JPS63156018A - Production of ferrite powder - Google Patents

Production of ferrite powder

Info

Publication number
JPS63156018A
JPS63156018A JP5665887A JP5665887A JPS63156018A JP S63156018 A JPS63156018 A JP S63156018A JP 5665887 A JP5665887 A JP 5665887A JP 5665887 A JP5665887 A JP 5665887A JP S63156018 A JPS63156018 A JP S63156018A
Authority
JP
Japan
Prior art keywords
particle size
ferrite powder
average particle
powder
compd
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5665887A
Other languages
Japanese (ja)
Inventor
Kyoji Odan
恭二 大段
Hiroshi Miura
洋 三浦
Yoshitaka Ariki
有木 芳孝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Publication of JPS63156018A publication Critical patent/JPS63156018A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain ferrite powder having hexagonal plate shape separated into individual crystal particles, by calcining a mixture of starting materials comprising a Fe compd., a Ba compd. or a Sr compd. with NaCl as flux, and removing NaCl by washing the obtd. calcined product. CONSTITUTION:Magnetoplumbite type Ba or Sr ferrite powder is formed by the following method. A starting material comprising a Fe compd. having <=5mum mean particle size, a Ba or Sr compd. having <=5mum mean particle size is mixed with 1-100wt%. NaCl basing on the amt. of the starting material as flux by the dry process. The mixture is calcined at >=800 deg.C, then NaCl is removed by washing the calcined product.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は六角板状マグネトプランバイト型Baまたはs
rフェライト粉末を経済的、実用的に製造する方法に関
するものである。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to a hexagonal plate-like magnetoplumbite type Ba or s
The present invention relates to an economical and practical method for producing r-ferrite powder.

従来からBaまたはSrフェライト粉末は異方性フェラ
イト磁石用材料として、焼結磁石およびゴム、プラステ
ィック磁石に用いられており、最近では磁気カード、磁
気交通切符等にも使用されている。
Ba or Sr ferrite powder has conventionally been used as an anisotropic ferrite magnet material for sintered magnets, rubber, and plastic magnets, and recently has also been used for magnetic cards, magnetic traffic tickets, and the like.

(従来の技術およびその問題点) 現在、一般に工業的規模において量産化され、多量に使
用されている異方性フェライト磁石用材!′:1rJi
末は、原料粉末を1100℃以上の温度で焼結し、°そ
れを粉砕するものである。したがって形状は不定形で六
角板状と呈していない、しかも結晶中に歪みを有するB
aまたはSrフェライト粉末である。このため、これら
のフェライト粉末を用いて例えば優れた性能を有する異
方性フェライト磁石を作ることには限界がbっな。
(Prior art and its problems) Currently, materials for anisotropic ferrite magnets are generally mass-produced and used in large quantities on an industrial scale! ′:1rJi
Finally, the raw material powder is sintered at a temperature of 1100°C or higher and then pulverized. Therefore, the shape of B is irregular and does not appear like a hexagonal plate, and the crystal has distortions.
a or Sr ferrite powder. For this reason, there are limits to the use of these ferrite powders to produce, for example, anisotropic ferrite magnets with excellent performance.

この問題点を解決するために六角板状で、粒子が一個一
個バラバラであり、分散性、配向性の優れたBaまたは
Srフェライト粉末の製造法が提案されており、例えば
特公昭55−49030号公報、特開昭57−1203
08号公報記載の方法がある。
In order to solve this problem, a method for producing Ba or Sr ferrite powder, which has a hexagonal plate shape and has individual particles and has excellent dispersibility and orientation, has been proposed, for example, in Japanese Patent Publication No. 55-49030. Publication, JP-A-57-1203
There is a method described in Publication No. 08.

