り装置19で減圧されて
補助蒸発器20に流れ、ここで補助蒸発器20と熱交換
関係に配設されている周波数制御装置の発熱部21は冷
却され、冷媒は蒸発して低圧ガスとなシ、N点で主回路
を流れてきた冷媒と合流した後、圧縮機11に吸入され
る。暖房時は四方弁12を切換えることで冷媒の流れは
全く逆になυ、この場合も逆止弁16を通過後の高圧液
冷媒の一部が、補助絞り装置19で減圧されて補助蒸発
器20に流入し、ここで周波数制御装置の発熱部21を
冷却した後、低圧ガスとなってN点で主回路の冷媒と合
流し、圧縮機11に吸入される。この時周波数制御装置
の発熱部21を冷却した熱は圧縮機11で再び吸入及び
圧縮され室内熱交換器18で放熱することになり、発熱
部21の発生熱を補助蒸発器20で冷媒に回収し、これ
を暖房能力の増加へと有効に利用している。
Fig. 5 shows a refrigerant circuit diagram of a conventional air-conditioning system, in which 11 is a compressor, 12 is a four-way valve, 13 is an outdoor heat exchanger,
14 and 16 are check valves, 15 and 17 are heating and cooling throttle devices, respectively, and 18 is an indoor heat exchanger, which are sequentially connected to form a refrigerant circuit. Further, during both cooling and heating, point M, which becomes the high-pressure liquid pipe, and point N, which becomes the suction pipe, are connected via an auxiliary evaporator 20 having an auxiliary throttling device 19. A heat generating section 21 such as a transistor of a frequency control device is disposed in a heat exchange relationship. The high-pressure refrigerant discharged from the compressor 11 during cooling is transferred to the four-way valve 12, the outdoor heat exchanger 13, and the check valve 14.
, cooling throttle device 17, indoor heat exchanger 18, four-way valve 12
and is sucked into the compressor 11. At the same time, the M of the high pressure liquid pipe
A small amount of the high-pressure refrigerant is depressurized by the auxiliary throttling device 19 and flows to the auxiliary evaporator 20, where the heat generating part 21 of the frequency control device disposed in a heat exchange relationship with the auxiliary evaporator 20 is cooled, and the refrigerant is The gas evaporates and becomes a low-pressure gas, which joins with the refrigerant flowing through the main circuit at point N, and is then sucked into the compressor 11. During heating, the flow of the refrigerant is completely reversed by switching the four-way valve 12 υ, and in this case too, a part of the high-pressure liquid refrigerant after passing through the check valve 16 is reduced in pressure by the auxiliary throttle device 19 and sent to the auxiliary evaporator. 20, where it cools the heat generating part 21 of the frequency control device, becomes a low-pressure gas, merges with the refrigerant of the main circuit at point N, and is sucked into the compressor 11. At this time, the heat that cooled the heat generating part 21 of the frequency control device is sucked in and compressed again by the compressor 11, and is radiated by the indoor heat exchanger 18.The heat generated by the heat generating part 21 is recovered into refrigerant by the auxiliary evaporator 20. This is effectively used to increase heating capacity.

発明が解決しようとする問題点 しかしながら上記構成では以下のような問題点があった
。暖房運転時に周波数制御装置で発生する熱を運転中常
に回収するので、この熱(廃熱)を無駄には捨てていな
いが、ヒートポンプ式空気調和機の弱点である除霜運転
時に注目すると、外気温の低い着霜条件下では通常1時
間に1回、約数分程度除霜運転が行われ、したがってこ
の間に利用できる廃熱は数分/60分と1割程度にしか
ならず、IHPクラスのヒートポンプエアコンでは必要
な除霜熱源熱量約100Kcalに対して約8Kcal
とわずかであシ、除霜時間の短縮等に貢献する割合は非
常に小さく、除霜の1祭の室温降下は依然として避けら
れなかった。これは暖房立ち上がり時においても言える
ことで、運転開始後数分で温風を吹出し、又20〜30
分で部屋が設定湿度になる実状からみると、従来のよう
な廃熱の利用の方法ではこの間にもわずかしか貢献でき
なかった。
Problems to be Solved by the Invention However, the above configuration has the following problems. The heat generated by the frequency control device during heating operation is constantly recovered during operation, so this heat (waste heat) is not wasted. Under frosty conditions with low temperatures, defrosting operation is normally performed once every hour for about a few minutes, so the waste heat that can be used during this period is only a few minutes/60 minutes, which is about 10%. Approximately 8 Kcal compared to the required defrosting heat source heat amount of approximately 100 Kcal for air conditioners.
However, the contribution to shortening the defrosting time was very small, and the drop in room temperature during the defrosting process was still unavoidable. This also applies when the heating starts up, and hot air is blown out within a few minutes after the start of operation.
Considering the fact that a room reaches its set humidity within minutes, conventional methods of utilizing waste heat can only make a small contribution during this time.

本発明は上記問題点に鑑み、冷媒回路に蓄熱槽を設け、
周波数制御装置で発生する熱をこの蓄熱槽に蓄熱し、除
霜時や暖房開始時等の熱源が大巾に不足している時にこ
れを利用することで、周波数制御装置内の電気・電子部
品等の信頼性を維持しつつ、ヒートポン1式空気調和機
の弱点を大巾に改善するものである。
In view of the above problems, the present invention provides a heat storage tank in the refrigerant circuit,
By storing the heat generated by the frequency control device in this heat storage tank and using it when there is a significant shortage of heat sources, such as when defrosting or starting heating, the electrical and electronic components in the frequency control device can be This system significantly improves the weaknesses of the heat pump type air conditioner while maintaining reliability.

