JPS6315510A - Crystal resonator - Google Patents

Crystal resonator

Info

Publication number
JPS6315510A
JPS6315510A JP16065686A JP16065686A JPS6315510A JP S6315510 A JPS6315510 A JP S6315510A JP 16065686 A JP16065686 A JP 16065686A JP 16065686 A JP16065686 A JP 16065686A JP S6315510 A JPS6315510 A JP S6315510A
Authority
JP
Japan
Prior art keywords
vibration
frequency
main vibration
crystal
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16065686A
Other languages
Japanese (ja)
Other versions
JP2864242B2 (en
Inventor
Kenichi Seki
賢一 関
Yukihiko Kato
幸彦 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Dempa Kogyo Co Ltd
Original Assignee
Nihon Dempa Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Dempa Kogyo Co Ltd filed Critical Nihon Dempa Kogyo Co Ltd
Priority to JP61160656A priority Critical patent/JP2864242B2/en
Publication of JPS6315510A publication Critical patent/JPS6315510A/en
Application granted granted Critical
Publication of JP2864242B2 publication Critical patent/JP2864242B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

PURPOSE:To improve the productivity and electric performance such as the crystal impedance (CI) and the spurious characteristic by obtaining the excellent electric characteristic when a frequency difference between the main vibration and the sub vibration of a thickness-shear vibrator is a prescribed value. CONSTITUTION:The face works is applied to the crystal vibrator where a side ratio l/w of a length (l) of the crystal chip excited with the thickness group vibration in x/z' axial direction to a width (w) is selected within 3.52-5.40 so as to make the difference DELTAfm in the frequency between the main vibration and the sub vibration of the said crystal chip to be DELTAfm=2435 X e-0.355F+ or -10%, where (e) is a base of natural logarithm being nearly 2.72 and F is a frequency of the main vibration in the unit of MHz. The equation is an experimental equation introduced from a figure showing the relation between the frequency f0 of the main vibration and the frequency difference DELTAfm minimizing the value CI. In specifying the bevel working quantity for the frequency difference satisfying the experimental equation, the minimum CI value is obtained. Further, when the said experimental equation is satisfied, the other electric characteristics such as the capacitance ratio C1/C0 and the temperature characteristic are improved.

Description

【発明の詳細な説明】 (発明の利用分野) 本発明は、クリスクルインピーダンス(以下、CIとす
る)等の電気的特性にbれた水晶振動子に係わり、特に
、主振動に対する副振動の発生位置を制御して電気的的
特性を良好にした水晶振動子に関する。
Detailed Description of the Invention (Field of Application of the Invention) The present invention relates to a crystal resonator that has electrical characteristics such as cricle impedance (hereinafter referred to as CI), and particularly relates to a crystal resonator that has electrical characteristics such as crystal impedance (hereinafter referred to as CI). This invention relates to a crystal resonator with improved electrical characteristics by controlling the position of generation.

(発明の背景) 水晶振動子は、共振特性の先鋭底を示すQ値が高いこと
から、周波数や時間の基準源として各種の電子PI&器
に多用されろ。特に、切断角度6・所謂ATカットとし
た厚みすべり振動子は、常温付近で平坦な周波数温度特
性を示すので、旧来より通信機型に重用されてきた。近
年では、電子技術、生産技術等の発展により、小型で、
品質に優れた厚みすべり振動子が開発されている。
(Background of the Invention) Quartz crystal resonators have a high Q value, which indicates the sharp bottom of resonance characteristics, and are therefore widely used in various electronic PI & equipment as a reference source for frequency and time. In particular, thickness-shear resonators with a so-called AT cut at a cutting angle of 6 have been traditionally used in communications equipment because they exhibit flat frequency-temperature characteristics near room temperature. In recent years, with the development of electronic technology and production technology, small and
Thickness-shear resonators with excellent quality have been developed.

