JP2782579B2 - Method for producing oxide-based semiconductor fine powder - Google Patents

Method for producing oxide-based semiconductor fine powder

Info

Publication number
JP2782579B2
JP2782579B2 JP6095817A JP9581794A JP2782579B2 JP 2782579 B2 JP2782579 B2 JP 2782579B2 JP 6095817 A JP6095817 A JP 6095817A JP 9581794 A JP9581794 A JP 9581794A JP 2782579 B2 JP2782579 B2 JP 2782579B2
Authority
JP
Japan
Prior art keywords
spinel
composition
fine powder
oxalic acid
thermistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP6095817A
Other languages
Japanese (ja)
Other versions
JPH0855706A (en
Inventor
保良 鳥居
明博 都築
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP6095817A priority Critical patent/JP2782579B2/en
Publication of JPH0855706A publication Critical patent/JPH0855706A/en
Application granted granted Critical
Publication of JP2782579B2 publication Critical patent/JP2782579B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Thermistors And Varistors (AREA)
  • Conductive Materials (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、温度センサなどのデバ
イス応用に適したスピネル系のサ−ミスタ微粉末の製造
方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a spinel thermistor fine powder suitable for device applications such as temperature sensors.

【0002】[0002]

【従来の技術】半導体サ−ミスタは、その比抵抗が温度
とともに著しく変化することを利用して、温度を鋭敏に
感知するセンサ素子として用いられてきた。 材料とし
ては、Mn、Ni、Fe、Coなど遷移金属酸化物からなる
スピネル系セラミックスが使用されてきた。近年、電子
工業などの発展に伴って、サ−ミスタの応用範囲も格段
に拡大し、素子自体も信頼性、安定性、応答性などの高
性能化が求められるようになった。スピネル系サ−ミス
タの研究は長い歴史があり、その組成と電気特性との関
係はかなり明らかとなっているが、酸化物などの出発原
料を混合して加熱処理する通常合成法では特性の再現性
がまだ乏しく、小型高性能化の要求が進めば進むほど、
その厳密な再現性は困難になり、製造コストが安価な方
法で組成均質で焼結性に優れたサ−ミスタ微粉体原料の
製造技術の開発が急がれている。
2. Description of the Related Art A semiconductor thermistor has been used as a sensor element for sensitively sensing temperature, utilizing the fact that the specific resistance changes remarkably with temperature. As the material, spinel ceramics composed of transition metal oxides such as Mn, Ni, Fe, and Co have been used. In recent years, with the development of the electronics industry and the like, the application range of thermistors has been significantly expanded, and the elements themselves have been required to have higher performance such as reliability, stability, and responsiveness. Research on spinel thermistors has a long history, and the relationship between their composition and electrical properties is quite clear.However, the properties can be reproduced by the ordinary synthesis method in which starting materials such as oxides are mixed and heat-treated. Performance is still poor, and as the demand for smaller and higher performance advances,
Strict reproducibility has become difficult, and the development of a technique for producing a thermistor fine powder raw material having a uniform composition and excellent sinterability by a method with a low production cost is urgently required.

【0003】組成均質なスピネル系微粉体の化学的合成
法としては、硝酸塩などの混合溶液を可性ソ−ダ水溶液
などにより水酸化物として沈澱させる方法や遷移金属の
アルコキシドやアセチルアセトナ−トの前駆体溶液を加
水分解する方法がある。
As a method for chemically synthesizing spinel fine powder having a uniform composition, a method of precipitating a mixed solution of nitrate or the like as a hydroxide with an aqueous solution of soda or the like, or a transition metal alkoxide or acetylacetonate is used. There is a method of hydrolyzing the precursor solution.

【0004】しかし、前者の場合には沈澱物の中に吸着
したNaやKなどのアルカリイオンは水洗しても完全に
除去することが難しく、アルカリイオンは電気特性に悪
い影響を与えるばかりでなく、その残存量によって電気
特性が大きく変動し、特性の再現性が極めて困難である
という問題点がある。また、後者の場合には、等質な前
駆体溶液を加水分解することによって組成変動のない微
粒子粉体を得ることができるが、出発原料となる金属有
機化合物は極めて高価であるため製造コストが極めて高
くなる難点があり、バルク多結晶体として利用する場合
には、このような高価な出発原料を使用する方法は本質
的に不向きである。
However, in the former case, it is difficult to completely remove the alkali ions such as Na and K adsorbed in the precipitate even by washing with water. In addition, there is a problem that the electrical characteristics greatly fluctuate depending on the remaining amount, and the reproducibility of the characteristics is extremely difficult. Further, in the latter case, a fine particle powder having no composition fluctuation can be obtained by hydrolyzing a homogeneous precursor solution, but the production cost is extremely high because the metal organic compound as a starting material is extremely expensive. There is a drawback that the cost is extremely high, and a method using such expensive starting materials is essentially unsuitable when used as a bulk polycrystal.