問題点を解決するための手段 上記問題点を解決するために本発明のヒートポンプ式空
気調和機は、電源周波数を制御できる周波数制御装置を
備え、前記周波数制御装置により駆動される圧縮機を組
み込んだ冷媒回路に、蓄熱材を収納した蓄熱槽を設け、
運転中前記周波数制御装置で発生する熱を前記蓄熱槽に
蓄熱し、除霜運転時や暖房運転開始時に、前記蓄熱槽内
の蓄熱を熱源の一部に利用したものである。
Means for Solving the Problems In order to solve the above problems, the heat pump air conditioner of the present invention is equipped with a frequency control device that can control the power frequency, and incorporates a compressor driven by the frequency control device. A heat storage tank containing heat storage material is installed in the refrigerant circuit.
The heat generated by the frequency control device during operation is stored in the heat storage tank, and the heat stored in the heat storage tank is used as part of the heat source during defrosting operation or when starting heating operation.

作   用 本発明は上記構成によ)、暖房運転中に周波数制御装置
を構成する電気・電子部品が発熱し高温となるが、この
熱を一時的に蓄熱槽にためておき、除廁運転時にこの熱
を一挙に回収利用することで、電気・電子部品の過度の
温度上昇を抑えこれらの信順性を維持しつつ、除霜運転
時の熱源を大巾に増加させ、除霜時間の短縮や暖房を継
続しながら行う除霜運転時の暖房能力の向上に大きく寄
与し、従来のヒートポンプ式空気調和機の弱点であった
除霜運転時の室温降下による快適性の低下を防止できる
ものであり、さらには暖房運転開始時にも蓄熱槽に残熱
がある場合にはこれを積極的に利用することで、立ち上
がり時間を短縮できるものである。
According to the above-mentioned configuration, the electric/electronic components that make up the frequency control device generate heat and reach high temperatures during heating operation, but this heat is temporarily stored in a heat storage tank and is used during decontamination operation. By collecting and reusing this heat all at once, we can suppress excessive temperature rises in electrical and electronic components, maintain their reliability, and greatly increase the heat source during defrosting operation, shortening defrosting time. It greatly contributes to improving the heating capacity during defrosting operation, which is performed while continuing heating and cooling, and prevents the decline in comfort caused by the drop in room temperature during defrosting operation, which was a weak point of conventional heat pump air conditioners. Furthermore, if there is residual heat in the heat storage tank at the start of heating operation, the start-up time can be shortened by actively utilizing this residual heat.

実施例 以下本発明の一実施例について図面を参照しながら説明
する。
EXAMPLE An example of the present invention will be described below with reference to the drawings.

第1図は本発明の第1の実施例を表わすと一トポンプ式
空気調和機の冷媒回路図で、31は圧縮機、32は四方
弁、33は室内熱交換器、34は減圧装置としてキャピ
ラリ、35は室外熱交換器、36.37は開閉弁、38
は熱交換器、39はパラフィン系の潜熱蓄熱材(C20
H42)、40は蓄熱槽、41は周波数制御装置、42
は同制御装置の発熱部、43はヒートパイプ、44は同
吸熱部、45は同放熱部である。
FIG. 1 is a refrigerant circuit diagram of a one-pump type air conditioner representing the first embodiment of the present invention, in which 31 is a compressor, 32 is a four-way valve, 33 is an indoor heat exchanger, and 34 is a capillary as a pressure reducing device. , 35 is an outdoor heat exchanger, 36.37 is an on-off valve, 38
is a heat exchanger, 39 is a paraffin-based latent heat storage material (C20
H42), 40 is a heat storage tank, 41 is a frequency control device, 42
43 is a heat pipe, 44 is a heat absorbing portion, and 45 is a heat radiating portion of the control device.

周波数制御装置41の制御回路は第4図に示した従来の
ものと同じであり、説明を省略する。圧縮へ31、四方
弁32、室内熱交換器33、キャピラリ34、室外熱交
換器35を順次環状に冷媒配管で連結し、キャピラリ3
4と室外熱交換器35とを結ぶ冷媒配管の途中に開閉弁
36を設け、さらにこの開閉弁36とキャピラリ34と
の直列回路に並列に、開閉弁37、熱交換器38を直列
になるように設けるとともに、この熱交換器38とヒー
トパイプ4aの放熱部45とを、内部にパラフィン系潜
熱蓄熱材39を封入した蓄熱槽40内に収納し、一方ヒ
ートバイプ43の吸熱部44を圧縮機31への供給電源
周波数を制御する周波数制御装置41の発熱部42に熱
交換可能に接触して配設したものである。なおヒートパ
イプ43の構造は、管内部にウィックと、熱媒体として
の水やフレオン等を封入したもので、一般によく用いら
れているものである。
The control circuit of the frequency control device 41 is the same as the conventional one shown in FIG. 4, and its explanation will be omitted. The compressor 31, the four-way valve 32, the indoor heat exchanger 33, the capillary 34, and the outdoor heat exchanger 35 are sequentially connected in an annular manner with refrigerant piping, and the capillary 3
An on-off valve 36 is provided in the middle of the refrigerant pipe connecting the on-off valve 36 and the outdoor heat exchanger 35, and the on-off valve 37 and the heat exchanger 38 are connected in parallel to the series circuit of the on-off valve 36 and the capillary 34. The heat exchanger 38 and the heat radiation part 45 of the heat pipe 4a are housed in a heat storage tank 40 in which a paraffin-based latent heat storage material 39 is sealed, while the heat absorption part 44 of the heat pipe 43 is placed in the compressor 31. It is disposed in contact with the heat generating section 42 of the frequency control device 41 that controls the frequency of the power supply to the power source so as to be able to exchange heat. The structure of the heat pipe 43 is one in which a wick and a heat medium such as water or freon are sealed inside the pipe, which is commonly used.