(従来技術) 第1図は、この種の小型な厚みすべり振動子を説明する
図である。なお、第 図(a)は切断方位、同図(b)
は水晶片の図である。
(Prior Art) FIG. 1 is a diagram illustrating this type of small thickness-shear vibrator. Note that Fig. (a) shows the cutting direction, and Fig. (b) shows the cutting direction.
is a diagram of a crystal piece.

即ち、この厚みすべり振動子は、水晶片1が結晶軸X、
y1Zのy軸を回転軸、yz!IIIを主面とし、y軸
からZ軸に約35° 15′回転して切断される。そ1
7て、新たにできた軸y′を厚みt、7.’軸を幅w、
x軸を長さdと17、X軸方向に長い矩形状に加工され
ろ。例えば長さd r!!8゜1ml′rI±0.2m
m、幅Wを1.5〜2.3mmに設定される。そして、
厚みLが大きく主振動が低い場合には主面に対してy″
−z’側面を傾斜させたりする。そして、通常では、第
2図(a)の断面図に示したように、例えばX軸方向の
両端部の稜線部を切落とす所謂ベベル処理を施す。また
、両主面あるいは片面を曲面状にするコンベックス処理
を施す(第2図す、c)。このベベルやコンベックス処
理等の面加工は、例えば主振動のCIt!!小さくする
作用がある。また、輪郭系等のスプリアス振動を抑圧し
たり、発生位置を遠ざけたりして主振動に対する影響を
防止する。そして、この面加工の条件が小型化の達成に
大きく寄与する。なお、実際には、両主面に図示しない
電極を形成し、この電極が延出した両端部を保持した構
成とする。
That is, in this thickness-shear oscillator, the crystal piece 1 has a crystal axis X,
The y-axis of y1Z is the rotation axis, yz! It is cut by rotating approximately 35 degrees and 15' from the y-axis to the Z-axis, with III as the main surface. Part 1
7. The newly created axis y' has a thickness t, 7. 'axis width w,
Process the x-axis into a rectangular shape with length d and 17, which is long in the x-axis direction. For example, the length dr! ! 8゜1ml'rI±0.2m
m, and the width W is set to 1.5 to 2.3 mm. and,
When the thickness L is large and the main vibration is low, y″ with respect to the main surface
−z' Make the side surface slope. Then, as shown in the cross-sectional view of FIG. 2(a), a so-called bevel process is usually performed in which the ridgeline portions at both ends in the X-axis direction are cut off, for example. In addition, convex treatment is performed to curve both main surfaces or one surface (Fig. 2, c). This surface processing such as bevel and convex processing is, for example, the main vibration CIt! ! It has the effect of making it smaller. In addition, spurious vibrations such as contour vibrations are suppressed or their generation positions are moved away to prevent their influence on the main vibrations. This surface processing condition greatly contributes to achieving miniaturization. Note that, in reality, electrodes (not shown) are formed on both main surfaces, and both ends of the electrodes are held.

(従来技術の欠点) ところで、前述した面加工は、CI、スプリアス特性以
外の例えば容量比CO/c1、温度特性等の他の電気的
特性にも少ながらず影響を及ぼす、 I/かじ、面加工
時におけろ研摩量は微小な機械量であるため、研摩量を
最適値に制御することは困難であった。即ち、機械的な
測定器の誤差範囲内で、電気的特性に影響を及ぼすから
である。従って、実際には、各仕様毎に経験的な勘に基
づき、面加工、特性測定の繰り返しにより作業が行われ
ていた。特に、周波数等の異なる新規な仕様の場合には
、周波数的に近い他の仕様に基づく思考錯誤により、各
特性を満足させていた。従って、このような面加工では
、歩留りが悪く生産性を低下させていた。そして、仕様
が同一で量産の場合には、品質的にもバラツキも多く、
CIの低下、スプリアス発生等の問題があった。
(Disadvantages of Prior Art) By the way, the above-mentioned surface processing has a considerable influence on other electrical characteristics other than CI and spurious characteristics, such as the capacitance ratio CO/c1 and temperature characteristics. Since the amount of polishing during processing is a small mechanical amount, it has been difficult to control the amount of polishing to an optimal value. That is, this is because electrical characteristics are affected within the error range of mechanical measuring instruments. Therefore, in reality, work was carried out by repeating surface machining and characteristic measurements based on empirical intuition for each specification. In particular, in the case of new specifications with different frequencies, each characteristic has been satisfied through thought and error based on other specifications that are close in frequency. Therefore, in such surface processing, the yield is poor and productivity is reduced. Furthermore, in the case of mass production with the same specifications, there are many variations in quality.
There were problems such as a decrease in CI and generation of spurious signals.