【0005】[0005]

【発明が解決しようとする課題】フェライト磁性材料の
分野では、沈澱剤としてシュウ酸アンモニウムを使用し
て硫酸塩等の混合溶液からシュウ酸塩として沈澱させる
方法が試みられてきている。この方法は沈澱物濾過工程
の容易さ、微粒子粉体の低温合成等、多くの長所がある
が、この方法では沈澱反応過程でアンモニウムイオンと
反応して水溶性錯体を形成するために共沈物の組成は仕
込時とは大幅に組成変動が起こる難点がある。
In the field of ferrite magnetic materials, attempts have been made to use ammonium oxalate as a precipitant to precipitate oxalate from a mixed solution of sulfates and the like. This method has many advantages, such as easy precipitation filtration process and low-temperature synthesis of fine particle powder.However, this method reacts with ammonium ions in the precipitation reaction process to form a water-soluble complex, so coprecipitation occurs. Has the disadvantage that the composition fluctuates greatly from that at the time of preparation.

【0006】[0006]

【課題を解決するための手段】本発明は上記目的を達成
するために、二段階の沈澱反応によってアンモニウムイ
オンとの錯体反応を抑制し、さらにその共沈スラリ−を
熟成により仕込時と組成変動が極めて少ないシュウ酸複
塩共沈乾燥物を得るもので、これを加熱処理してスピネ
ル系サ−ミスタ微粉末を製造する方法及び該製造方法に
よって構成されるスピネル系サ−ミスタ素子を提供する
ものである。
According to the present invention, in order to achieve the above object, a complex reaction with ammonium ions is suppressed by a two-stage precipitation reaction, and the coprecipitated slurry is aged and the composition and the composition change. The present invention provides a method for producing a fine powder of spinel-based thermistor by heat-treating the same, and a spinel-based thermistor element constituted by the production method. Things.

【0007】スピネル系サ−ミスタの主要成分となるマ
ンガン、ニッケル、鉄、コバルト等の硫酸塩混合溶液、
あるいは、これに若干量のエチルアルコ−ル類を加えた
混合溶液に沈澱剤として必要量以上のシュウ酸水溶液を
加えてシュウ酸複塩の共沈スラリ−を作製し、さらにア
ンモニア水を徐々に加えて適正なpH調整を行い、水溶
性錯体の形成を抑制して未沈澱イオンをさらに沈澱さ
せ、それをを十分に熟成した後に濾過・乾燥し、これを
500〜1000℃で加熱処理してスピネル系サ−ミス
タ微粉末を製造する方法を提供するものである。
A mixed solution of sulphate such as manganese, nickel, iron, cobalt, etc., which is a main component of the spinel thermistor;
Alternatively, an aqueous oxalic acid solution is added as a precipitant to a mixed solution obtained by adding a small amount of ethyl alcohol thereto, thereby preparing a coprecipitated slurry of a double salt of oxalic acid, and gradually adding aqueous ammonia. The pH is adjusted appropriately to suppress the formation of a water-soluble complex to further precipitate unprecipitated ions. After the precipitates are fully aged, they are filtered and dried. The present invention provides a method for producing a fine thermistor powder.

【0008】本発明にかかる方法は、スピネル系サ−ミ
スタの構成元素はシュウ酸複塩として共沈させているた
め400〜500℃という低い加熱処理温度でシュウ酸
複塩の熱分解により直接スピネル微粉体が生成し、ま
た、pH調整により仕込組成にほぼ近いものが得られる
ため複雑組成な多成分系スピネル固溶体に対しても組成
均一性に優れたサ−ミスタ微粒子粉体が得られる。
In the method according to the present invention, the constituent elements of the spinel thermistor are coprecipitated as double oxalic acid salts, so that the spinel thermistor is directly decomposed by thermal decomposition of the double oxalic acid at a low heat treatment temperature of 400 to 500 ° C. Fine powders are formed, and a composition substantially similar to the charged composition can be obtained by adjusting the pH, so that thermistor fine particles having excellent composition uniformity can be obtained even with a complex multi-component spinel solid solution.

