JPS6315678A - Ultrasonic motor - Google Patents

Ultrasonic motor

Info

Publication number
JPS6315678A
JPS6315678A JP61156955A JP15695586A JPS6315678A JP S6315678 A JPS6315678 A JP S6315678A JP 61156955 A JP61156955 A JP 61156955A JP 15695586 A JP15695586 A JP 15695586A JP S6315678 A JPS6315678 A JP S6315678A
Authority
JP
Japan
Prior art keywords
frequency
ultrasonic motor
elastic body
piezoelectric element
resonance frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61156955A
Other languages
Japanese (ja)
Inventor
Nobutoshi Sasaki
佐々木 信俊
Akira Endo
晃 遠藤
Toshiaki Maruyama
丸山 俊朗
Yoshiro Tomikawa
義朗 富川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Marcon Electronics Co Ltd
Original Assignee
Marcon Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Marcon Electronics Co Ltd filed Critical Marcon Electronics Co Ltd
Priority to JP61156955A priority Critical patent/JPS6315678A/en
Publication of JPS6315678A publication Critical patent/JPS6315678A/en
Pending legal-status Critical Current

Links

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

PURPOSE:To simplify a drive circuit and to save energy, by a method wherein signal applied to a piezo-electric element being a rotational drive source is made single phase signal having frequency between neighboring resonance frequency and anti-resonance frequency. CONSTITUTION:Piezo-electric elements 5a-5d are attached to an elastic body 4, and a slider 1 is pressed to the elastic body 4 through a frictional plate 3. The piezo-electric elements 5a-5d act as drive source, and single phase AC having frequency with value between neighboring resonance frequency and anti-resonance frequency is applied to these piezo-electric elements 5a-5d through an electrode 6. In this constitution, elliptic motion or oblique motion is produced on material point on the elastic body 4, and the slider 1 is rotated.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) この発明は圧電素子による超音波振動を利用した回転形
の超音波モータに関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a rotary ultrasonic motor that utilizes ultrasonic vibrations produced by piezoelectric elements.

(従来の技術) 回転形の超音波モータは、たとえば第16図に分解斜視
図および第17図に組立図を示すようにシャフト1を有
する摺動体42と、弾性体43と、該摺動体42または
弾性体43の少なくとも一方、たとえば弾性体43に固
定した圧電素子44a〜44dを具備した構成からなり
、該圧電素子をそれぞれ位相差を持たせて駆動すること
により発生した弾性進行波を用いて摺動体を摩擦駆動さ
せるものである。この超音波モータ45の周波数特性は
第18図のようになっていて、多数の共振・***振周波
数が存在する。
(Prior Art) A rotary ultrasonic motor includes, for example, a sliding body 42 having a shaft 1, an elastic body 43, and the sliding body 42, as shown in an exploded perspective view in FIG. 16 and an assembled view in FIG. Alternatively, the structure includes piezoelectric elements 44a to 44d fixed to at least one of the elastic bodies 43, for example, and uses elastic traveling waves generated by driving the piezoelectric elements with a phase difference. The sliding body is driven by friction. The frequency characteristics of this ultrasonic motor 45 are as shown in FIG. 18, and there are many resonant and anti-resonant frequencies.

このような超音波モータを駆動すや場合、共振周波数(
たとえばAで示した周波数)において圧電素子44aに
V1=Vosin ωt 、44bには90度位相を変
えたV  = V 6 CO3ωt。
When driving such an ultrasonic motor, the resonance frequency (
For example, at the frequency indicated by A), the piezoelectric element 44a has V1=Vosin ωt, and the piezoelectric element 44b has V=V 6 CO3ωt with a phase change of 90 degrees.