(発明の目的) 本発明は、生産性に優れ、特に、CIを良好に17でス
プリアスの発生を防止し、電気的性能に優れた小型な水
晶振動子を提供することを目的とする。
(Object of the Invention) An object of the present invention is to provide a small-sized crystal resonator that has excellent productivity, particularly a good CI of 17, prevents the generation of spurious, and has excellent electrical performance.

(発明の着目点及び解決手段) 本発明は、厚みすべり振動子の主振動と副振動との周波
数差が面加工量に比例して大きくなるととに着目し、主
振動と副振動との周波数差が所定の値のとき良好な電気
的特性を得ることができろことを発見し、 厚み系の振動が励起される水晶片のX軸及びZ′軸方向
の長さ!と幅Wとの辺比1/wを3.52から5.40
の範囲内に設定した水晶振動子において、この水晶片の
主振動と副振動との発生周波数の差Δfmが Δfm=2435×e−””5F′  ±10%((F
3. L、eは自然対数における底値で略2.76、F
は単位をM Hとした主振動の周波数値)になる面加工
を施したことを解決手段とする。
(Point of Interest and Solution of the Invention) The present invention focuses on the fact that the frequency difference between the main vibration and the sub-vibration of the thickness-shear vibrator increases in proportion to the amount of surface processing, and the frequency difference between the main vibration and the sub-vibration is We discovered that good electrical characteristics can be obtained when the difference is a predetermined value, and the length of the crystal piece in the X-axis and Z'-axis directions where thickness-based vibrations are excited! The side ratio 1/w of and width W is 3.52 to 5.40
In a crystal resonator set within the range of
3. L and e are the bottom values of natural logarithms, approximately 2.76, F
The solution is to perform surface processing such that the frequency value of the main vibration is expressed in units of MH.

なお、上記副振動とは、主振動に対して発生する厚み系
のインバーミニツク振動で、ここでは主振動に最も近接
した副振動をいう。
Note that the above-mentioned sub-vibration is a thickness-based inverminic vibration that occurs in response to the main vibration, and here refers to the sub-vibration closest to the main vibration.

(発明の作用) 本発明は、主振動と副振動との周波数差Δfmを Δf m 二2435 X e       ±10%
に設定したので、面加工量を電気的な周波数量として検
出し、加工精度を高めろ一作用がある。以下、本発明の
詳細な説明する。
(Action of the invention) The present invention reduces the frequency difference Δfm between the main vibration and the sub-vibration to Δf m22435X e ±10%.
Since it is set to , the amount of surface machining is detected as an electrical frequency amount, which has the effect of increasing machining accuracy. The present invention will be explained in detail below.

(実施例) なお、実施例の説明では、前述した第1図及び第2図、
及び実験に基づく第3図以降の図を参照して説明する。
(Example) In the description of the example, the above-mentioned FIGS. 1 and 2,
This will be explained with reference to FIG. 3 and subsequent figures based on experiments.

水晶振動子は、第1図で説明したように、結晶軸X軸を
回転軸として約35°152回転して切断されるATカ
ット水晶片1からなる。水晶片1はx、y、z軸方向を
それぞれ長さ11厚みt1幅Wとし、X軸方向に細長い
矩形状に形成されろ。なお、各寸法は、前述したように
、X軸方向の長さ1を8.1±0.2mm、z’軸方向
の幅Wを1.5〜2.3mmとする。
As explained in FIG. 1, the crystal resonator consists of an AT-cut crystal piece 1 that is cut by rotating approximately 35 degrees and 152 degrees with the crystal axis X axis as the rotation axis. The crystal piece 1 has a length of 11, a thickness of t1, and a width of W in the x-, y-, and z-axis directions, respectively, and is formed into a rectangular shape elongated in the x-axis direction. Note that, as described above, each dimension is such that the length 1 in the X-axis direction is 8.1±0.2 mm, and the width W in the z'-axis direction is 1.5 to 2.3 mm.

