JPS63156095A - Liquid phase epitaxy of sic single crystal - Google Patents

Liquid phase epitaxy of sic single crystal

Info

Publication number
JPS63156095A
JPS63156095A JP30491786A JP30491786A JPS63156095A JP S63156095 A JPS63156095 A JP S63156095A JP 30491786 A JP30491786 A JP 30491786A JP 30491786 A JP30491786 A JP 30491786A JP S63156095 A JPS63156095 A JP S63156095A
Authority
JP
Japan
Prior art keywords
single crystal
growth
sic
crystal
sic single
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30491786A
Other languages
Japanese (ja)
Inventor
Yasuhiko Matsushita
保彦 松下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP30491786A priority Critical patent/JPS63156095A/en
Publication of JPS63156095A publication Critical patent/JPS63156095A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a good-quality light emitting diode in high yield, by growing an SiC single crystal layer at a crystal growth rate lower than the conventional method when the single crystal layer is grown on a SiC single crystal by liq. phase epitaxy. CONSTITUTION:A graphite crucible 3 is heated to the crystal growth temp. (1,650-1,700 deg.C), and a SiC-growth substrate 5 fixed to a substrate supporting rod 4 is held for a specified time at the low-temp. part (the bottom side of the crucible 3) of an Si melt 2. Consequently, C is dissolved into the melt 2 from the inner wall surface at the high-temp. part (the upper part) of the heated crucible 3 and infiltrated into the low-temp. part by the convection of the melt 2, and a SiC crystal is grown by the reaction with Si on the substrate 5. In this case, the growth rate of the crystal is controlled to <=5mum/hr, and an epitaxial growth layer having better crystallinity than the conventional method can be formed. As a result, a good-quality light emitting diode is obtained, and the yield can be increased.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、SiC単結晶基板上に5tcfa結晶層を液
相エピタキシャル成長せしめる方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for liquid phase epitaxial growth of a 5tcfa crystal layer on a SiC single crystal substrate.

〔従来技術〕[Prior art]

SiC結晶は、その禁制帯幅が2.39 e V 〜3
.33 e Vと広範囲であり、またpn接合の形成が
可能であるので、赤色から青色までのすべての波長範囲
の可視光を発する発光ダイ第一ドの材料として利用され
ている。とりわけ、室温において約3evの禁制帯幅を
有するα型6H(ヘキサゴナール)タイプのSiC結晶
は、青色発光ダイオードの材料として用いられている。
The SiC crystal has a forbidden band width of 2.39 eV ~ 3
.. Since it has a wide range of 33 eV and can form p-n junctions, it is used as a material for light-emitting diodes that emit visible light in the entire wavelength range from red to blue. In particular, α-type 6H (hexagonal) type SiC crystal, which has a forbidden band width of about 3 ev at room temperature, is used as a material for blue light-emitting diodes.

ところで、この青色発光ダイオードは、6H型の結晶基
板に、同じ<68型SiC結晶のn型層。
By the way, this blue light emitting diode has an n-type layer of the same <68-type SiC crystal on a 6H-type crystal substrate.

p型層をエピタキシャル成長させて製造される。It is manufactured by epitaxially growing a p-type layer.

そして、このエピタキシャル成長は主に以下の如き液相
エピタキシャル成長方法にて行われていた。
This epitaxial growth was mainly carried out by the following liquid phase epitaxial growth method.

即ち、黒鉛るつぼにSiを満たし、これを加熱する。こ
の黒鉛るつぼ内に、支持棒に固定されたSiC結晶基板
を一定時間保持する。するとSi融液中に加熱されたる
つぼ壁からCが溶は込み、Siと反応して前記結晶基板
上にSiC結晶が成長する。
That is, a graphite crucible is filled with Si and heated. A SiC crystal substrate fixed to a support rod is held in this graphite crucible for a certain period of time. Then, C melts into the Si melt from the heated crucible wall, reacts with Si, and grows SiC crystals on the crystal substrate.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところが、上述した従来の成長方法では、結晶性が十分
でなく欠陥結晶が多いという問題点があった。そしてそ
の結果、これらの結晶を用いて製造された青色発光ダイ
オードには、通電による発光波長の長波長化または低輝
度化をきたす等品質が劣悪なものが含まれており、製品
の歩留りが悪いという問題点があった。
However, the conventional growth method described above has a problem in that the crystallinity is not sufficient and there are many defective crystals. As a result, some of the blue light emitting diodes manufactured using these crystals are of poor quality, such as emitted light having a longer wavelength or lower brightness when energized, resulting in poor product yields. There was a problem.