暖房運転時は開閉弁36を開き、開閉弁37を閉じてお
き、商用電源から供給を受けて電源周波数を制御する周
波数制御装置41により駆動される圧縮機31から吐出
された高温の冷媒は、四方弁32、室内熱交換器33、
キャピラリ34、開閉弁36、室外熱交換器35、四方
弁32の順に流れて再び圧縮機31に吸入され、暖房サ
イクルを完結する。周波数制御装置41の発熱部(パワ
ートランジスタやチョークコイルの代わシのリアクタ等
)42で発生する熱を運転中ずっとヒートパイプ43の
吸熱部44で吸熱し、吸熱した熱によ多ヒートパイプ4
3内に封入した熱媒体が蒸発し、さらに移動して蓄熱槽
40内に収納された池端の放熱部45から周囲にあるパ
ラフィン系潜熱蓄熱材39に放熱し、その融点である約
36°Cでここに蓄熱する。
During heating operation, the on-off valve 36 is opened and the on-off valve 37 is closed, and the high-temperature refrigerant discharged from the compressor 31 driven by a frequency control device 41 that receives supply from a commercial power source and controls the power frequency is four-way valve 32, indoor heat exchanger 33,
The air flows through the capillary 34, the on-off valve 36, the outdoor heat exchanger 35, and the four-way valve 32 in this order and is sucked into the compressor 31 again, completing the heating cycle. The heat generated in the heat generating part 42 of the frequency control device 41 (power transistor, reactor in place of a choke coil, etc.) is absorbed by the heat absorbing part 44 of the heat pipe 43 throughout the operation, and the absorbed heat is absorbed into the heat pipe 4.
The heat medium sealed in the heat storage material 3 evaporates, moves further, and radiates heat from the heat radiation part 45 at the end of the pond housed in the heat storage tank 40 to the surrounding paraffin-based latent heat storage material 39, which reaches its melting point of about 36°C. The heat is stored here.

図示しない除霜制御装置によ’f)M霜を検出すると、
四方弁32はそのままの状、盤を保持し、開閉弁36は
閉じ、開閉弁37は開く。この操作によシ、圧縮機31
から吐出された冷媒は四方弁32を経て室内熱交換器3
3で室内を暖房し、冷媒に凝縮して二相状態となって開
閉*37、熱交換器38へと流れ、この熱交換器38で
蓄熱槽40に蓄わえられた熱を回収し、冷媒は再びエン
タルピ、温度ともに高くなって室外熱交換器35へ流入
し除霜するとともに、自身は凝縮して、四方弁32を経
て圧縮機31に吸入される。このように周波数制御装置
41で運転中に発生する熱を蓄熱槽40に一時的に蓄わ
えておき、これを熱源の不足する除霜運転時に回収利用
するものである、今、IHPクラスのヒートポンプエア
コンを例にとると、圧縮機31の消費電力は1200W
、周波数制御装置41の変換効率は92%程度であり、
発生する熱(廃熱)は1時間当りQ=1200X O,
86X (1−0,92)=82 Kcal/ h程度
となる。
When 'f) M frost is detected by the defrosting control device (not shown),
The four-way valve 32 holds the board as it is, the on-off valve 36 is closed, and the on-off valve 37 is opened. With this operation, the compressor 31
The refrigerant discharged from the indoor heat exchanger 3 passes through the four-way valve 32.
3, the room is heated, the refrigerant condenses into a two-phase state, opens and closes *37, flows to the heat exchanger 38, and the heat exchanger 38 recovers the heat stored in the heat storage tank 40. The enthalpy and temperature of the refrigerant become high again, and the refrigerant flows into the outdoor heat exchanger 35 to be defrosted, and at the same time, it condenses itself and is sucked into the compressor 31 via the four-way valve 32. In this way, heat generated during operation by the frequency control device 41 is temporarily stored in the heat storage tank 40, and this heat pump is recovered and used during defrosting operation when a heat source is insufficient. Taking an air conditioner as an example, the power consumption of the compressor 31 is 1200W.
, the conversion efficiency of the frequency control device 41 is about 92%,
The heat generated (waste heat) is Q=1200X O per hour,
86X (1-0,92)=about 82 Kcal/h.