第3図(a)はこの水晶振動子の共振特性図、同図(b
)はX軸方向の両端にベベル加工を施したときの面加工
量に対する主振動f0と副振動f1との周波数差Δfを
示す図である。即ち、この図では、主振動f0に対し副
振動f、が発生(7、ベペル加工量に比例して1振@J
t oから副搬%f、が遠ざかり周波数差Δfが大きく
なることを示している。
Figure 3 (a) is a resonance characteristic diagram of this crystal resonator, and Figure 3 (b) is a resonance characteristic diagram of this crystal resonator.
) is a diagram showing the frequency difference Δf between the main vibration f0 and the sub-vibration f1 with respect to the amount of surface processing when bevel processing is performed on both ends in the X-axis direction. That is, in this figure, a sub-vibration f is generated for the main vibration f0 (7, 1 vibration @J in proportion to the amount of bevel machining
This indicates that the subcarrier %f moves away from to, and the frequency difference Δf increases.

第4図は主振動f0と副振動f、どの周波数差△fを横
軸、縦軸を主振動r0のCI値としたCI特性図である
。なお、図中の曲線(イ)は主振動の周波数を略8.6
MHz、(ロ)は略8.OMHz、(ハ)は7.2MH
zとしたCI特性である。即ち、曲線(イ)では主振動
と副振動との周波数差Δfが略135 K Hz、曲線
(ロ)では周波数差が150KHz、曲線(ハ)では2
30KHz、とき、CIの最小値をそれぞれ15にΩ、
20にΩ、30にΩとした二次曲線的になる。そして、
図示しない実験の結果でも、主振動f0の周波数に関係
なく所定の周波数差ΔfのときCI値が最小になること
が判明した。なお、主振動の周波数が高いほどCIの最
小値は小さくなる。
FIG. 4 is a CI characteristic diagram in which the horizontal axis represents the main vibration f0 and the secondary vibration f0, which frequency difference Δf, and the vertical axis represents the CI value of the main vibration r0. Note that the curve (a) in the figure has a frequency of main vibration of approximately 8.6.
MHz, (b) is approximately 8. OMHz, (c) is 7.2MH
This is the CI characteristic with z. That is, in curve (A), the frequency difference Δf between the main vibration and sub-vibration is approximately 135 KHz, in curve (B), the frequency difference is 150 KHz, and in curve (C), it is 2
When the frequency is 30KHz, the minimum value of CI is set to 15Ω, respectively.
It becomes a quadratic curve with Ω at 20 and Ω at 30. and,
The results of an experiment (not shown) also revealed that the CI value becomes the minimum when the predetermined frequency difference Δf is reached, regardless of the frequency of the main vibration f0. Note that the higher the frequency of the main vibration, the smaller the minimum value of CI.

第5図は1振@Jtoの周波数とCI値を最小にする周
波数差Δfrnとの関係を示す図である。なお、横軸を
主振動の周波数f1縦軸を1振@Jf。
FIG. 5 is a diagram showing the relationship between the frequency of one swing @Jto and the frequency difference Δfrn that minimizes the CI value. The horizontal axis is the main vibration frequency f1, and the vertical axis is one vibration @Jf.