【0009】上記混合溶液に若干量のエチルアルコ−ル
類を加えるのは、沈澱生成において溶媒の誘電率を低下
させ、沈澱生成が容易となり、また、イオン会合定数が
高くなって多重イオンを形成しやすくなり、それ故に沈
澱核が速やかにかつ多量に発生し、生成沈澱粒子径を小
さくする効果があるためである。また、沈澱剤としての
シュウ酸水溶液については、一般的には所定量のシュウ
酸2水和物を温水で溶解して調製される。本発明では、
上記の共沈乾燥物を大気中、500〜1000℃、3〜
5時間の加熱処理により仮焼物の解砕性が極めてよく、
結晶粒子径がサブミクロンオ−ダ−で、焼結性に優れた
スピネル系微粒子を得ることができる。
The addition of a small amount of ethyl alcohol to the above mixed solution lowers the dielectric constant of the solvent in the formation of a precipitate, facilitates the formation of the precipitate, and increases the ion association constant to form multiple ions. This is because precipitation nuclei are generated quickly and in large amounts, and there is an effect of reducing the diameter of the formed precipitate particles. The aqueous oxalic acid solution as a precipitant is generally prepared by dissolving a predetermined amount of oxalic acid dihydrate in warm water. In the present invention,
The above coprecipitated dried product is dried at 500-1000 ° C.
The heat treatment for 5 hours results in extremely good crushability of the calcined material.
It is possible to obtain spinel-based fine particles having a crystal particle size of submicron order and excellent in sinterability.

【0010】[0010]

【実施例】出発原料として、硫酸ニッケル水和物、硫酸
鉄水和物、硫酸マンガン水和物、シュウ酸二水和物を使
用した。組成は(Ni0.6Fe0.3Mn2.1)O4となるよ
うに、各硫酸塩ストック溶液(濃度:0.5モル/リッ
トル)から採取し、蒸留水を加えておよそ0.05モル
/リットルの濃度の硫酸塩混合溶液を調製した。一方、
シュウ酸塩として沈澱させるに必要なモル相当量の1.
2倍のシュウ酸二水和物を温水で溶解し、上記の硫酸塩
混液を撹拌しながらこのシュウ酸水溶液を加え、Ni、
Mn、Feの各金属イオンを薄い黄緑色のシュウ酸複塩
として沈澱させ、さらに1時間撹拌しておよそ24時間
静置した。これを撹拌混合しながら3倍に希釈したアン
モニア水を徐々に加えてpH=2.48に調整し、24
時間熟成したものを濾過・乾燥し、最終的な共沈乾燥物
を得た。これを大気中、400〜1000℃、3時間で
仮焼すると、立方晶スピネル単相の微粒子粉体を得るこ
とができた。また、共沈乾燥物の熱分析結果は1つの鋭
い発熱ピ−クだけを観測し、シュウ酸複塩単相の熱分解
を示すものであった。これと比較のために同一組成で酸
化物を出発原料とした通常の固相反応法では、800℃
の仮焼でスピネル相の生成が認めらられるようになる
が、1000℃の仮焼ではまだ複数のスピネル相が混在
し、1200℃の仮焼でも各回折線の幅は広く、完全に
は単相化しているとはいい難い。これに比べると、本発
明による微粒子粉体合成法では図1に示すように400
℃の仮焼で結晶性はよくないがスピネル相の生成が認め
られ、600℃の仮焼で結晶性のよいスピネル単相の微
粉体合成が可能となっている。各回折線の幅もシャ−プ
であり、これは組成均一性に優れていることを示してい
る。この共沈乾燥物を900℃、3時間仮焼した微粉体
を用いて1325℃、5時間加熱処理した焼結体は、2
5℃での比抵抗として6463Ω・cm、B定数として
4160Kのサ−ミスタ特性を示した。
EXAMPLES As starting materials, nickel sulfate hydrate, iron sulfate hydrate, manganese sulfate hydrate and oxalic acid dihydrate were used. The composition was taken from each of the sulfate stock solutions (concentration: 0.5 mol / l) so that the composition would be (Ni 0.6 Fe 0.3 Mn 2.1 ) O 4, and distilled water was added thereto to obtain a concentration of about 0.05 mol / l. Was prepared. on the other hand,
The molar equivalent of 1. necessary to precipitate as oxalate.
Dissolve twice the amount of oxalic acid dihydrate in warm water, add the aqueous oxalic acid solution while stirring the above-mentioned sulfate mixture, and add Ni,
Each metal ion of Mn and Fe was precipitated as a pale yellow-green oxalic acid double salt, stirred for 1 hour, and allowed to stand for about 24 hours. While stirring and mixing, ammonia water diluted 3 times was gradually added to adjust the pH to 2.48,
The aged product was filtered and dried to obtain a final coprecipitated dried product. When this was calcined in the air at 400 to 1000 ° C. for 3 hours, cubic spinel single phase fine particle powder could be obtained. The thermal analysis of the coprecipitated dried product showed that only one sharp exothermic peak was observed, indicating the thermal decomposition of the oxalic acid double salt single phase. For comparison, in a normal solid-state reaction method using an oxide as a starting material with the same composition, 800 ° C.
Although the formation of a spinel phase is observed in the calcination of, a plurality of spinel phases are still mixed in the calcination at 1000 ° C., and the width of each diffraction line is wide even in the calcination at 1200 ° C. It's hard to say that they are in phase. In comparison, the fine particle powder synthesizing method according to the present invention, as shown in FIG.
Although the crystallinity is not good by calcination at ℃, the formation of a spinel phase is recognized, and the calcination at 600 ℃ makes it possible to synthesize fine powder of spinel single phase with good crystallinity. The width of each diffraction line is also sharp, which indicates that the composition uniformity is excellent. This coprecipitated dried product was heat-treated at 1325 ° C for 5 hours using fine powder calcined at 900 ° C for 3 hours.
The thermistor exhibited a specific resistance of 6463 Ω · cm at 5 ° C. and a B constant of 4160 K.