特公昭55−49030号公報に記載の方法は融剤とし
て高価なりaCI2またはs r c J2を用いてお
り、経済的でない、また特開昭57−120308号公
報に記載の方法は融剤を湿式で混合するため、P通、造
粒、乾燥等の操作が必要であり、工程が煩雑で実用的で
ない。
The method described in Japanese Patent Publication No. 55-49030 uses expensive aCI2 or SRC J2 as a flux, which is not economical, and the method described in Japanese Patent Publication No. 57-120308 uses a wet fluxing agent. Since the mixture is mixed in a vacuum, operations such as pouring, granulation, and drying are required, making the process complicated and impractical.

(発明の目的) 本発明の目的は前記従来法の欠点を解決し、六角板状で
、粒子が一個一個バラバラであり、さらに粒径と厚みの
比が5以上であるBaまたはSrフェライト粉末の製造
方法を提供することにある。
(Object of the Invention) The object of the present invention is to solve the drawbacks of the conventional method, and to use Ba or Sr ferrite powder which is hexagonal plate-shaped, each particle is disjoint, and the ratio of particle size to thickness is 5 or more. The purpose is to provide a manufacturing method.

本発明の他の目的は磁気カード、磁気テープなどの塗膜
、インキ等を製造する場合の分散性、配向性に優れ、さ
らにゴム、プラスチック磁石の製造工程における樹脂へ
の分散性能および配向性能が優れたBaまたはSrフェ
ライト粉末を容易かつ経済的に製造することができる方
法を提供することにある。
Another object of the present invention is to provide excellent dispersibility and orientation when manufacturing coatings and inks for magnetic cards, magnetic tapes, etc., and to provide excellent dispersibility and orientation performance in resins in the manufacturing process of rubber and plastic magnets. The object of the present invention is to provide a method that can easily and economically produce excellent Ba or Sr ferrite powder.

(問題点を解決するための技術的手段)本発明は、マグ
ネトプランバイト型Baまたはsrフェライト粉末を製
造するに当り、平均粒子径5μm以下の鉄化合物と平均
粒子径5μm以下のバリウムまたはストロンチウム化合
物とからなる出発原料および融剤として出発原料に対し
て1〜100重量%の塩化ナトリウムと混合し、混合物
を800℃以上の温度で加熱焼成し、次いで焼成粉末を
洗浄して塩化ナトリウムを除去することを特徴とするフ
ェライト粉末の製法に関するものである。
(Technical Means for Solving the Problems) The present invention provides an iron compound with an average particle size of 5 μm or less and a barium or strontium compound with an average particle size of 5 μm or less in producing magnetoplumbite type Ba or sr ferrite powder. A starting material consisting of and 1 to 100% by weight of sodium chloride based on the starting material as a flux is mixed, the mixture is heated and calcined at a temperature of 800°C or higher, and the calcined powder is then washed to remove sodium chloride. The present invention relates to a method for producing ferrite powder characterized by the following.

本発明においてLま、まず出発原料の鉄化合物とバリウ
ムまたはストロンチウム化合物に融剤を混合する。
In the present invention, first, a fluxing agent is mixed with the starting materials, an iron compound and a barium or strontium compound.

鉄化合物としては水酸化鉄、オキシ酸化鉄、酸化鉄等が
用いられる。鉄化合物の平均粒子径は5μm以下、好ま
しくは1μm以下である。平均粒子径が5μmより大き
いと、生成するBaまたはsrフェライトの粒子が大き
くなり、粒径と厚みの比が小さくなるとともに保磁力も
低下する。
As the iron compound, iron hydroxide, iron oxyoxide, iron oxide, etc. are used. The average particle diameter of the iron compound is 5 μm or less, preferably 1 μm or less. When the average particle diameter is larger than 5 μm, the Ba or sr ferrite particles produced become large, the ratio of particle diameter to thickness becomes small, and the coercive force also decreases.

バリウムまたはストロンチウムの化合物としては、それ
らの酸化物、さらにそれらの水酸化物、炭酸塩などの分
解により酸化物に転化しうる化合物が用いられる。バリ
ウムまたはストロンチウムの化合物の平均粒子径は5μ
m以下であることが2・要である。平均粒子径が5 I
t mより大きい場合には、BaまたはSrフェライト
の生成に長時間分要し、その結果として粒径が大きくな
る。
As the compound of barium or strontium, compounds that can be converted into oxides by decomposition of their oxides, hydroxides, carbonates, etc. are used. The average particle size of barium or strontium compounds is 5μ
2. It is important that the value is less than or equal to m. Average particle size is 5 I
When it is larger than t m, it takes a long time to generate Ba or Sr ferrite, and as a result, the grain size becomes large.