と副振動f、の周波数差△frnとしている。即ち、こ
の図から明らかなように、1振@Jr oのCI値が最
小になる周波数差Δfmは、主振動f0の周波数が高く
なると指数関数的に小さくなる。例えば主振動が7.1
5MHzてはΔfmが230K HZ、 8 、 OM
 Hy、では150 K H7,1R、6M HZでは
135 K H7,となろ。次式は、この図から導かれ
た1振@f、のCIQ最小にする周波数差Δ「mの実験
式である。即ち、 Δf m = 2435 X e−0、335F±+o
X。
and the sub-vibration f, the frequency difference Δfrn is assumed. That is, as is clear from this figure, the frequency difference Δfm at which the CI value of one vibration @ Jr o becomes the minimum decreases exponentially as the frequency of the main vibration f0 increases. For example, the main vibration is 7.1
At 5MHz, Δfm is 230K Hz, 8, OM
Hy, 150 K H7,1R, 6M HZ, 135 K H7. The following formula is an experimental formula for the frequency difference Δ'm that minimizes the CIQ of one swing @f, derived from this figure. That is, Δf m = 2435 X e-0, 335F±+o
X.

となる。1口17、Cは自然対数における底値て略2.
76、Fは単位をMHzとした主振動の周波数値である
becomes. 1 mouth 17, C is the bottom value in the natural logarithm, approximately 2.
76, F is the frequency value of the main vibration in MHz.

以上から、この実施例では、上記実験式を満足する周波
数差にベベル加工量を規定すれば、最小のCI値を得る
ことができろ。なお、実用上は、第5図の破線に示した
ように水晶片の寸法精度や実験誤差を考慮し、実験式の
±10%の領域であればよい。
From the above, in this embodiment, the minimum CI value can be obtained if the bevel processing amount is defined as a frequency difference that satisfies the above experimental formula. Note that, in practice, as shown by the broken line in FIG. 5, taking into consideration the dimensional accuracy of the crystal piece and experimental errors, it is sufficient to fall within the range of ±10% of the experimental formula.

この実験式を利用し、例えば主振動f。の周波数を8 
、64 M Hzとしたい場合には、F=8゜64を代
入してΔfm=135KHzを得る。従って、この周波
数差に基づいて、水晶片にベベル加工を施せばよいので
、作業を容易にしバラツキを少なくすることができる。
Using this experimental formula, for example, the principal vibration f. frequency of 8
, 64 MHz, substitute F=8°64 to obtain Δfm=135 KHz. Therefore, the crystal blank can be beveled based on this frequency difference, making the work easier and reducing variations.

即ち、従来の経験と勘による加工量を電気的な周波数量
17て高精度に検出できるからである。そして、この実
施例では、この実験式を満足すると、例えば容量比01
/COや温度特性等の他の電気的特性をも良好になるこ
とが確認された。
That is, the amount of machining based on conventional experience and intuition can be detected with high precision using the electrical frequency quantity 17. In this embodiment, if this experimental formula is satisfied, for example, the capacity ratio is 01
It was confirmed that other electrical properties such as /CO and temperature properties were also improved.

(他の事項) なお、上記実施例では、面加工としてベベル処理とした
が、例えばコンベックス処理等の他の面加工であっても
、本実験式は適用される。そして、水晶片の長さl及び
幅Wの寸法は、外形形状が相似であれば同様な特性を得
ることから、辺比d/Wが3.52から5.40であれ
ば同様な効果を奏する。
(Other Matters) In the above embodiment, bevel processing is used as surface processing, but the present empirical formula is also applicable to other surface processing such as convex processing. If the length l and width W of the crystal piece have similar external shapes, similar characteristics will be obtained, so if the side ratio d/W is 3.52 to 5.40, the same effect will be obtained. play.

(発明の効果) 本発明は、厚み系の振動が励起されろ水晶片のX軸及び
Z′軸方向の長さdと幅Wとの辺比d/Wを3.52か
ら5.40の範囲内に設定(7た水晶振動子において、
この水晶片の主振動と副振動との発生周波数の差Δfm
が Δf m= 2435 X e−”””   ±10%
(IQシ、eは自然対数における底値で略2.76、F
は単位をM Hzとした主振動の周波数値)になる面加
工を施したので、 効果として生産性及びCI、スプリアス特性等の電気的
性能を向上させ、実用上の価値が極めて高い水晶振動子
を提供できる。
(Effects of the Invention) The present invention has the advantage that the side ratio d/W of the length d in the X-axis and Z'-axis directions and the width W of the crystal piece is from 3.52 to 5.40 when thickness-based vibrations are excited. Set within the range (for 7 crystal units,
Difference in frequency Δfm between the main vibration and sub-vibration of this crystal piece
is Δf m= 2435 X e−””” ±10%
(IQ, e is the bottom value of the natural logarithm, approximately 2.76, F
is the frequency value of the main vibration in MHz), which improves productivity and electrical performance such as CI and spurious characteristics, making it a crystal resonator with extremely high practical value. can be provided.