【0011】出発原料として、硫酸マンガン水和物、硫
酸ニッケル水和物、硫酸銅水和物、シュウ酸二水和物を
使用した。組成は(Cu0.1Ni0.80Mn2.10)O4とな
るように、各硫酸塩ストック溶液(濃度:0.5モル/
リットル)から採取し、蒸留水を加えておよそ0.06
モル/リットルの濃度の硫酸塩混合溶液を調製した。一
方、シュウ酸塩として沈澱させるに必要なモル相当量の
1.4倍のシュウ酸二水和物を温水で溶解し、上記の硫
酸塩混液を撹拌しながらこのシュウ酸水溶液をゆっくり
と加え、Cu、Ni、Mnの各金属イオンを薄い青色の
シュウ酸複塩として沈澱させ、さらに1時間撹拌して2
4時間静置した。この共沈スラリ−溶液に3倍に希釈し
たアンモニア水を徐々に加えてスタ−ラ−で撹拌混合し
てpHを2.57に調整し、24時間熟成したものを濾
過・乾燥し、最終的な共沈乾燥物を得た。これを900
℃、3時間で仮焼すると、結晶性のよいスピネル単相の
微粒子粉体を得ることができた。この仮焼微粉体を用い
て1200℃、4時間で焼成した焼結体は理論密度の9
4%に達し、サ−ミスタとしては低い焼結温度で高緻密
化した。この焼結体は25℃での比抵抗として944Ω
・cm、B定数として4057Kのサ−ミスタ特性を示
し、自己発熱型レベルセンサとしての応用可能なサ−ミ
スタ素子が得られた。
As starting materials, manganese sulfate hydrate, nickel sulfate hydrate, copper sulfate hydrate and oxalic acid dihydrate were used. Each sulfate stock solution (concentration: 0.5 mol / mol) was prepared so that the composition was (Cu 0.1 Ni 0.80 Mn 2.10 ) O 4.
Liter) and add distilled water to add
A mixed solution of sulfate having a concentration of mol / liter was prepared. On the other hand, 1.4 times the molar equivalent of oxalic acid dihydrate required for precipitation as an oxalate is dissolved in warm water, and this oxalic acid aqueous solution is slowly added while stirring the above-mentioned sulfate mixture, Each metal ion of Cu, Ni, and Mn was precipitated as a pale blue double oxalic acid salt, and further stirred for 1 hour.
It was left for 4 hours. To this coprecipitated slurry solution, ammonia water diluted three-fold was gradually added, and the mixture was stirred and mixed with a stirrer to adjust the pH to 2.57. The mixture was aged for 24 hours, filtered and dried. A dry coprecipitated product was obtained. This is 900
When calcined at 3 ° C. for 3 hours, fine spinel single-phase fine particles having good crystallinity could be obtained. A sintered body fired at 1200 ° C. for 4 hours using the calcined fine powder has a theoretical density of 9%.
It reached 4%, and as a thermistor, it became highly dense at a low sintering temperature. This sintered body has a specific resistance of 944 Ω at 25 ° C.
The thermistor element exhibited a thermistor characteristic of 4057K as cm and B constant, and was applicable as a self-heating type level sensor.