外気温が低い着霜条件下では約1時間に1回除霜運転に
入るので、廃熱を全て回収できたとして82Kcalの
熱が除霜熱源に利用できる。この時パラフィン系潜熱蓄
熱材(C2oH42)39は融解潜熱が59 Kcal
/に9であり、1.4に9あればよい。
Under frost conditions where the outside temperature is low, the defrosting operation is started approximately once every hour, so assuming that all the waste heat can be recovered, 82 Kcal of heat can be used as a defrosting heat source. At this time, the paraffin-based latent heat storage material (C2oH42) 39 has a latent heat of fusion of 59 Kcal.
/ should be 9, and 1.4 should be 9.

もちろんこの他に圧縮機31の図示しないシェル自身に
も蓄熱され、除霜熱源に利用できる。一方、1時間運転
すると着霜量は約0.8に9程度となシ、室外熱交換器
35自身や冷媒配管等の熱容量も含めて除霜に必要な熱
量(負荷)は実際には100Kcal程度になる。
Of course, heat is also stored in the shell itself (not shown) of the compressor 31, and can be used as a defrosting heat source. On the other hand, after one hour of operation, the amount of frost formed is about 0.8 to 9, and the amount of heat (load) required for defrosting, including the heat capacity of the outdoor heat exchanger 35 itself and refrigerant piping, is actually 100 Kcal. It will be about.

除霜運転時に圧縮機31を電流制限ぎりぎりまで最高周
波数で5分間運転して暖房を継続しながら除霜を行った
とし、その時の消費電力を1500Wとして、従来例の
方式と本実施例の効果の差を以下に示す。
Assuming that during defrosting operation, the compressor 31 is operated at the maximum frequency for 5 minutes to the limit of the current limit to defrost while continuing heating, and the power consumption at that time is 1500 W, the effects of the conventional method and this embodiment are compared. The difference is shown below.

〈従来例(第5図参照)の方式の場合〉圧縮機31から
の供給熱量; t soowx。、86X−” = 1゜8(Kca□
)廃熱回収量; 1500WX0.86 X (10,92) X”−=
 9 (Kcal )圧縮機31のシェル蓄熱回収量;
 17(Kcal)、°、除霜熱源熱量= 108+9
+17=134(Kcal)除霜熱源熱量から除霜負荷
を引いた伐シ34(Kcal)がその間(5分間)に行
える暖房の熱量である。
<In the case of the method of the conventional example (see FIG. 5)> Amount of heat supplied from the compressor 31; t soowx. , 86X-” = 1°8 (Kca□
) Waste heat recovery amount; 1500W x 0.86 X (10,92) X”-=
9 (Kcal) Shell heat storage recovery amount of compressor 31;
17 (Kcal), °, defrosting heat source heat amount = 108+9
+17=134 (Kcal) This is the amount of heating heat that can be performed during the time (5 minutes) when cutting 34 (Kcal) is obtained by subtracting the defrosting load from the amount of heat from the defrosting heat source.

よって暖房能力 Q = 34Kcal X 男凍= 408 (Kca
l/h)〈本実施例の場合〉 圧縮機31からの供給熱量; t 5oOWxO,86x−u夾−108(K・・l)
廃熱回収量(蓄熱分); 1200WX0.86X(10,92)=82(Kca
l)圧縮機31のシェル蓄熱回収量; 17(Kcal
)“除霜熱源熱量= 108+82+17=207(K
cal)よって除霜運転中の5分間に継続して行なえる
以上に示した効果の比較からも明らかなように、本実施
例によれば、周波数制御装置41て発生する熱を一時的
に蓄熱槽40に蓄わえておき、熱源が大きく不足する除
霜運転時にこの熱を一挙に回収利用して除霜熱源の一部
とすることで、除霜運転時における暖房能力をQ =4
08−1284(Kcal/h)と3倍も向上でき、ヒ
ートポンプ式空気調和機の弱点である除霜の際の室温降
下、すなわち快適性の低下を防止できる。また廃熱の利
用について別の見方をすれば、運転中に常時廃熱を回収
利用して暖房能力の向上に役立たせるよりも、これは周
波数の増加等により達成できるものであり、外気熱源が
利用できないような大巾な熱源不足の時にこそこの廃熱
を一挙に利用すれば、ヒートポンプ式空気調和機として
よシ高い効果を引き出すことができる。
Therefore, heating capacity Q = 34Kcal x male freezing = 408 (Kcal
l/h) <In the case of this embodiment> Amount of heat supplied from the compressor 31; t 5oOWxO, 86x-u -108 (K...l)
Waste heat recovery amount (heat storage); 1200W x 0.86X (10,92) = 82 (Kca
l) Shell heat storage recovery amount of compressor 31; 17 (Kcal
) “Defrosting heat source heat amount = 108 + 82 + 17 = 207 (K
cal) Therefore, defrosting can be performed continuously for 5 minutes during defrosting operation.As is clear from the comparison of the effects shown above, according to this embodiment, the heat generated by the frequency control device 41 can be temporarily stored. By storing this heat in the tank 40 and collecting it all at once and using it as part of the defrosting heat source during defrosting operation when there is a large shortage of heat sources, the heating capacity during defrosting operation can be increased to Q = 4.
08-1284 (Kcal/h), which can be improved by three times, and it is possible to prevent a drop in room temperature during defrosting, which is a weak point of heat pump air conditioners, that is, a decrease in comfort. Another way of looking at the use of waste heat is that rather than collecting and using waste heat constantly during operation to improve heating capacity, this can be achieved by increasing the frequency, etc. If this waste heat is used all at once when there is a large shortage of heat sources that cannot be used, a heat pump type air conditioner can bring out even greater effects.