は切断方位、同図(b)は水晶片の図である。第2図は
面加工を施(7た水晶片の断面図で、同図(n)はベベ
ル処理、1m図(b)(e)!:iコンベックス処理を
示す図である。第3図(a)は主振動に対する副振動の
発生を示す図、同図(b)は面加工量に対する主振動と
副振動との周波数差を示す図、第4図は主振動に対する
副振動の周波数差と主振動のCIとの関係を示すCI特
性図、第5図は各周波数におけろ主振動のCIを最小に
する主振動と副振動との周波数差を示す図である。
is the cutting direction, and (b) is a diagram of the crystal piece. Figure 2 is a cross-sectional view of a quartz crystal piece that has undergone surface processing (7); figure (n) shows bevel treatment; 1m figures (b) and (e)!: i-convex treatment; figure 3 ( a) is a diagram showing the occurrence of sub-vibration with respect to the main vibration, Figure (b) is a diagram showing the frequency difference between the main vibration and sub-vibration with respect to the amount of surface machining, and Fig. 4 is a diagram showing the frequency difference of sub-vibration with respect to the main vibration. FIG. 5 is a CI characteristic diagram showing the relationship between the main vibration and the CI. FIG. 5 is a diagram showing the frequency difference between the main vibration and the sub-vibration that minimizes the CI of the main vibration at each frequency.

u、1.、、u。u, 1. ,,u.

第3図 fo     fs           MHz(b
) 面加工量 第4図
Figure 3 fo fs MHz (b
) Surface machining amount Figure 4

Claims (1)

【特許請求の範囲】[Claims] (1)厚み系の振動が励起される水晶片のx軸及びz’
軸方向の長さd及び幅wとの辺比d/wが3.52から
5.40の範囲内にある水晶振動子において、主振動と
副振動との発生周波数の差Δfmが Δfm=2435×e^−^0^、^3^3^5^F±
10%(但し、eは自然対数における底値で略2.76
、Fは単位をMHzとした主振動のた周波数値)になる
面加工が施されたことことを特徴とする水晶振動子。
(1) The x-axis and z' of the crystal piece where thickness-based vibrations are excited
In a crystal resonator whose side ratio d/w between the axial length d and the width w is within the range of 3.52 to 5.40, the difference Δfm between the frequencies of main vibration and sub-vibration is Δfm=2435 ×e^-^0^, ^3^3^5^F±
10% (however, e is the bottom value of the natural logarithm and is approximately 2.76
, F is a frequency value of the main vibration in MHz).
JP61160656A 1986-07-08 1986-07-08 Crystal oscillator Expired - Lifetime JP2864242B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61160656A JP2864242B2 (en) 1986-07-08 1986-07-08 Crystal oscillator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61160656A JP2864242B2 (en) 1986-07-08 1986-07-08 Crystal oscillator

Publications (2)

Publication Number Publication Date
JPS6315510A true JPS6315510A (en) 1988-01-22
JP2864242B2 JP2864242B2 (en) 1999-03-03

Family

ID=15719650

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61160656A Expired - Lifetime JP2864242B2 (en) 1986-07-08 1986-07-08 Crystal oscillator

Country Status (1)