鉄化合物とバリウムまたはストロンチウム化合物の割合
は、原子比でFe7M(MはBaまたはSr)が10/
1〜14/1の範囲であることが好ましい、この範囲を
はずれるとマグネトプランバイト型の結晶が生成し難く
なる。
The ratio of iron compound to barium or strontium compound is Fe7M (M is Ba or Sr) in atomic ratio of 10/1.
The ratio is preferably in the range of 1 to 14/1; outside this range, magnetoplumbite type crystals become difficult to form.

−iに、マグネトプランバイト型のBaまたはSrフェ
ライト粉末の保磁力は、2000〜50000cであり
、異方性フェライト磁石材料には適しているが、磁気カ
ード甲には保磁力が500〜30000eであることが
好ましい、この範囲に保磁力をコントロールするために
、In、Cr、Zn+V、Zn +Nb、Zn 十Ta
、Co +Ti、Co +V。
-i, the coercive force of magnetoplumbite-type Ba or Sr ferrite powder is 2,000 to 50,000c, which is suitable for anisotropic ferrite magnet material, but the coercive force is 500 to 30,000e for magnetic card backs. In, Cr, Zn + V, Zn + Nb, Zn + Ta to control the coercive force within this range.
, Co + Ti, Co + V.

co 十Zn、Ni +Zn、Cu +zr、cu +
−Znの一種以上の元素または元素の組合わせを、鉄1
グラム原子に対し0.2グラム原子以下の門でそれぞれ
の元素の化合物として添加することもできる。それぞれ
の元素の化合物としては、酸化物、塩化物、炭酸塩、硝
酸塩などが用いられる。
co 10 Zn, Ni + Zn, Cu +zr, cu +
- one or more elements or combinations of elements of Zn, iron 1
It can also be added as a compound of each element in an amount of 0.2 gram atom or less per gram atom. As compounds of each element, oxides, chlorides, carbonates, nitrates, etc. are used.

融剤である塩化ナトリウムの使用量は、出発原料に対し
て1〜100重量%である。その量が少なすぎると目的
とする粒子形感のものが得られない、また多すぎても多
くしたことによる利点はなく、経済的でない。
The amount of sodium chloride used as a flux is 1 to 100% by weight based on the starting material. If the amount is too small, the desired particle shape cannot be obtained, and if the amount is too large, there is no advantage of increasing the amount and it is not economical.

出発原料と散剤の混合はボールミル、ニーダ−等を用い
た通常の混合方法で十分である。
A conventional mixing method using a ball mill, kneader, etc. is sufficient for mixing the starting materials and the powder.

得られた混合物は、粉末のままで焼成を行う。The obtained mixture is fired in powder form.

焼成は800℃以上の温度で行う、800℃より低い温
度では結晶化が不十分となる。
Firing is performed at a temperature of 800°C or higher; crystallization will be insufficient at temperatures lower than 800°C.

得られた焼成物は水に分散させ、融岸1である塩化ナト
リウムを水洗除去した後、濾過、乾燥することにより、
六角板状で粒子が一個一個バラバラであるBaまたはS
「フェライト粉末となる。
The obtained fired product is dispersed in water, and after removing sodium chloride, which is the melting point 1, by washing with water, it is filtered and dried.
Ba or S, which has a hexagonal plate shape and has individual particles.
“It becomes ferrite powder.

(実施例) 次に実施例ならびに比較例により、本発明を説明する。(Example) Next, the present invention will be explained with reference to Examples and Comparative Examples.

尚、実施例ならびに比較例の粒子形状および平均粒子径
、厚みは走査型電子顕微鏡により観察、測定した。
The particle shapes, average particle diameters, and thicknesses of Examples and Comparative Examples were observed and measured using a scanning electron microscope.