冷房運転時には、四方弁32を切換え、開閉弁36を開
き、開閉弁37を閉じれば通常の冷房を行うことができ
る。
During cooling operation, normal cooling can be performed by switching the four-way valve 32, opening the on-off valve 36, and closing the on-off valve 37.

なお本実施例では除霜運転時に四方弁32を暖房サイク
ルの状態を保持したままで説明したが、逆に四方弁32
を切換えて行ってもよく、その時には冷媒の流れは上述
した流れ方向とは逆にな9、圧縮機31、四方弁32を
経て室外熱交換器35を出た液分の多い凝縮冷媒が熱交
換器38で蓄熱槽40から吸熱し、自身のエンタルピを
回復した後間閉升37を経て室内熱交換器33、四方升
32、圧縮機31へと戻る。そしてこの時には掠内熱交
換器33を通る冷媒の温度が低いため、暖房は停止する
。 ′ 第2図は本発明の第2の実施例を表わすと一トポンプ式
空気調和機の冷媒回路図を示したもので第1図と異なる
部分は減圧装置としてステッピングモータなど電磁力で
弁開度を制御でき、しかも全開可能な電子膨張弁46を
用いた点と、この電子膨張弁46と並列に補助キャピラ
リ47を用いた点で、その他は第1図と同じである。暖
房運転時には電子膨張弁46の開度を所定開度とし、一
方補助キャビラリ47の絞りを電子膨張弁46の絞りよ
りも大きくしておくことにょシ、冷媒は電子膨張弁46
を通過して室外熱交換器3sへ流入する。また除霜運転
時になると四方弁32はそのままの状態を保持し、電子
膨張弁46を全開にすることによシ、圧縮機31から吐
出された高温の冷媒は四方弁32、室内熱交換器33、
補助キャピラリ47、熱交換器38、室外熱交換器35
、四方弁32と流れて圧縮機31に吸入され、上述した
第1の実施例と同様に周波数制御装置41で発生する熱
を一時的に蓄熱槽40に蓄ゎえておき、この蓄熱を熱源
の一部に利用して暖房を継続しながら除霜を行う。この
場合の特徴としては減圧表、  置に最適な絞り制御を
行う電子膨張弁46を用いることが決まっている時には
切換え手段としての開閉弁が不要になることである。
In this embodiment, the four-way valve 32 is kept in the heating cycle state during the defrosting operation, but conversely, the four-way valve 32 is
In that case, the flow of the refrigerant is reversed to the above-mentioned flow direction 9, and the condensed refrigerant with a high liquid content that has passed through the compressor 31 and the four-way valve 32 and exited the outdoor heat exchanger 35 is heated. After absorbing heat from the heat storage tank 40 in the exchanger 38 and recovering its own enthalpy, the heat exchanger 38 returns to the indoor heat exchanger 33, square box 32, and compressor 31 via the intermediary cell 37. At this time, since the temperature of the refrigerant passing through the internal heat exchanger 33 is low, heating is stopped. ' Fig. 2 shows a refrigerant circuit diagram of a pump-type air conditioner according to a second embodiment of the present invention. The other points are the same as in FIG. 1 except that an electronic expansion valve 46 which can be controlled and can be fully opened is used, and an auxiliary capillary 47 is used in parallel with the electronic expansion valve 46. During heating operation, the opening degree of the electronic expansion valve 46 is set to a predetermined opening degree, and the throttle of the auxiliary cavity 47 is made larger than the throttle of the electronic expansion valve 46.
and flows into the outdoor heat exchanger 3s. In addition, during defrosting operation, the four-way valve 32 is held as it is and the electronic expansion valve 46 is fully opened, so that the high-temperature refrigerant discharged from the compressor 31 is transferred to the four-way valve 32 and the indoor heat exchanger 33. ,
Auxiliary capillary 47, heat exchanger 38, outdoor heat exchanger 35
, flows through the four-way valve 32 and is sucked into the compressor 31, and similarly to the first embodiment described above, the heat generated by the frequency control device 41 is temporarily stored in the heat storage tank 40, and this heat is transferred to the heat source. It is used in some areas to defrost while continuing heating. A feature of this case is that when it is decided to use the electronic expansion valve 46 that performs throttle control optimal for the pressure reduction table, an on-off valve as a switching means is not required.

また冷房運転時には西方弁32を切換えることで従来通
りの冷房が行える。
Furthermore, during cooling operation, conventional cooling can be performed by switching the west valve 32.

第3図は本発明の第3の実施例を表わすヒートポンプ式
空気調和機の冷媒回路図を示したもので、第1図と異な
る点は、開閉弁36を四方弁32と圧縮機31の吸入側
とを結ぶ冷媒配管の途中に設け、開閉弁36と並列に開
閉弁37と熱交換器38とを設けたことと、ヒートパイ
プ43をやめ、周波数制御装置41のリアクタ42aを
蓄熱槽40内に収納し、その他の発熱部42は図示しな
いファンの通風路に設置し、その他は第1図と同じであ
る。
FIG. 3 shows a refrigerant circuit diagram of a heat pump type air conditioner representing a third embodiment of the present invention. The difference from FIG. The on-off valve 37 and the heat exchanger 38 are installed in the middle of the refrigerant pipe connecting the side, and the on-off valve 37 and the heat exchanger 38 are provided in parallel with the on-off valve 36, and the heat pipe 43 is omitted, and the reactor 42a of the frequency control device 41 is placed inside the heat storage tank 40. The other heat generating parts 42 are installed in the ventilation path of a fan (not shown), and the other parts are the same as in FIG. 1.