Country Link
JP (1) JP2864242B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02112309A (en) * 1988-10-20 1990-04-25 Seiko Electronic Components Ltd Rectangular at cut crystal resonator
JPH02198212A (en) * 1988-04-11 1990-08-06 Matsushima Kogyo Co Ltd Rectangular at vibrator
JPH02198213A (en) * 1988-04-11 1990-08-06 Matsushima Kogyo Co Ltd Overtone rectangular at vibrator
JP2008118685A (en) * 2007-12-03 2008-05-22 Seiko Epson Corp Method of manufacturing crystal blank, and method of manufacturing crystal resonator utilizing crystal blank

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54151389A (en) * 1978-05-19 1979-11-28 Seiko Instr & Electronics Ltd Crystal oscillator of rectangular at cut
JPS5575323A (en) * 1978-12-01 1980-06-06 Seiko Instr & Electronics Ltd Thickness shear oscillator
JPS5669918A (en) * 1979-11-13 1981-06-11 Seiko Instr & Electronics Ltd Rectangular at cut quartz oscillator
JPS5671321A (en) * 1979-11-15 1981-06-13 Seiko Instr & Electronics Ltd Thickness slip oscillator
JPS58171119A (en) * 1982-04-01 1983-10-07 Kinseki Kk Quartz oscillator

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54151389A (en) * 1978-05-19 1979-11-28 Seiko Instr & Electronics Ltd Crystal oscillator of rectangular at cut
JPS5575323A (en) * 1978-12-01 1980-06-06 Seiko Instr & Electronics Ltd Thickness shear oscillator
JPS5669918A (en) * 1979-11-13 1981-06-11 Seiko Instr & Electronics Ltd Rectangular at cut quartz oscillator
JPS5671321A (en) * 1979-11-15 1981-06-13 Seiko Instr & Electronics Ltd Thickness slip oscillator
JPS58171119A (en) * 1982-04-01 1983-10-07 Kinseki Kk Quartz oscillator

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02198212A (en) * 1988-04-11 1990-08-06 Matsushima Kogyo Co Ltd Rectangular at vibrator
JPH02198213A (en) * 1988-04-11 1990-08-06 Matsushima Kogyo Co Ltd Overtone rectangular at vibrator
JPH02112309A (en) * 1988-10-20 1990-04-25 Seiko Electronic Components Ltd Rectangular at cut crystal resonator
JP2008118685A (en) * 2007-12-03 2008-05-22 Seiko Epson Corp Method of manufacturing crystal blank, and method of manufacturing crystal resonator utilizing crystal blank

Also Published As

Publication number Publication date
JP2864242B2 (en) 1999-03-03

Similar Documents

Publication Publication Date Title
CN105393455B (en) Elastic wave device
US3128397A (en) Fork-shaped quartz oscillator for audible frequency
JP2006148622A (en) Surface acoustic wave device and electronic equipment
JP3096472B2 (en) SC-cut crystal unit
JPS6315510A (en) Crystal resonator
JPH0210669Y2 (en)
JPWO2008114715A1 (en) Lamb wave type elastic wave device
US3408515A (en) Second overtone dt-cut quartz resonator
JP4465464B2 (en) Lamb wave type elastic wave device
US4455503A (en) Rectangular piezoelectric resonator with a slot in one surface
US2554324A (en) Piezoelectric device of ammonium pentaborate crystal
US2277245A (en) Piezoelectric crystal apparatus
JPH07120920B2 (en) Rectangular crystal unit for overtone
US2661433A (en) Piezoelectric device
US2554332A (en) Piezoelectric device constructed of pentaborate crystal
US2176653A (en) Two-frequency piezoelectric element
TWI747636B (en) Acoustic wave device
JP3194442B2 (en) SC-cut crystal unit
JPS62183208A (en) Crystal resonator for overtone
JP2884569B2 (en) Method of manufacturing rectangular AT-cut quartz resonator for overtone
JP3231055B2 (en) SC-cut crystal unit
Spencer Transverse Thickness Modes in BT‐Cut Quartz Plates
JPH0230207A (en) Crystal resonator and its manufacture
US2837667A (en) Piezo-electric quartz crystal plate
JPS59127413A (en) Lithium tantalate oscillator

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term