実施例1 平均粒子径0.3μmのα−Fe203と平均粒子径0
.7JLmのBaCO3をモル比でa−Fe203:B
a Co、=5.8 : 1となるように全量で100
g!!す、これに融剤として塩化ナトリウム30gを加
え、これらをボールミルを用いて乾式混合した0次いで
、混合物を900℃で2時間焼成した後、水洗、乾燥し
てBaフェライト粉末を得た。
Example 1 α-Fe203 with an average particle size of 0.3 μm and an average particle size of 0
.. 7JLm of BaCO3 in molar ratio a-Fe203:B
The total amount is 100 so that a Co, = 5.8: 1
g! ! To this was added 30 g of sodium chloride as a flux, and these were dry mixed using a ball mill.Next, the mixture was fired at 900°C for 2 hours, washed with water, and dried to obtain Ba ferrite powder.

得られたBaフェライト粉末は走査型電子顕微鏡観察の
結果、六角板状をしており、平均粒子径1.0μmて′
、粒径と厚みの比は58であった。まな、磁気特性は保
磁力32000e、飽和磁化62 e m u / g
であった。この粉を塩化ビニル−酢酸ビニル系ポリマー
をバインダーとしてインクを調製し、塗膜を形成した。
As a result of scanning electron microscopy observation, the obtained Ba ferrite powder had a hexagonal plate shape with an average particle size of 1.0 μm.
, the particle size to thickness ratio was 58. The magnetic properties are coercive force 32000e, saturation magnetization 62 e mu / g
Met. An ink was prepared from this powder using a vinyl chloride-vinyl acetate polymer as a binder, and a coating film was formed.

得られた塗膜の角形比は0.83であった。The squareness ratio of the resulting coating film was 0.83.

実施例2 BaCO3を5rCo3にかえたほかは、実施例1と同
様にしてS「フェライト粉末を得た。
Example 2 S ferrite powder was obtained in the same manner as in Example 1 except that BaCO3 was replaced with 5rCo3.

得られたsrフェライト粉末は六角板状をしており、平
均粒子径は1.2μmで粒径と厚みの比は6.3であっ
た。また、磁気特性は保磁力32600e、飽和磁化6
3 e m u / 1;であった、塗膜の角型比は0
.86であった。
The obtained sr ferrite powder had a hexagonal plate shape, the average particle size was 1.2 μm, and the particle size to thickness ratio was 6.3. In addition, the magnetic properties are coercive force 32600e, saturation magnetization 6
The squareness ratio of the coating film was 3 e m u / 1;
.. It was 86.

実施例3 原料としてa−Fe203.Ti’02.COOおよび
SrCO3をモル比でα−Fe203:TiO2:Co
O:5rC03=5.16:0.84:0.84 :1
となるように混合したものを用いたほかは実施例1と同
様にしてS「フェライト粉末を得た。
Example 3 a-Fe203 as a raw material. Ti'02. COO and SrCO3 in molar ratio α-Fe203:TiO2:Co
O:5rC03=5.16:0.84:0.84:1
S' ferrite powder was obtained in the same manner as in Example 1 except that a mixture was used so that the following was obtained.

得られたSrフニ→イト粉末は六角板状を−ており、平
均粒子径1.1μmで1粒径と厚みの比は6.5であっ
た。また、磁気特性は保磁力1740oe、飽和磁化6
0 e m u / gであった。塗膜の角型比は0.
87であった。
The obtained Sr funite powder had a hexagonal plate shape, with an average particle size of 1.1 μm and a ratio of particle size to thickness of 6.5. In addition, the magnetic properties are coercive force 1740 oe, saturation magnetization 6
It was 0 emu/g. The squareness ratio of the coating film is 0.
It was 87.