そして本発明者は種々の研究の結果、上述した問題点は
結晶成長過程における成長速度(Jounalof A
pplied Physics  50 (12) 、
Dece+ms+ber 1979゜8215〜822
5に示されている速度は15〜30μm/h、またJo
unal of Applied Physics  
53  (10) +0ctober 1982.69
62〜6967に示されている速度は約50μm / 
h )に起因することを知見した。
As a result of various studies, the present inventor found that the above-mentioned problem can be solved by the growth rate in the crystal growth process (Journal of A
pplied Physics 50 (12),
Dece+ms+ber 1979°8215~822
The speed shown in 5 is 15-30 μm/h, and Jo
unal of Applied Physics
53 (10) +0ctober 1982.69
The speed shown in 62-6967 is approximately 50 μm/
h).

本発明はかかる知見に基づいてなされたものであって、
結晶の成長速度を従来より遅く (5μm / h以下
)して結晶を成長させることにより、結晶性が向上し、
製造される発光ダイオードが良質のものとなり、歩留り
が向上するSiC単結晶の液相エピタキシャル成長方法
を提供することを目的とする。
The present invention was made based on such knowledge, and
By growing crystals at a slower crystal growth rate than conventional methods (5 μm/h or less), crystallinity is improved,
It is an object of the present invention to provide a method for liquid phase epitaxial growth of SiC single crystal, in which the light emitting diodes manufactured are of good quality and the yield is improved.

〔問題点を解決するための手段〕[Means for solving problems]

本発明に係るSiC単結晶の液相エピタキシャル成長方
法は、黒鉛るつぼ内のSi融液にSiC単結晶基板を浸
漬させて、該SiC単結晶基板上にSiC単結晶層を液
相エピタキシャル成長せしめる方法において、前記Si
C単結晶層の成長速度を5μm / h以下とすること
を特徴とする。
The liquid phase epitaxial growth method of SiC single crystal according to the present invention is a method in which a SiC single crystal substrate is immersed in a Si melt in a graphite crucible, and a SiC single crystal layer is liquid phase epitaxially grown on the SiC single crystal substrate. The Si
It is characterized in that the growth rate of the C single crystal layer is 5 μm/h or less.

〔作用〕[Effect]

黒鉛るつぼ内のSi融液にSiC単結晶基板を浸漬させ
て、該SiC単結晶基板上に5iCfii晶層をエピタ
キシャル成長させる。この際、SiC単結晶層の成長速
度を5μm / h以下とする。そうすると結晶性の良
好なSiC単結晶層がSiC単結晶基板上に成長される
A SiC single crystal substrate is immersed in a Si melt in a graphite crucible, and a 5iCfii crystal layer is epitaxially grown on the SiC single crystal substrate. At this time, the growth rate of the SiC single crystal layer is set to 5 μm/h or less. Then, a SiC single crystal layer with good crystallinity is grown on the SiC single crystal substrate.

〔実施例〕〔Example〕

以下、本発明をその実施例を示す図面に基づいて説明す
る。第1図は本発明方法を実施するための装置の断面模
式図であり、図中1は石英製の反応管を示す0反応管1
内には、Si融液2を収容した黒鉛るつぼ3が設けられ
ている。また、黒鉛るつぼ3内のSi融液2にその端部
を浸漬させた状態で、円柱状の基板支持棒4が、その長
軸方向を前記反応管1の長軸方向つまり上下方向に一致
させて設けられている。該基板支持棒4のSi融/&2
に浸漬されない側の端部は図示しない駆動部に接続して
おり、基板支持棒4は該駆動部の作用により、その軸芯
を中心にして回転されるようになってい  。
Hereinafter, the present invention will be explained based on drawings showing embodiments thereof. FIG. 1 is a schematic cross-sectional view of an apparatus for implementing the method of the present invention, in which 1 indicates a reaction tube made of quartz.
A graphite crucible 3 containing a Si melt 2 is provided inside. Further, with its end immersed in the Si melt 2 in the graphite crucible 3, the cylindrical substrate support rod 4 is aligned so that its long axis direction coincides with the long axis direction of the reaction tube 1, that is, the vertical direction. It is provided. Si melting of the substrate support rod 4/&2
The end portion on the side that is not immersed in the substrate is connected to a drive unit (not shown), and the substrate support rod 4 is rotated about its axis by the action of the drive unit.