【0012】上記実施例と同様な方法で、(Cu0.1
0.50Mn2.10Fe0.30)O4の組成となるように0.0
8モル/リットルの濃度の硫酸塩混合溶液を作製した。
シュウ酸塩として沈澱させるに必要なモル相当量の1.
2倍のシュウ酸二水和物を温水で溶解し、上記の硫酸塩
混液を撹拌しながらこのシュウ酸水溶液を加え、各金属
イオンを薄い黄緑色のシュウ酸複塩として沈澱させ、さ
らに2時間撹拌して28時間静置した。この共沈スラリ
−溶液に3倍に希釈したアンモニア水を徐々に加えてp
Hを1.90に調整し、24時間熟成したものを濾過・
乾燥し、 最終的な共沈乾燥物を得た。これを700
℃、3時間で仮焼すると、上記実施例と同様に易焼結性
のサ−ミスタ微粉体を得た。この仮焼微粉体を用いて1
100℃、4時間で焼成した緻密焼結体は25℃での比
抵抗として1779Ω・cm、B定数として4032K
のサ−ミスタ特性を示した。
In the same manner as in the above embodiment, (Cu 0.1 N
i 0.50 Mn 2.10 Fe 0.30) so as to have the composition of O 4 0.0
A sulfate mixed solution having a concentration of 8 mol / liter was prepared.
The molar equivalent of 1. necessary to precipitate as oxalate.
Dissolve twice the amount of oxalic acid dihydrate in warm water, add this oxalic acid aqueous solution while stirring the above-mentioned sulfate mixture, and precipitate each metal ion as a pale yellow-green oxalic acid double salt. The mixture was stirred and allowed to stand for 28 hours. To this coprecipitation slurry solution, ammonia water diluted three-fold was gradually added, and p
H was adjusted to 1.90 and aged for 24 hours.
After drying, a final coprecipitated dried product was obtained. This is 700
When calcined at 3 ° C. for 3 hours, a thermistor fine powder having easy sinterability was obtained in the same manner as in the above example. Using this calcined fine powder,
The dense sintered body fired at 100 ° C. for 4 hours has a specific resistance of 1779 Ω · cm at 25 ° C. and a B constant of 4032 K
Of the thermistor characteristics.

【0013】共沈組成と仕込組成との比較をするために
ICPによる組成分析を行い、表1に代表例として上記
の3つ実施例の結果を示す。両者の組成間はかなりの一
致を示しており、組成均一性に優れたサ−ミスタ微粒子
粉体が低い加熱処理温度で得られることが明らかであ
る。
A composition analysis by ICP was performed to compare the coprecipitated composition with the charged composition. Table 1 shows the results of the above three examples as typical examples. There is considerable agreement between the two compositions, and it is clear that thermistor fine particles having excellent composition uniformity can be obtained at a low heat treatment temperature.

【0014】上記実施例と同様な方法で、(MnaNib
Fec)O4の一般式で、a+b+c=3、及び、0≦a,b,c<3
の条件で a=1.8〜2.4、 b=0.15〜0.6、 c=0.15〜0.9とな
る組成について実施した結果、25℃での比抵抗として
4000〜130000Ω・cm、B定数として400
0〜4500Kの特性を示した。
In the same manner as in the above embodiment, (Mn a Ni b
Fe c ) In the general formula of O 4 , a + b + c = 3 and 0 ≦ a, b, c <3
A = 1.8 to 2.4, b = 0.15 to 0.6, and c = 0.15 to 0.9 under the conditions described above. As a result, the specific resistance at 25 ° C. is 4,000 to 130,000 Ωcm, and the B constant is 400.
It showed characteristics of 0-4500K.