実施例4 平均粒子径0.3μmのα−Fe203、平均粒子径0
.7 μmのBa Co、l、Ni OおよびZnOを
モル比でa−Fe、、03 : Ba Co、、: N
i O:Zn O=5.8+1:0.2+0.2となる
ように全1で100g取り、これに融剤として塩化ナト
リウム30gを加え、これらをボールミルを用いて乾式
混合した0次いで、混合物を890℃で2時間焼成した
後、水洗、乾燥してBaフェライト粉末を得た。
Example 4 α-Fe203 with an average particle size of 0.3 μm, average particle size of 0
.. 7 μm of Ba Co, l, NiO and ZnO in molar ratio a-Fe, 03: Ba Co, ,: N
i O: Zn O = 5.8 + 1: 0.2 + 0.2, 100 g in total was taken, 30 g of sodium chloride was added as a fluxing agent, and these were dry mixed using a ball mill. After firing at 890° C. for 2 hours, it was washed with water and dried to obtain Ba ferrite powder.

得られなりaフェライト粉末は、六角板状をしており、
平均粒子径0,95μn1で1粒径と厚みの比は5.0
であった。また、磁気特性は保磁力27000e、飽和
磁化64 e m u / gであった。塗膜の角型比
は0.85であった。
The obtained ferrite powder has a hexagonal plate shape,
The average particle size is 0.95 μn1, and the ratio of particle size to thickness is 5.0.
Met. The magnetic properties were a coercive force of 27,000e and a saturation magnetization of 64 e mu/g. The squareness ratio of the coating film was 0.85.

実施例5 BaCO3をSrCO3にかえたほかは、実施例4と同
様にしてsrフェライト粉末を得た。
Example 5 An sr ferrite powder was obtained in the same manner as in Example 4 except that BaCO3 was replaced with SrCO3.

得られたsrフェライト粉末は六角板状をしており、平
均粒子径は1.0μmで粒径と厚みの比は6.0であっ
た。また、磁気特性は保磁力2950oe、飽−和硫化
64 e m u / gであツタ、塗膜の角型比は0
.87であった。
The obtained sr ferrite powder had a hexagonal plate shape, the average particle size was 1.0 μm, and the particle size to thickness ratio was 6.0. In addition, the magnetic properties are coercive force 2950 oe, saturated sulfide 64 e mu / g, ivy, and the squareness ratio of the coating is 0.
.. It was 87.

実施例6 原料としてa  F e203. Z n O、COO
およびSr Co3tモル比でa−Fe203: Zn
 O:COO: S r CO3=5.16 : o、
84 : 0.84 :1となるように混合したものを
用いたほがは実施例4と同様にしてsrフェライト粉末
を得た。
Example 6 A Fe203. as a raw material. Z n O, COO
and SrCo3t molar ratio a-Fe203:Zn
O: COO: S r CO3=5.16: o,
Sr ferrite powder was obtained in the same manner as in Example 4 using a mixture of 0.84:0.84:1.

得られたsrフェライト粉末は六角板状をしており、平
均粒子径0.85μmで、粒径と厚みの比は6.5であ
った。また磁気特性は保磁力17000e−1飽和磁化
65emu/’gであった。−を膜の角型比は0.87
であった。
The obtained sr ferrite powder had a hexagonal plate shape, an average particle size of 0.85 μm, and a particle size to thickness ratio of 6.5. The magnetic properties were a coercive force of 17000e-1 and a saturation magnetization of 65 emu/'g. -The squareness ratio of the membrane is 0.87
Met.

実施例7 原料としてFa(○H1,(平均粒子ao、01μm)
、Cu O,Zr O2およびBaCO3をモル比でF
e(OH):CuO: Zr O: Ba Co3=]
 0.8 : 0.60 : 0.60 : 1となる
ように混合したものを用いたほかは実施例4と同様にし
てBaフェライト粉末を得た。
Example 7 Fa (○H1, (average particle ao, 01 μm) as a raw material
, CuO, ZrO2 and BaCO3 in molar ratio F
e(OH):CuO:ZrO:BaCo3=]
Ba ferrite powder was obtained in the same manner as in Example 4, except that a mixture of 0.8:0.60:0.60:1 was used.