る。Ru.

また、基板支持棒4のSi融液2に浸漬される下端部に
は、端面側が底面をなす円錐状の欠損部4aが端面に達
して形成されている。欠損部4aには、基板支持棒4の
短軸方向にSiC成長用基板5が、基板支持41s4の
欠損部4a内に嵌込んだ状態で取付けられている。また
、黒鉛るつぼ3には上M6が冠着されており、更に、反
応管lの外周面には、反応管1内を加熱するための高周
波コイル7が囲繞されている。
Further, at the lower end of the substrate support rod 4 that is immersed in the Si melt 2, a conical cutout 4a whose bottom surface is on the end surface side is formed so as to reach the end surface. The SiC growth substrate 5 is attached to the cutout part 4a in the short axis direction of the substrate support rod 4 in a state that it is fitted into the cutout part 4a of the substrate support 41s4. Further, an upper M6 is attached to the graphite crucible 3, and a high frequency coil 7 for heating the inside of the reaction tube 1 is surrounded on the outer peripheral surface of the reaction tube 1.

次に、第1図に示す装置を用いてSiC単結晶を基板上
に成長させる手順について説明する。
Next, a procedure for growing a SiC single crystal on a substrate using the apparatus shown in FIG. 1 will be described.

まず、高周波コイル7に通電して黒鉛るつぼ3を結晶成
長温度(1650〜1700℃)まで加熱する。
First, the high frequency coil 7 is energized to heat the graphite crucible 3 to the crystal growth temperature (1650 to 1700°C).

この際、黒鉛るつぼ3の上下方向に、底部側が低温部と
なるように温度勾配を設定する。次に、基板支持棒4に
固定されたSiC成長用基板5をSi融唆2の低温部に
一定時間保持する。そうすると、加熱された黒鉛るつぼ
3の高温部の内壁面からSi独液液2中Cが溶は込み、
これが融液の対流によって低温部に流入され、Siと反
応してSiC成長用基板5上にSiC単結晶が成長する
。なお、結晶成長中にSiC成長用基板5を回転させる
ことにより、吻−な成長層が形成される。
At this time, a temperature gradient is set in the vertical direction of the graphite crucible 3 so that the bottom side becomes the low temperature part. Next, the SiC growth substrate 5 fixed to the substrate support rod 4 is held in the low temperature part of the Si melt 2 for a certain period of time. Then, C in the Si liquid solution 2 penetrates into the solution from the inner wall surface of the high temperature part of the heated graphite crucible 3.
This flows into the low temperature part by the convection of the melt, reacts with Si, and a SiC single crystal grows on the SiC growth substrate 5. Note that by rotating the SiC growth substrate 5 during crystal growth, a rostral growth layer is formed.

そしてこの際、結晶の成長速度を5μm/h以下とする
。なお、成長速度を制御する方法は実願@61−245
2号に詳述した方法を用いる。即ち、黒鉛るつぼの底面
の保温手段としてカーボンフェルトからなる複数の保温
ディスクを着脱自在に装着し、この保温ディスクの枚数
を適宜選択することにより、成長用基板の位置における
温度勾配を調整して結晶の成長速度を制御する。
At this time, the crystal growth rate is set to 5 μm/h or less. In addition, the method for controlling the growth rate is disclosed in Jitsugaku@61-245.
The method detailed in No. 2 is used. That is, a plurality of heat-insulating disks made of carbon felt are removably attached as heat-insulating means on the bottom of the graphite crucible, and by selecting the appropriate number of heat-insulating disks, the temperature gradient at the position of the growth substrate is adjusted and crystallization is performed. control the growth rate of

次に、本発明方法の要旨である結晶成長速度の限定理由
について説明する。
Next, the reason for limiting the crystal growth rate, which is the gist of the method of the present invention, will be explained.

成長層の成長速度が遅いほど、成長層の結晶性が向上す
ることは以下のようにしてIri認した。即ち第1図に
示す装置を用い、成長速度を変化させて成長層を形成し
、各成長層のエツチングによるエッチピット密度を光学
顕微鏡にて調べた。エツチング条件は、KOH熔融塩に
て約500℃、1分間エツチングである。第2図は成長
速度とエッチピット密度との関係を示すグラフであり、
成長速度が5μm/h以下ではエッチピント密度が小さ
く、良好な結晶性の成長層が得られている。
It was found as follows that the slower the growth rate of the growth layer, the better the crystallinity of the growth layer. That is, using the apparatus shown in FIG. 1, growth layers were formed by varying the growth rate, and the etch pit density due to etching of each growth layer was examined using an optical microscope. The etching conditions were etching with molten KOH at about 500° C. for 1 minute. Figure 2 is a graph showing the relationship between growth rate and etch pit density.
When the growth rate is 5 μm/h or less, the etch focus density is small and a grown layer with good crystallinity is obtained.