44Cにはさらに90度位相を変えた■3=−VOsi
n ωt 、44dには、またさらに90度位相を変え
たV4−−V。COSωtなる電圧を加え、各圧電素子
44を駆動する。該駆動により弾性体43には弾性進行
波が発生し、該弾性体43に摺動体42を加圧接触させ
ることにより、該摺動体43は前記弾性進行波により推
進力を得て回転を行なうものである。しかじながらこの
ような超音波モータでは圧電素子を必要とし、該圧電素
子に位相を変えた信号をそれぞれ供給しなければならず
、よって駆動回路が複雑で位相を変えた分だけ必要であ
り、大形にもなっていた。また共振周波数を用いるため
消費電力が大きく、低電圧化、省エネルギー化ができな
かった。
For 44C, the phase was further changed by 90 degrees ■3=-VOsi
n ωt , 44d is V4--V whose phase has been further changed by 90 degrees. A voltage COSωt is applied to drive each piezoelectric element 44. Due to this driving, an elastic traveling wave is generated in the elastic body 43, and by bringing the sliding body 42 into pressure contact with the elastic body 43, the sliding body 43 obtains a propulsive force from the elastic traveling wave and rotates. It is. However, such an ultrasonic motor requires a piezoelectric element, and it is necessary to supply signals with different phases to each piezoelectric element, so the drive circuit is complicated and necessary for the phase change. It had also become large. Furthermore, since a resonant frequency is used, power consumption is large, making it impossible to reduce voltage and save energy.

(発明が解決しようとする問題点) 上記したように従来の回転形超音波モータでは各圧電素
子にそれぞれ位相を変えた信号を個々に供給しなければ
ならず、消費電力が大で、低電圧化や省エネルギー化が
できないものであった。
(Problems to be Solved by the Invention) As mentioned above, in the conventional rotary ultrasonic motor, it is necessary to individually supply signals with different phases to each piezoelectric element, resulting in large power consumption and low voltage. However, it was not possible to reduce or save energy.

そこで本発明は、以上の欠点を除去するものであり、圧
電素子に印加する信号を単相信号とすることによって、
駆動回路を簡易に、かつ小形化し、消費電力を小さく、
低電圧化を容易になし得るとともに省エネルギーを図る
ことができる超音波モータを提供することを目的とする
Therefore, the present invention eliminates the above drawbacks by making the signal applied to the piezoelectric element a single-phase signal.
Simplify and downsize the drive circuit, reduce power consumption,
It is an object of the present invention to provide an ultrasonic motor that can easily reduce the voltage and save energy.

〔発明の構成] (問題点を解決するための手段) 本発明になる超音波モータでは超音波モータの回転駆動
源である圧電素子に印加する信号が、隣接する共振周波
数と***振周波数との間の値の周波数からなる単相信号
であることを特徴とするものである。
[Structure of the Invention] (Means for Solving the Problems) In the ultrasonic motor of the present invention, the signal applied to the piezoelectric element, which is the rotational drive source of the ultrasonic motor, has a resonance frequency and an anti-resonance frequency that are adjacent to each other. It is characterized by being a single-phase signal consisting of a frequency value between.

(作用) この発明では互いに異なる共振モードを利用し単相信号
で駆動することにより弾性体上の質点に楕円運動または
斜め方向の運動を生じせしめ、これによって圧電素子へ
の駆動電圧が低いにもかかわらず高速回転を行なう超音
波モータを得ることができるものである。
(Function) In this invention, by driving with a single-phase signal using mutually different resonance modes, the mass point on the elastic body is caused to undergo elliptical motion or oblique motion, and thereby, even when the drive voltage to the piezoelectric element is low, However, it is possible to obtain an ultrasonic motor that rotates at high speed.

(実施例1) 第1図、第2図に本考案の実施例を示すが第1図は組立
分解図であり、1は摺動体、2はシャフト、3は摩擦板
、4は円板状の弾性体。
(Example 1) Fig. 1 and Fig. 2 show an embodiment of the present invention, and Fig. 1 is an exploded view, in which 1 is a sliding body, 2 is a shaft, 3 is a friction plate, and 4 is a disc-shaped elastic body.

5a〜5dは圧電素子、6は該圧電素子5a〜5dの電
極である。第2図は圧電素子5a〜5dを弾性体4に取
り付けた状態を示す図である。
5a to 5d are piezoelectric elements, and 6 is an electrode of the piezoelectric elements 5a to 5d. FIG. 2 is a diagram showing a state in which the piezoelectric elements 5a to 5d are attached to the elastic body 4.