【0015】上記実施例と同様な方法で、(MnaCob
Nic)O4の一般式で、a+b+c=3、及び、0≦a,b,c<3
の条件で a=1.5〜2.7、 b=0.15〜1.5、 c=0.15〜1.5とな
る組成について実施した結果、25℃での比抵抗が10
0〜100000Ω・cm、B定数が3400〜360
0Kの特性を示した。
In the same manner as in the above embodiment, (Mn a Co b
Ni c ) In the general formula of O4, a + b + c = 3 and 0 ≦ a, b, c <3
As a result of performing a composition of a = 1.5 to 2.7, b = 0.15 to 1.5, and c = 0.15 to 1.5 under the condition, the specific resistance at 25 ° C. is 10
0 to 100000Ωcm, B constant is 3400 to 360
It showed a characteristic of 0K.

【0016】[0016]

【発明の効果】以上述べたごとく、本発明によれば、多
成分系のサ−ミスタについても粒子組成の均一性、粒子
径の大きさや粒子形状の均質性、焼結性などに優れた微
粒子粉体を製造することができる。また、本発明による
微粒子粉体の製造方法は、低い仮焼温度で得られるシュ
ウ酸複塩の仮焼物であるため解砕操作も極めて容易で、
不純物の混入の恐れもなく、従って、微粒子粉体を使用
することによりサ−ミスタ特性の再現性や高信頼性に優
れ、サ−ミスタ素子の小型化や厚膜化が容易となり、こ
の発明により各種のサ−ミスタなどへの幅広い応用化が
加速され、この発明の工業的価値は極めて大きい。
As described above, according to the present invention, even with a multi-component thermistor, fine particles having excellent particle composition uniformity, particle size and particle shape uniformity, sinterability, etc. Powder can be manufactured. In addition, the method for producing fine particle powder according to the present invention is extremely easy to disintegrate because it is a calcined oxalic acid double salt obtained at a low calcining temperature,
There is no danger of impurities being mixed in. Therefore, the use of the fine particle powder provides excellent reproducibility and high reliability of thermistor characteristics, and makes it easy to reduce the size and thickness of the thermistor element. The wide application to various thermistors and the like is accelerated, and the industrial value of the present invention is extremely large.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例の方法によって作製した(Ni0.6Fe
0.3Mn2.1)O4組成の共沈乾燥物(a)と、それを4
00℃(b)、600℃(c)、800℃(d)で加熱
処理したサ−ミスタ微粉体のX線回折図形を示す。
(d)のX線回折図形に書き込まれた数文字は立方晶ス
ピネル構造として指数付けされたミラ−指数である。
FIG. 1 is a cross-sectional view illustrating a method of manufacturing a NiFe alloy according to an embodiment.
0.3 Mn 2.1) O 4 coprecipitation dry matter composition as the (a), it 4
The X-ray diffraction pattern of the thermistor fine powder heat-treated at 00 ° C (b), 600 ° C (c) and 800 ° C (d) is shown.
Several characters written in the X-ray diffraction pattern of (d) are the Miller indices indexed as a cubic spinel structure.

【表1】 [Table 1]