従って、5μm/h以下の成長速度で結晶成長を行えば
、良好な結晶性の成長層が得られる。
Therefore, if crystal growth is performed at a growth rate of 5 μm/h or less, a grown layer with good crystallinity can be obtained.

〔効果〕〔effect〕

第3図は、第1図に示す装置を用いて青色発光ダイオー
ドを製造した場合の、エピタキシャル成長層の成長速度
と青色発光ダイオードの発光強度との関係を示したグラ
フである。なお、成長温度は1700℃で一定としてい
る。成長速度が5μm / h以下の場合では、発光強
度の強い発光ダイオードが得られており、これは良好な
結晶性の成長層が得られていることを示している。
FIG. 3 is a graph showing the relationship between the growth rate of the epitaxial growth layer and the emission intensity of the blue light emitting diode when the blue light emitting diode was manufactured using the apparatus shown in FIG. Note that the growth temperature is kept constant at 1700°C. When the growth rate is 5 μm/h or less, a light emitting diode with strong emission intensity is obtained, which indicates that a grown layer with good crystallinity is obtained.

以上詳述した如く本発明方法では、従来方法より成長速
度を遅くするので、従来より良好な結晶性を有するエピ
タキシャル成長層を形成することができる。そしてその
結果、製造される発光ダイオードが良質となり、歩留り
が向上する等本発明は優れた効果を奏する。
As detailed above, in the method of the present invention, the growth rate is slower than in the conventional method, so that an epitaxially grown layer having better crystallinity than in the conventional method can be formed. As a result, the light emitting diodes produced are of good quality, and the present invention exhibits excellent effects such as improved yield.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明を実施するための装置の断面模式図、第
2図はエピタキシャル成長層のエッチピット密度と成長
速度との関係を示すグラフ、第3図は青色発光ダイオー
ドの発光強度とエピタキシャル成長層の成長速度との関
係を示すグラフである。 1・・・反応管 2・・・St融液 3・・・黒鉛るつ
ぼ 4・・・基板支持棒 5・・・SiC成長用基板 
6・・・上蓋7・・・高周波コイル 特許出願人    三洋電機株式会社 代理人 弁理士  河 野  登 夫 j     Z 隼 1 ロ OS      +0     15     200
      5       +O+s      2
0^長達qtp2て几ン 葡 3 (!]
Fig. 1 is a schematic cross-sectional view of an apparatus for carrying out the present invention, Fig. 2 is a graph showing the relationship between the etch pit density and growth rate of the epitaxially grown layer, and Fig. 3 is a graph showing the relationship between the emission intensity of the blue light emitting diode and the epitaxially grown layer. It is a graph showing the relationship between the growth rate and the growth rate. 1... Reaction tube 2... St melt 3... Graphite crucible 4... Substrate support rod 5... SiC growth substrate
6...Top lid 7...High frequency coil patent applicant Sanyo Electric Co., Ltd. agent Patent attorney Noboru Konoj Z Hayabusa 1 RoOS +0 15 200
5 +O+s 2
0^Nagadatsu qtp2 te Rin Grain 3 (!]

Claims (1)

【特許請求の範囲】 1、黒鉛るつぼ内のSi融液にSiC単結晶基板を浸漬
させて、該SiC単結晶基板上にSiC単結晶層を液相
エピタキシャル成長せしめる方法において、 前記SiC単結晶層の成長速度を5μm/h以下とする
ことを特徴とするSiC単結晶の液相エピタキシャル成
長方法。
[Claims] 1. A method for growing a SiC single crystal layer on the SiC single crystal substrate by liquid phase epitaxial growth by immersing the SiC single crystal substrate in a Si melt in a graphite crucible, comprising: A method for liquid phase epitaxial growth of SiC single crystal, characterized in that the growth rate is 5 μm/h or less.
JP30491786A 1986-12-19 1986-12-19 Liquid phase epitaxy of sic single crystal Pending JPS63156095A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30491786A JPS63156095A (en) 1986-12-19 1986-12-19 Liquid phase epitaxy of sic single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30491786A JPS63156095A (en) 1986-12-19 1986-12-19 Liquid phase epitaxy of sic single crystal