ここで、圧電素子5b、5cの分極方向は圧電素子5a
、5dとは逆にとっである。この超音波モータの周波数
特性を第3図に示す。多数の共振周波数、***振周波数
が存在するが、ここでは該圧電素子5a〜5dに8.2
5±0.05kHzの周波数からなる信号を同時に印加
する。この周波数の近傍の共振周波数は8.08kHz
、***振周波数は8.43kHzである。
Here, the polarization direction of the piezoelectric elements 5b and 5c is different from that of the piezoelectric element 5a.
, 5d is the opposite. The frequency characteristics of this ultrasonic motor are shown in FIG. Although there are many resonant frequencies and anti-resonant frequencies, here, the piezoelectric elements 5a to 5d have a frequency of 8.2
A signal consisting of a frequency of 5±0.05 kHz is applied simultaneously. The resonant frequency near this frequency is 8.08kHz
, the anti-resonant frequency is 8.43kHz.

この超音波モータの一つの共振周波数である8゜08k
Hzにて各圧電素子を位相差のない同一信号、即ち単相
にて駆動したところ、弾性体4上には定在波のみが現わ
れ摺動体1は動かなかった。一方、8.25kHzにて
各圧電素子5a〜5dを駆動したところ摺動体1は回転
し、第4図に示すような駆動電圧−回転数特性が得られ
た。なお、従来例は第17図に示す超音波モータに共振
周波数にて各圧電素子448〜44d間をそれぞれ90
度の位相差をもたせて駆動した場合を示したものである
One resonant frequency of this ultrasonic motor is 8°08k
When each piezoelectric element was driven at Hz using the same signal with no phase difference, that is, a single phase, only standing waves appeared on the elastic body 4, and the sliding body 1 did not move. On the other hand, when each of the piezoelectric elements 5a to 5d was driven at 8.25 kHz, the sliding body 1 rotated, and a driving voltage-rotational speed characteristic as shown in FIG. 4 was obtained. In addition, in the conventional example, the ultrasonic motor shown in FIG.
This shows the case where the drive is performed with a phase difference of degrees.

また、18.65kHz、19.27kHzにて各圧電
素子5a〜5dを単相で駆動したところ摺動体1は回転
した。これらの周波数の近傍の***振周波数は18.2
0kHz、共振周波数は19.67kHzであった。前
記の場合と同様にこれら共振周波数1***振周波数にて
、各圧電素子5a〜5dを駆動したところ摺動体1は動
かなかった。この他にも単相駆動にて摺動体1が動作し
た周波数があるが、いずれの場合も、互いに隣接する共
振周波数と***振周波数の間の周波数であった。このこ
とは、従来のものは、超音波モータの共振周波数にて各
圧電素子に位相差を与え弾性体上に強制的に弾性進行波
を発生させ、その弾性進行波による弾性体表面の質点の
楕円運動を利用したものであるのに対し、本発明のもの
は互いに異なる共振モードを利用し、単相信号で駆動す
ることにより弾性体上の質点に楕円運動もしくは、斜め
方向の運動を行なわせて摺動体の回転運動を得ようとし
たものである。
Further, when each of the piezoelectric elements 5a to 5d was driven in a single phase at 18.65 kHz and 19.27 kHz, the sliding body 1 rotated. The anti-resonant frequency near these frequencies is 18.2
0 kHz, and the resonant frequency was 19.67 kHz. When each of the piezoelectric elements 5a to 5d was driven at the resonance frequency and the antiresonance frequency in the same way as in the previous case, the sliding body 1 did not move. There are other frequencies at which the sliding body 1 was operated by single-phase drive, but in all cases, the frequencies were between the mutually adjacent resonant frequency and anti-resonant frequency. This means that in the conventional method, a phase difference is given to each piezoelectric element at the resonant frequency of the ultrasonic motor to forcibly generate an elastic traveling wave on the elastic body, and the mass point on the surface of the elastic body is generated by the elastic traveling wave. In contrast, the method of the present invention uses different resonance modes and is driven by a single-phase signal to cause a mass point on an elastic body to perform elliptical motion or oblique motion. This was an attempt to obtain rotational motion of the sliding body.

本実施例では、圧電素子5b、5Cの分極方向を圧電素
子5a、5dとは逆向きとしたが、同一でも同様である
In this embodiment, the polarization directions of the piezoelectric elements 5b and 5C are opposite to those of the piezoelectric elements 5a and 5d, but the same applies even if they are the same.