得られたBaフェライト粉末は六角板状をしており、平
均粒子径0.35μmで、粒径と厚みの比は6.8であ
った。また磁気特性は保磁力24500e、飽和磁化6
3.5err+u、’gであった。塗膜の角型比は0.
88であった。
The obtained Ba ferrite powder had a hexagonal plate shape, an average particle size of 0.35 μm, and a particle size to thickness ratio of 6.8. The magnetic properties are coercive force 24500e, saturation magnetization 6
It was 3.5err+u,'g. The squareness ratio of the coating film is 0.
It was 88.

実施例8 原料としてa  F e203、CIJ○、ZnOおよ
びBaCO3をモル比でα−Fe203:CuO:Z 
n O+、 B a CO3=5.16 : 0.84
 : 0.84 :1となるように混合したものを用い
たほかは実施例4と同様にしてBaフェライト粉末を得
た。
Example 8 As raw materials a Fe203, CIJ○, ZnO and BaCO3 in molar ratio α-Fe203:CuO:Z
n O+, B a CO3=5.16: 0.84
A Ba ferrite powder was obtained in the same manner as in Example 4, except that a mixture of Ba ferrite powder having a ratio of: 0.84:1 was used.

得られたBaフェライト粉末は六角板状をしており、平
均粒子径0.73μmで1粒径と原みの比は6.1であ
った。また磁気特性は保磁力17500e、飽和磁化6
4emU’gであった 塗膜の角型比は0.86であっ
た。
The obtained Ba ferrite powder had a hexagonal plate shape, an average particle size of 0.73 μm, and a ratio of 1 particle size to original size of 6.1. In addition, the magnetic properties are coercive force 17500e, saturation magnetization 6
The squareness ratio of the coating film was 0.86.

比較例1 平均粒子径7μmのα−Fe203を出発原料として用
いた他は、実施例】と同様にして、naミツエライト末
を得た。
Comparative Example 1 Na Mitzerite powder was obtained in the same manner as in Example except that α-Fe203 with an average particle diameter of 7 μm was used as the starting material.

得られたBaフェライト粉末は六角板状をしており、平
均粒子径7.0μmで、粒径と厚みの比は3.0であっ
た。またに気持性は保磁力9200e、飽和磁化39 
e m u / gであった。塗膜の角型比は0.63
であった。
The obtained Ba ferrite powder had a hexagonal plate shape, an average particle size of 7.0 μm, and a particle size to thickness ratio of 3.0. In addition, the coercive force is 9200e, and the saturation magnetization is 39.
emu/g. The squareness ratio of the coating film is 0.63
Met.

Claims (2)

【特許請求の範囲】[Claims] (1)マグネトプランバイト型BaまたはSrフェライ
ト粉末を製造するに当り、平均粒子径5μm以下の鉄化
合物と平均粒子径5μm以下のバリウムまたはストロン
チウム化合物とからなる出発原料および融剤として出発
原料に対して1〜100重量%の塩化ナトリウムを乾式
で混合し、混合物を800℃以上の温度で加熱焼成し、
次いで焼成粉末を洗浄して塩化ナトリウムを除去するこ
とを特徴とするフェライト粉末の製法。
(1) In producing magnetoplumbite type Ba or Sr ferrite powder, starting materials are used as a flux and a starting material consisting of an iron compound with an average particle size of 5 μm or less and a barium or strontium compound with an average particle size of 5 μm or less. 1 to 100% by weight of sodium chloride is mixed in a dry method, and the mixture is heated and baked at a temperature of 800 ° C. or higher,
A method for producing ferrite powder, which comprises washing the fired powder to remove sodium chloride.
(2)出発原料にIn、Cr、Zn+V、Zn+Nb、
Zn+Ta、Co+Ti、Co+V、Co+Zn、Ni
+Zn、Cu+Zr、Cu+Znの一種以上の元素また
は元素の組合わせを、鉄1グラム原子に対し0.2グラ
ム原子以下の量でそれぞれの元素の化合物として添加す
る特許請求の範囲第1項記載のフェライト粉末の製法。
(2) Starting materials include In, Cr, Zn+V, Zn+Nb,
Zn+Ta, Co+Ti, Co+V, Co+Zn, Ni
The ferrite according to claim 1, wherein one or more elements or combinations of elements of +Zn, Cu+Zr, and Cu+Zn are added as a compound of each element in an amount of 0.2 gram atom or less per 1 gram atom of iron. Powder manufacturing method.
JP5665887A 1986-08-08 1987-03-13 Production of ferrite powder Pending JPS63156018A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP18515986 1986-08-08
JP61-185159 1986-08-08