Publications (1)

Publication Number Publication Date
JPS63156095A true JPS63156095A (en) 1988-06-29

Family

ID=17938860

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30491786A Pending JPS63156095A (en) 1986-12-19 1986-12-19 Liquid phase epitaxy of sic single crystal

Country Status (1)

Country Link
JP (1) JPS63156095A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5679153A (en) * 1994-11-30 1997-10-21 Cree Research, Inc. Method for reducing micropipe formation in the epitaxial growth of silicon carbide and resulting silicon carbide structures
JP2009091222A (en) * 2007-10-11 2009-04-30 Sumitomo Metal Ind Ltd PRODUCTION METHOD FOR SiC SINGLE CRYSTAL, SiC SINGLE CRYSTAL WAFER AND SiC SEMICONDUCTOR DEVICE
WO2009107188A1 (en) * 2008-02-25 2009-09-03 財団法人地球環境産業技術研究機構 METHOD FOR GROWING SINGLE CRYSTAL SiC
JP2011098870A (en) * 2009-11-09 2011-05-19 Toyota Motor Corp APPARATUS AND METHOD FOR PRODUCING SiC SINGLE CRYSTAL
CN112136203A (en) * 2018-05-23 2020-12-25 三菱电机株式会社 Method for manufacturing SiC epitaxial substrate

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5679153A (en) * 1994-11-30 1997-10-21 Cree Research, Inc. Method for reducing micropipe formation in the epitaxial growth of silicon carbide and resulting silicon carbide structures
JP2009091222A (en) * 2007-10-11 2009-04-30 Sumitomo Metal Ind Ltd PRODUCTION METHOD FOR SiC SINGLE CRYSTAL, SiC SINGLE CRYSTAL WAFER AND SiC SEMICONDUCTOR DEVICE
WO2009107188A1 (en) * 2008-02-25 2009-09-03 財団法人地球環境産業技術研究機構 METHOD FOR GROWING SINGLE CRYSTAL SiC
JP2011098870A (en) * 2009-11-09 2011-05-19 Toyota Motor Corp APPARATUS AND METHOD FOR PRODUCING SiC SINGLE CRYSTAL
CN112136203A (en) * 2018-05-23 2020-12-25 三菱电机株式会社 Method for manufacturing SiC epitaxial substrate
CN112136203B (en) * 2018-05-23 2024-04-09 三菱电机株式会社 Method for manufacturing SiC epitaxial substrate

Similar Documents

Publication Publication Date Title
US5292487A (en) Czochralski method using a member for intercepting radiation from raw material molten solution and apparatus therefor
US4863554A (en) Process for pulling a single crystal
US7524375B1 (en) Growth of uniform crystals
JP2008100854A (en) Apparatus and method of manufacturing sic single crystal
US3681033A (en) Horizontal growth of crystal ribbons
JP2008247706A (en) Method for growing corundum single crystal, corundum single crystal and corundum single crystal wafer
JPS63156095A (en) Liquid phase epitaxy of sic single crystal
JP2943430B2 (en) Method and apparatus for producing single crystal
JPH0648897A (en) Method for liquid phase epitaxial growth of sic single crystal and device therefor
JP2680617B2 (en) Method for growing silicon carbide single crystal
JPH05319998A (en) Production of single crystal silicon carbide
JP2758038B2 (en) Single crystal manufacturing equipment
JP2004099390A (en) Method of manufacturing compound semiconductor single crystal and compound semiconductor single crystal
JP2002274995A (en) Method of manufacturing silicon carbide single crystal ingot
JP2537322B2 (en) Semiconductor crystal growth method
JPH0614479Y2 (en) Liquid phase epitaxial growth system for silicon carbide single crystal
JPH01133998A (en) Liquid phase epitaxy for sic single crystal
RU2058441C1 (en) Method for growing of single crystals from solid solutions of antimony and bismuth chalgogenides
JPH0450188A (en) Method and apparatus for production of single crystal
JPH0710674A (en) Method for growing inorganic compound signal crystal
JP2830290B2 (en) Single crystal growing method and apparatus
JP2573655B2 (en) Method for producing non-doped compound semiconductor single crystal
JPS60122791A (en) Pulling up method of crystal under liquid sealing
JPS62172000A (en) Single crystal growth of ii-vi compound
JPH04348086A (en) Liquid phase epitaxy