(実施例2) 第5図第6図に弾性体に環状のリングを用いた例を示す
。11は金属からなる摺動体で、ゴムを主成分とした摩
擦板12が接着により取り付けられる。13はステンレ
ス、アルミ、黄銅などからなる環状の弾性体、14a、
14bはPZTなどからなる圧電素子、15は該圧電素
子14a、14bの電極である。該圧電素子14a、1
4bを第6図に示すように45°の間隔を設けて90度
の角度分が圧電素子となるようにした。
(Example 2) FIGS. 5 and 6 show an example in which an annular ring is used as the elastic body. Reference numeral 11 denotes a sliding body made of metal, to which a friction plate 12 mainly made of rubber is attached by adhesive. 13 is a ring-shaped elastic body made of stainless steel, aluminum, brass, etc.; 14a;
14b is a piezoelectric element made of PZT or the like, and 15 is an electrode of the piezoelectric elements 14a, 14b. The piezoelectric element 14a, 1
4b were spaced apart by 45 degrees as shown in FIG. 6, so that the piezoelectric elements formed at 90 degrees.

このような超音波モータの周波数特性を測定したところ
、第7図に示すような特性が得られた。そこで、7.8
2kH2の単相信号にて圧電素子14a、14bを駆動
したところ摺動体11は回転運動を行なった。この時の
駆動周波数近傍の共振周波数および***振周波数はそれ
ぞれ8.35kHz、7.64kHzである。
When the frequency characteristics of such an ultrasonic motor were measured, the characteristics shown in FIG. 7 were obtained. Therefore, 7.8
When the piezoelectric elements 14a and 14b were driven with a single-phase signal of 2 kHz, the sliding body 11 performed a rotational movement. At this time, the resonant frequency and anti-resonant frequency near the drive frequency are 8.35 kHz and 7.64 kHz, respectively.

また他にも13.21kHz、18.21kH2等でも
回転運動を行なうことが確かめられた。
It was also confirmed that rotational motion was also performed at other frequencies such as 13.21kHz and 18.21kHz.

これらの周波数の近傍の共振周波数及び***振周波数は
それぞれ前者が、13.43kH2゜12.93kl−
1z、後者が18.05kl−1z。
The resonance frequency and anti-resonance frequency near these frequencies are respectively 13.43kH2゜12.93kl-
1z, the latter is 18.05kl-1z.

18.43kHzrある。There is 18.43kHzr.

この実施例では、圧電素子を第6図のように45°の間
隔を設けて取り付けたが、対称な位置関係になるように
しても、また特に取り付は間隔を定めなくとも、さらに
は圧電素子が90度の角度分をなさなくともよい。それ
らの−例を第8図〜第11図に示す。各図に於いて、斜
線で示した16は圧電素子の電極であり、17は該圧電
素子を取り付ける弾性体である。
In this example, the piezoelectric elements were mounted at 45° intervals as shown in Fig. 6, but even if the piezoelectric elements were mounted in a symmetrical positional relationship, or even if the mounting interval was not determined, the piezoelectric elements The elements do not have to form an angle of 90 degrees. Examples thereof are shown in FIGS. 8 to 11. In each figure, 16 indicated by diagonal lines is an electrode of a piezoelectric element, and 17 is an elastic body to which the piezoelectric element is attached.

(実施例3) 第12図に円板状の弾性体に全面に一板の圧電素子を取
り付けて回転型の超音波モータを構成した例を示す。
(Embodiment 3) FIG. 12 shows an example in which a rotary ultrasonic motor is constructed by attaching a piezoelectric element to the entire surface of a disc-shaped elastic body.

21は摺動体、22は摩擦板、23は弾性体。21 is a sliding body, 22 is a friction plate, and 23 is an elastic body.

24はチタン酸鉛系などの電歪材料からなる圧電素子、
25は該圧電素子の電極である。この場合も、18.5
2kHzの信号で圧電素子34を駆動したところ摺動体
21は回転運動を行なった。この周波数の近傍の共振周
波数、***振周波数は18.05kHz、19.12k
Hzであった。
24 is a piezoelectric element made of electrostrictive material such as lead titanate,
25 is an electrode of the piezoelectric element. In this case as well, 18.5
When the piezoelectric element 34 was driven with a 2 kHz signal, the sliding body 21 performed a rotational motion. The resonant and anti-resonant frequencies near this frequency are 18.05kHz and 19.12k.
It was Hz.