暖房運転時は開閉弁36を開き、開閉弁37は閉じた状
態で、周波数制御装置41の発熱量の約1/2を占める
リアクタ42aからの発熱を直接パラフィン系潜熱蓄熱
材39に伝えて効率よく蓄熱槽40に蓄熱し、除霜運転
時には四方9′P32を切換え、開閉弁36を閉じ、開
閉弁37は開くことで冷媒は暖房運転時と逆の流れとな
り、室内熱交換器33から戻ってきた液分の多い冷媒は
、四方弁32、開閉弁37を経て熱交換器38で蓄熱槽
40から吸熱した後圧縮機31に吸入される。
During heating operation, the on-off valve 36 is opened and the on-off valve 37 is closed, and the heat generated from the reactor 42a, which accounts for about 1/2 of the calorific value of the frequency control device 41, is directly transmitted to the paraffin-based latent heat storage material 39 to improve efficiency. Heat is often stored in the heat storage tank 40, and during defrosting operation, the four-way 9'P32 is switched, the on-off valve 36 is closed, and the on-off valve 37 is opened, so that the refrigerant flows in the opposite direction to that during heating operation, returning from the indoor heat exchanger 33. The refrigerant having a large liquid content passes through the four-way valve 32 and the on-off valve 37, absorbs heat from the heat storage tank 40 in the heat exchanger 38, and is then sucked into the compressor 31.

この時は室内熱交換器33を通る冷媒の温度が低いため
暖房は停止する。
At this time, heating is stopped because the temperature of the refrigerant passing through the indoor heat exchanger 33 is low.

この実施例によれば、リアクタ42 aからの発熱が途
中の損失もなく効率よく蓄熱槽40に蓄熱でき、さらに
パラフィン系潜熱蓄熱材(020H42)39の融点が
36°C1融解潜熱がs QKC111/ Kgである
ため、リアクタ42aも約36°Cと一定しておシ、過
度の、急激な温度上昇を避けられ、自身の信頼性を損な
う恐れがないし、又ヒートパイプ43が不要となって安
価に、簡単に実施できる。
According to this embodiment, the heat generated from the reactor 42a can be efficiently stored in the heat storage tank 40 without loss during the process, and furthermore, the melting point of the paraffin-based latent heat storage material (020H42) 39 is 36° C1, and the latent heat of fusion is s QKC111/ Since the reactor 42a also maintains a constant temperature of approximately 36°C, excessive and rapid temperature rises can be avoided, there is no risk of damaging its own reliability, and the heat pipe 43 is not required, making it cheaper. It is easy to implement.

さらに蓄熱槽40からの蓄熱を一挙に回収利用するので
除霜時間を短縮でき、しかも圧縮機31の吸入側で回収
するので多量の液パツク等を防止でき、圧縮機31を安
全に運転することができる。
Furthermore, since the heat stored in the heat storage tank 40 is recovered and used all at once, the defrosting time can be shortened, and since it is recovered on the suction side of the compressor 31, a large amount of liquid pack etc. can be prevented, and the compressor 31 can be operated safely. I can do it.

また冷房は西方弁32を切換え、開閉弁36を開き、開
閉弁37を閉じることで従来通り容易に行える。
Cooling can be easily performed as before by switching the west valve 32, opening the on-off valve 36, and closing the on-off valve 37.

なお上記第1の実施例では開閉弁37と熱交換器38を
、キャピラリ34と開閉弁36の直列回路に並列に置い
て説明したが、開閉弁36にのみ並列に置いてもかまわ
ないし、また上記第1、第3の実施例で説明した開閉弁
36.37の代わりに切換え手段として三方弁を設けて
も同様の効果が得られる。
In the first embodiment, the on-off valve 37 and the heat exchanger 38 are placed in parallel in the series circuit of the capillary 34 and the on-off valve 36, but they may be placed in parallel only on the on-off valve 36. Similar effects can be obtained by providing a three-way valve as a switching means in place of the on-off valves 36 and 37 described in the first and third embodiments.

さらに上記第1、第2、第3の実施例では蓄熱材として
パラフィン系潜熱蓄熱材(C20H42)39で説明し
たが、これに限定されるものでないのはもちろんである
Furthermore, in the first, second, and third embodiments, the paraffin-based latent heat storage material (C20H42) 39 was used as the heat storage material, but it is needless to say that the present invention is not limited to this.

以上の実施例では蓄熱11!140がらの熱回収を、い
づれも除霜運転時に行うとして説明したが、その他、暖
房運転開始時に冷媒を熱交換器38に導入することで、
蓄熱槽40に残熱がある場合にはこれを回収でき、立ち
上がり時間を短縮することも可能である。
In the above embodiments, it has been explained that the heat recovery from the heat storage 11!140 is performed during the defrosting operation, but in addition, by introducing the refrigerant into the heat exchanger 38 at the start of the heating operation,
If there is residual heat in the heat storage tank 40, it can be recovered, and it is also possible to shorten the start-up time.