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 (Mn Ni Fe C o
Cu)Oのスピネル組成(a+b+c+d+e=
3、0≦a,b,c,d,e<3)において、マンガ
ン、ニッケル、鉄、コバルト、及び銅の遷移金属の硫酸
の混合溶液、あるいは、これに若干量のエチルアルコ
ールを加えた混合溶液を調整し、これに1.05〜1.
50倍のモル量のシュウ酸水溶液を加えて共沈させ、さ
らにアンモニア水を徐々に加えてpH調整と熟成処理を
行った乾燥共沈殿物を500〜1000℃で加熱処理し
て得られることを特徴とする組成均一性に優れたスピネ
ル系サーミスタ微粉末原料の製造方法。
[Claim 1] (Mn a Ni b Fe c C o d
Cu e ) O 4 spinel composition (a + b + c + d + e =
3,0 ≦ a, b, c, d, e <3), sulfuric acid of transition metal of manganese, nickel, iron, cobalt, and copper
A mixed solution of salt or a mixed solution obtained by adding a small amount of ethyl alcohol to the mixed solution was prepared.
A 50-fold molar amount of an oxalic acid aqueous solution is added for co-precipitation, and furthermore, ammonia water is gradually added to adjust the pH and aging treatment. A method for producing a spinel-based thermistor fine powder raw material having excellent composition uniformity.
【請求項2】 特許請求の範囲第1項の製造方法によっ
て構成されることを特徴とする酸化物系サ−ミスタ素
子。
2. An oxide-based thermistor element comprising the manufacturing method according to claim 1.
JP6095817A 1994-04-08 1994-04-08 Method for producing oxide-based semiconductor fine powder Expired - Lifetime JP2782579B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6095817A JP2782579B2 (en) 1994-04-08 1994-04-08 Method for producing oxide-based semiconductor fine powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6095817A JP2782579B2 (en) 1994-04-08 1994-04-08 Method for producing oxide-based semiconductor fine powder

Publications (2)

Publication Number Publication Date
JPH0855706A JPH0855706A (en) 1996-02-27
JP2782579B2 true JP2782579B2 (en) 1998-08-06

Family

ID=14147980

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6095817A Expired - Lifetime JP2782579B2 (en) 1994-04-08 1994-04-08 Method for producing oxide-based semiconductor fine powder

Country Status (1)

Country Link
JP (1) JP2782579B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4495995B2 (en) * 2004-03-31 2010-07-07 三井金属鉱業株式会社 Method for producing composite black oxide particles, black paint and black matrix
WO2007145030A1 (en) * 2006-06-15 2007-12-21 Murata Manufacturing Co., Ltd. Thermoelectric material
JP5720899B2 (en) * 2011-03-31 2015-05-20 戸田工業株式会社 Manganese nickel composite oxide particle powder and method for producing the same, method for producing positive electrode active material particle powder for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JP6353187B2 (en) * 2012-12-14 2018-07-04 学校法人神奈川大学 Thermoelectric material manufacturing method
DE102014102042A1 (en) 2014-02-18 2015-08-20 Epcos Ag NTC device and method for its production

Also Published As

Publication number Publication date
JPH0855706A (en) 1996-02-27

Similar Documents

Publication Publication Date Title
JPS63156057A (en) Manufacture of high density perovskite ceramics
EP0127427B1 (en) Production of microcrystralline ferrimagnetic spinels
Torii et al. Chemical processing and characterization of spinel-type thermistor powder in the Mn-Ni-Fe oxide system
JP2782579B2 (en) Method for producing oxide-based semiconductor fine powder
TWI732445B (en) Iron-based oxide magnetic powder and method for producing the same
JP3467542B2 (en) Transition metal solid solution type conductive niobate and its production method
JPS61242903A (en) Production of compound oxide ceramic powder
JP4729700B2 (en) Dy-doped nano ceria-based sintered body
KR960002626B1 (en) Process for producing microcrystalline co/ti-substituted barium ferrite platelets
JPH027906B2 (en)
JP2740648B2 (en) Method for producing soft magnetic oxide material
JPS62187116A (en) Production of pzt type piezoelectric ceramic powder sinterable at low temperature
JP3245905B2 (en) Conductive crystal oriented zinc oxide powder and method for producing the same
JPS6236023A (en) Production of calcined powder of easily sinterable perovskite
JPH08191002A (en) Barium titanate system semiconductor ceramics and its manufacturing method
JPS63285150A (en) Production of neodymium-containing dielectric material ceramic
JPS6221759A (en) Manufacture of ferroelectric ceramic by multi-stage wet process
JPS6325223A (en) Production of ceramic raw material powder
JPH07142207A (en) Barium titanate semiconductor ceramic and its manufacture
JPH08203702A (en) Barium titanate semiconductor ceramic and its manufacture
JPH032819B2 (en)
JPS6265907A (en) Production of easy-to-sinter perovskite powder
JPH0336769B2 (en)
JPH08213205A (en) Barium titanate semiconductor ceramics and manufacture thereof
JPS6325265A (en) Manufacture of high density bznt base ferroelectric ceramic

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term