ここでは、円板状の弾性体に一板の同じく円板状の圧電
素子を取り付けた例を示したが、弾性体は、円環状、円
板状に限らず角板状のものでも、多角形板状、さらには
均等な形状をなさない半円板状9台形板状、長円環状な
どでもよく、また圧電素子も弾性体の半面にあったり、
端部近(にあったりしてもよく、−個でも複数個でもよ
い。その例を第13図〜第15図に示す。31が弾性体
、32が圧電素子である。
Here, we have shown an example in which a disc-shaped piezoelectric element is attached to a disc-shaped elastic body. It may be in the shape of a square plate, or even in the shape of a semicircular plate, nine trapezoidal plates, or an oblong ring, and the piezoelectric element may be on one half of the elastic body.
They may be located near the end, and there may be - or a plurality of them. Examples thereof are shown in FIGS. 13 to 15. 31 is an elastic body, and 32 is a piezoelectric element.

以上述べたように本発明になる超音波モータでは低電圧
で駆動しても大きな回転数が得られ、かつ駆動回路が小
形になるなどの特徴を有するものである。
As described above, the ultrasonic motor according to the present invention has features such as being able to obtain a large number of revolutions even when driven at a low voltage and having a compact drive circuit.

[発明の効果] この発明になる超音波モータでは圧電素子に印加する信
号として、隣接する共振周波数と***振周波数との間の
値の周波数を有する単相信号を印加することによって、
低電圧駆動で高回転数を得ることができ、また単相信号
を各圧電素子に供給すればよいので、駆動回路を小形化
できるとともに省エネルギーやコストダウンできる効果
を有するものである。
[Effects of the Invention] In the ultrasonic motor according to the present invention, by applying a single-phase signal having a frequency between the adjacent resonant frequency and anti-resonance frequency as a signal to be applied to the piezoelectric element,
A high rotational speed can be obtained with low voltage drive, and since a single-phase signal only needs to be supplied to each piezoelectric element, the drive circuit can be downsized and has the effect of saving energy and reducing costs.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第15図は本発明の実施例を示し、第1図は超
音波モータの分解斜視図、第2図は同じく底面図、第3
図は周波数に対するアドミタンスを示す曲線図、第4図
は圧電素子への印加電圧と回転数との関係を示す曲線図
、第5図は超音波モータの他の実施例を示す分解斜視図
、第6図は同じく底面図、第7図は周波数に対するアド
ミタンスを示す曲線図、第8図〜第11は他の種々の実
施例に関わる圧電素子の取付状態を示すそれぞれの底面
図、第12図は他の実施例になる超音波モータの分解斜
視図、第13図〜第15図は弾性体に圧電素子を取り付
けた実施例をそれぞれ示す斜視図、第16図〜第18図
は超音波モータの従来例を示すもので第16図は超音波
モータの分解斜視図、第17図は同じく組立図、第18
図は周波数とアドミタンスとの関係を示す曲線図である
。 1・・・・・・震動体       2・・・・・・シ
ャフト3・・・・・・摩擦板       4・・・・
・・弾性体5・・・・・・圧電素子      6・・
・・・・電極時  許  出  願  人 マルコン電子株式会社 超音波モータの分解相?!図 第1図 超音波モータの底面図 第2図 j、8   5.0     +0.0    15.
0    20.0町七       (1<)−12
1 周波数に対するアドミタンスな示す曲線図第3図 電圧(V) 印加電圧と回転数との関係を示す曲′a関第4図 ♀                     −ト ψ P               0 区          区 の            ■ 法          涯 区            区 0口 口口 毘             に 第12図 第15図
1 to 15 show embodiments of the present invention, FIG. 1 is an exploded perspective view of the ultrasonic motor, FIG. 2 is a bottom view, and FIG. 3 is a bottom view of the ultrasonic motor.
Figure 4 is a curve diagram showing the admittance versus frequency, Figure 4 is a curve diagram showing the relationship between the voltage applied to the piezoelectric element and the rotation speed, Figure 5 is an exploded perspective view showing another embodiment of the ultrasonic motor, FIG. 6 is a bottom view, FIG. 7 is a curve diagram showing admittance versus frequency, FIGS. 8 to 11 are bottom views showing mounting states of piezoelectric elements related to various other embodiments, and FIG. An exploded perspective view of an ultrasonic motor according to another embodiment, FIGS. 13 to 15 are perspective views showing an embodiment in which a piezoelectric element is attached to an elastic body, and FIGS. 16 to 18 are exploded perspective views of an ultrasonic motor. Fig. 16 shows an exploded perspective view of the ultrasonic motor, Fig. 17 shows an assembled view, and Fig. 18 shows a conventional example.
The figure is a curve diagram showing the relationship between frequency and admittance. 1... Vibrating body 2... Shaft 3... Friction plate 4...
...Elastic body 5...Piezoelectric element 6...
...When electrodes are applied, the decomposition phase of ultrasonic motors from Marukon Electronics Co., Ltd.? ! Figure 1 Bottom view of ultrasonic motor Figure 2 j, 8 5.0 +0.0 15.
0 20.0 Town Seven (1<)-12
1 Curve diagram showing admittance versus frequency Figure 3 Voltage (V) Curve showing the relationship between applied voltage and rotational speed Figure 4 Figure 12 Figure 15