発明の詳細 な説明してきたように本発明のヒートポンプ式空気調和
機は、電源周波数を制御できる周波数制御装置を備え、
前記周波数制御装置によシ駆動される圧縮機を組み込ん
だ冷媒回路に、蓄熱材を収納した蓄熱槽を設け、連軸中
前記周波数制御装置で発生する熱を前記蓄熱槽に蓄熱し
、除霜運転時や暖房運転開始時に、前記蓄熱槽内の蓄熱
を熱源の一部に利用したので、暖房運転中に周波数制御
装置を構成する電気・電子部品が発熱し高温となるが、
この熱を一時的に蓄熱槽にためておき、除霜運転時にこ
の熱を一挙に回収利用することで、電気・電子部品の過
度の温度上昇を抑えこれらの信頼性を維持しつつ、除霜
運転時の熱源を大巾に増加させ、除霜時間の短縮や暖房
を継続しながら行う除霜運転時の暖房能力の向上に犬き
く奇与し、従来のヒートポンプ式空気調和機の弱点であ
った除霜運転時の室6降下による快適性の低下を防止で
きるものであり、さらには暖房運転開始時にも蓄熱槽に
残熱がある場合にはこれを積極的に利用することで、立
ち上がり時間も短縮できる優れた効果を呈するものであ
る。
As described in detail, the heat pump air conditioner of the present invention includes a frequency control device that can control the power frequency,
A refrigerant circuit incorporating a compressor driven by the frequency control device is provided with a heat storage tank containing a heat storage material, and the heat generated by the frequency control device during the linkage is stored in the heat storage tank, thereby defrosting. During operation or at the start of heating operation, the heat stored in the heat storage tank is used as part of the heat source, so the electrical and electronic components that make up the frequency control device generate heat and reach high temperatures during heating operation.
By temporarily storing this heat in a heat storage tank and recovering it all at once during defrosting operation, defrosting can be performed while suppressing excessive temperature rises in electrical and electronic components and maintaining their reliability. By significantly increasing the heat source during operation, this technology greatly improves the heating capacity during defrosting operation by shortening defrosting time and continuing heating, and overcomes the weaknesses of conventional heat pump air conditioners. This prevents a decrease in comfort due to the room 6 falling during defrosting operation.Furthermore, if there is residual heat in the heat storage tank at the start of heating operation, it can be actively used to reduce the start-up time. This has the excellent effect of reducing the time required.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1の実施例を表わすヒートポンプ式
空気調和機の冷媒回路図、第2甲は本発明の第2の実施
例を表わす同冷媒回路図、第3図は本発明の第3の実施
例を表わす同冷媒回路図、第4図は従来の冷暖房装置に
おける周波数制御装置の制御回路図、第5図は従来の冷
暖房装置の冷媒回路図である。 31・・・・・・圧縮機、39・・・・・・パラフィン
系潜熱蓄熱材、40・・・・・・蓄熱槽、41・・・・
・・周波数制御装置、42・・・・・・同発熱部、43
・・・・・・ヒートパイプ、44・・・・・・同吸熱部
、45・・・・・・同放熱部。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名31
−側圧縮機 4I−周皮数制御躾1 42−−゛同光箒郡 43−−−ヒートツマイブ 各−同吸實1平 渠ヒーn族男気部 41 図 第2図 夷 第3図
Fig. 1 is a refrigerant circuit diagram of a heat pump air conditioner representing a first embodiment of the present invention, Fig. 2A is a refrigerant circuit diagram of a heat pump type air conditioner representing a second embodiment of the present invention, and Fig. 3 is a refrigerant circuit diagram of a heat pump type air conditioner representing a first embodiment of the present invention. FIG. 4 is a control circuit diagram of a frequency control device in a conventional air-conditioning device, and FIG. 5 is a refrigerant circuit diagram of a conventional air-conditioning device. 31... Compressor, 39... Paraffin latent heat storage material, 40... Heat storage tank, 41...
... Frequency control device, 42 ... Same heat generating part, 43
... heat pipe, 44 ... the same heat absorption part, 45 ... the same heat radiation part. Name of agent: Patent attorney Toshio Nakao and 1 other person31
- Side compressor 4I - Peripheral number control training 1 42 - - Same light broom group 43 - Heat Tsumibu each - Same suction part 1 Hirado Hee n group male part 41 Fig. 2 Fig. 3

Claims (4)