Publications (1)

Publication Number Publication Date
JPS63156018A true JPS63156018A (en) 1988-06-29

Family

ID=16165866

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5665887A Pending JPS63156018A (en) 1986-08-08 1987-03-13 Production of ferrite powder

Country Status (1)

Country Link
JP (1) JPS63156018A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5032498A (en) * 1973-06-11 1975-03-29
JPS59146944A (en) * 1983-02-04 1984-08-23 Hitachi Metals Ltd Manufacture of hard ferrite magnet powder
JPS6050323A (en) * 1983-08-31 1985-03-20 Matsushita Electric Works Ltd Hot water heating device
JPS60182108A (en) * 1984-02-29 1985-09-17 Ricoh Co Ltd Metal oxide magnetic body and magnetic film
JPS60240107A (en) * 1984-05-14 1985-11-29 Toshiba Corp Magnetic powder for magnetic recording and manufacture thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5032498A (en) * 1973-06-11 1975-03-29
JPS59146944A (en) * 1983-02-04 1984-08-23 Hitachi Metals Ltd Manufacture of hard ferrite magnet powder
JPS6050323A (en) * 1983-08-31 1985-03-20 Matsushita Electric Works Ltd Hot water heating device
JPS60182108A (en) * 1984-02-29 1985-09-17 Ricoh Co Ltd Metal oxide magnetic body and magnetic film
JPS60240107A (en) * 1984-05-14 1985-11-29 Toshiba Corp Magnetic powder for magnetic recording and manufacture thereof

Similar Documents

Publication Publication Date Title
JP4538991B2 (en) Permanent magnet and method for manufacturing the same
JP6106303B2 (en) Surface-modified iron-based oxide magnetic particle powder and method for producing the same
KR20030072211A (en) Permanent magnet and method for preparation thereof
JPH0725553B2 (en) Method for producing plate-like magnetic powder
JP2002246216A (en) Permanent magnet and its manufacturing method
JPH0261418B2 (en)
JP3957458B2 (en) Ferrite magnet powder manufacturing method and magnet manufacturing method
US4675170A (en) Preparation of finely divided acicular hexagonal ferrites having a high coercive force
JPS63156018A (en) Production of ferrite powder
KR960002626B1 (en) Process for producing microcrystalline co/ti-substituted barium ferrite platelets
JP2610445B2 (en) Method for producing soft magnetic hexagonal ferrite
JPH08702B2 (en) Method for producing ferromagnetic fine powder for magnetic recording
JP2782579B2 (en) Method for producing oxide-based semiconductor fine powder
JPS63170219A (en) Production of ferrite powder
US5062983A (en) Magnetic powder for magnetic recording media
JP2002334803A (en) Permanent magnet and manufacturing method therefor
JPH07172839A (en) Production of magnetic powder of hexagonal ba ferrite
JPS63170218A (en) Production of ferrite powder
JP2950892B2 (en) Method for producing hexagonal plate-like barium ferrite
JPS6343359B2 (en)
JPH0266902A (en) High coercive force platelike magnetoplumbite type ferrite particle powder and manufacture thereof
KR920006822B1 (en) Ba-ferrite magnetic materials and making method thereof
JP2577945B2 (en) Barium ferrite magnetic powder and method for producing the same
JPH0618073B2 (en) Magnetic powder for magnetic recording
JPS63260103A (en) Magnetic powder for magnetic recording