Claims (1)

【特許請求の範囲】[Claims] (1) 1個以上の圧電素子を駆動源とする回転形超音
波モータにおいて、前記圧電素子に印加する信号が、隣
接する共振周波数と***振周波数との間の値の周波数を
有する単相信号であることを特徴とする超音波モータ。
(1) In a rotary ultrasonic motor using one or more piezoelectric elements as a drive source, the signal applied to the piezoelectric element is a single-phase signal having a frequency between adjacent resonance frequencies and anti-resonance frequencies. An ultrasonic motor characterized by:
JP61156955A 1986-07-02 1986-07-02 Ultrasonic motor Pending JPS6315678A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61156955A JPS6315678A (en) 1986-07-02 1986-07-02 Ultrasonic motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61156955A JPS6315678A (en) 1986-07-02 1986-07-02 Ultrasonic motor

Publications (1)

Publication Number Publication Date
JPS6315678A true JPS6315678A (en) 1988-01-22

Family

ID=15638978

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61156955A Pending JPS6315678A (en) 1986-07-02 1986-07-02 Ultrasonic motor

Country Status (1)

Country Link
JP (1) JPS6315678A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6387183A (en) * 1986-09-27 1988-04-18 Ngk Spark Plug Co Ltd Ultrasonic motor
JP2010075009A (en) * 2008-09-22 2010-04-02 Canon Inc Driver and method for controlling same, and electronic equipment

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6387183A (en) * 1986-09-27 1988-04-18 Ngk Spark Plug Co Ltd Ultrasonic motor
JP2010075009A (en) * 2008-09-22 2010-04-02 Canon Inc Driver and method for controlling same, and electronic equipment

Similar Documents

Publication Publication Date Title
JPH0117353B2 (en)
JPH05949B2 (en)
JPH0117354B2 (en)
JP4119903B2 (en) Flat plate piezoelectric ultrasonic motor
US4723085A (en) Vibration wave motor
JPS6315678A (en) Ultrasonic motor
JP2529233B2 (en) Ultrasonic rotary oscillator
US4399385A (en) Rotative motor using a triangular piezoelectric element
JPH01107678A (en) Ultrasonic motor
SU845198A1 (en) Vibromotor
JPS60183981A (en) Supersonic wave motor
JP2684418B2 (en) Ultrasonic actuator
JP2007135267A (en) Ultrasonic motor
JPS63110973A (en) Piezoelectric driver
JPS60226781A (en) Supersonic wave motor
JPH0681523B2 (en) Vibration wave motor
JPH0251379A (en) Ultrasonic motor
JPS63294280A (en) Piezoelectric driving device
JPS63224679A (en) Ultrasonic motor
JPH07184380A (en) Piezo-electric motor
JPH06121557A (en) Ultrasonic motor and driving method therefor
JPH08191575A (en) Vibration device
JPS6387183A (en) Ultrasonic motor
JP2537848B2 (en) Ultrasonic motor
JPH0632794Y2 (en) Electrostrictive motor