【特許請求の範囲】[Claims] (1)電源周波数を制御できる周波数制御装置を備え、
前記周波数制御装置により駆動される圧縮機を組み込ん
だ冷媒回路に、蓄熱材を収納した蓄熱槽を設け、運転中
前記周波数制御装置で発生する熱を前記蓄熱槽に蓄熱し
、除霜運転時や暖房運転開始時に、前記蓄熱槽内の蓄熱
を熱源の一部に利用したヒートポンプ式空気調和機。
(1) Equipped with a frequency control device that can control the power frequency,
A refrigerant circuit incorporating a compressor driven by the frequency control device is provided with a heat storage tank containing a heat storage material, and the heat generated by the frequency control device during operation is stored in the heat storage tank, and the heat storage tank is used during defrosting operation and A heat pump type air conditioner that uses heat stored in the heat storage tank as part of the heat source when heating operation starts.
(2)周波数制御装置の発熱部を、ヒートパイプの吸熱
部と熱交換関係に配設し、前記ヒートパイプの放熱部を
熱交換器と共に蓄熱槽に収納し、さらに前記熱交換器を
、冷媒回路の暖房運転時における低圧側に切換え手段を
介して連結した特許請求の範囲第1項記載のヒートポン
プ式空気調和機。
(2) The heat generating section of the frequency control device is disposed in a heat exchange relationship with the heat absorbing section of the heat pipe, the heat dissipating section of the heat pipe is housed in a heat storage tank together with a heat exchanger, and the heat exchanger is connected to a refrigerant. The heat pump air conditioner according to claim 1, wherein the heat pump air conditioner is connected via a switching means to the low pressure side of the circuit during heating operation.
(3)周波数制御装置のリアクタを、熱交換器とともに
蓄熱槽に収納し、前記熱交換器を、冷媒回路の暖房運転
時における低圧側に切換え手段を介して連結した特許請
求の範囲第1項記載のヒートポンプ式空気調和機。
(3) The reactor of the frequency control device is housed in a heat storage tank together with a heat exchanger, and the heat exchanger is connected via a switching means to the low pressure side of the refrigerant circuit during heating operation. The heat pump air conditioner described.
(4)蓄熱材を潜熱蓄熱材とした特許請求の範囲第1項
記載のヒートポンプ式空気調和機。
(4) The heat pump air conditioner according to claim 1, wherein the heat storage material is a latent heat storage material.
JP30414286A 1986-12-19 1986-12-19 Heat pump type air conditioner Pending JPS63156981A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30414286A JPS63156981A (en) 1986-12-19 1986-12-19 Heat pump type air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30414286A JPS63156981A (en) 1986-12-19 1986-12-19 Heat pump type air conditioner

Publications (1)

Publication Number Publication Date
JPS63156981A true JPS63156981A (en) 1988-06-30

Family

ID=17929549

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30414286A Pending JPS63156981A (en) 1986-12-19 1986-12-19 Heat pump type air conditioner

Country Status (1)

Country Link
JP (1) JPS63156981A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013122345A (en) * 2011-12-12 2013-06-20 Panasonic Corp Air conditioner
WO2015173940A1 (en) * 2014-05-15 2015-11-19 三菱電機株式会社 Refrigeration cycle device and air-conditioning device with said refrigeration cycle device
WO2016170616A1 (en) * 2015-04-22 2016-10-27 三菱電機株式会社 Air conditioner
WO2020100846A1 (en) * 2018-11-13 2020-05-22 Nok株式会社 Heat management system

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013122345A (en) * 2011-12-12 2013-06-20 Panasonic Corp Air conditioner
WO2013088684A1 (en) * 2011-12-12 2013-06-20 パナソニック株式会社 Air conditioner
CN103998877A (en) * 2011-12-12 2014-08-20 松下电器产业株式会社 Air conditioner
WO2015173940A1 (en) * 2014-05-15 2015-11-19 三菱電機株式会社 Refrigeration cycle device and air-conditioning device with said refrigeration cycle device
JPWO2015173940A1 (en) * 2014-05-15 2017-04-20 三菱電機株式会社 Refrigeration cycle apparatus and air conditioner equipped with the refrigeration cycle apparatus
WO2016170616A1 (en) * 2015-04-22 2016-10-27 三菱電機株式会社 Air conditioner
JPWO2016170616A1 (en) * 2015-04-22 2017-11-02 三菱電機株式会社 Air conditioner
WO2020100846A1 (en) * 2018-11-13 2020-05-22 Nok株式会社 Heat management system

Similar Documents

Publication Publication Date Title
CN100483043C (en) Cogeneration system
US20060123819A1 (en) Cogeneration system
JPS63156981A (en) Heat pump type air conditioner
JPS63156980A (en) Heat pump type air conditioner
CN214581537U (en) Air conditioner and heat pump integrated machine control system using water as heat-conducting medium to operate
JPH01208674A (en) Heat pump type hot water, heating and cooling machine
JP2002061980A (en) Compression type heat pump air conditioner and method for operating the same
CN209431728U (en) Anti- defrosting device
JPS6343662B2 (en)
JPH0147698B2 (en)
CN219494317U (en) Cold and hot dual-purpose solar air source heat pump system
JPH0854156A (en) Cooling and heating device utilizing exhaust heat of engine and operating method thereof
JPS6018761Y2 (en) Air conditioning equipment
JP2002280006A (en) Exhaust heat recovery system for solid polymer fuel cell power generating facility
CN212962287U (en) Air source heat pump unit for heating domestic hot water by utilizing recovered heat energy
JP2710883B2 (en) Operation control method in regenerative refrigerating cycle device
JPS6183848A (en) Stirling-engine heat-pump chiller
JPS5872853A (en) Absorption air conditioner
JPS5829396Y2 (en) Air conditioning equipment
CN108278701A (en) A kind of air-conditioning combined with solar energy
CN117804077A (en) Heat collecting device, control method, device and system thereof and storage medium
JPH02187572A (en) Heat pump type air conditioner and hot water feeder
JPS61195253A (en) Cooling and hot-water supply device
JPS58138960A (en) Single and double effect absorption refrigerator
CN117168205A (en) Cold and hot energy storage system