JPS63153554A - Electrophotographic sensitive body - Google Patents

Electrophotographic sensitive body

Info

Publication number
JPS63153554A
JPS63153554A JP30355686A JP30355686A JPS63153554A JP S63153554 A JPS63153554 A JP S63153554A JP 30355686 A JP30355686 A JP 30355686A JP 30355686 A JP30355686 A JP 30355686A JP S63153554 A JPS63153554 A JP S63153554A
Authority
JP
Japan
Prior art keywords
layer
photoreceptor
ctm
cgm
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP30355686A
Other languages
Japanese (ja)
Other versions
JPH0513494B2 (en
Inventor
Kiyoshi Tamaki
玉城 喜代志
Koichi Kudo
浩一 工藤
Yoshihiko Eto
嘉彦 江藤
Yoshiaki Takei
武居 良明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP30355686A priority Critical patent/JPS63153554A/en
Publication of JPS63153554A publication Critical patent/JPS63153554A/en
Publication of JPH0513494B2 publication Critical patent/JPH0513494B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/05Organic bonding materials; Methods for coating a substrate with a photoconductive layer; Inert supplements for use in photoconductive layers
    • G03G5/0503Inert supplements
    • G03G5/051Organic non-macromolecular compounds
    • G03G5/0517Organic non-macromolecular compounds comprising one or more cyclic groups consisting of carbon-atoms only
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/05Organic bonding materials; Methods for coating a substrate with a photoconductive layer; Inert supplements for use in photoconductive layers
    • G03G5/0503Inert supplements
    • G03G5/051Organic non-macromolecular compounds
    • G03G5/0514Organic non-macromolecular compounds not comprising cyclic groups
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/05Organic bonding materials; Methods for coating a substrate with a photoconductive layer; Inert supplements for use in photoconductive layers
    • G03G5/0503Inert supplements
    • G03G5/051Organic non-macromolecular compounds
    • G03G5/0521Organic non-macromolecular compounds comprising one or more heterocyclic groups

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Photoreceptors In Electrophotography (AREA)

Abstract

PURPOSE:To obtain the good sensitivity and the excellent anti-pollution property of the titled body by incorporating a specific compd. to the titled body, thereby enabling to apply to positive and negative electrification. CONSTITUTION:The titled body is formed by providing the layers composed of an electric charge generating substance (CGM) 5 and an electric charge transfer substance (CTM) 6 on an electric conductive supporting body 1. The titled body contains the compd. shown by the formula I wherein R and R1 are each alkyl, aryl, aralkyl group or a hetero ring. The photosensitive body layer provided on the electric conductive supporting body 1 may be composed of a monolayer structure which mixes the CTM 6 and the CGM 5, or a plural- layer structure which is constituted by the layer contg. the CTM 6 as an under layer and the layer contg. the CGM 5 as an upper layer or vice versa. And as necessary, a protective layer (OCL) 8 may be provided on the photosensitive layer. Thus, the reduction of voltage caused by corona electrification by irradiating UV ray is improved, and the lowering of the sensitivity can be practically eliminated.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は電子写真感光体に関し、特に有機光導電性電子
写真感光体の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to electrophotographic photoreceptors, and more particularly to improvements in organic photoconductive electrophotographic photoreceptors.

〔従来の技術〕[Conventional technology]

カールソン方法の電子写真複写機においては、感光体表
面に帯電させた後、露光によって静電潜像を形成し、そ
の静電潜像をトナーによって現像し、次いでその可視像
を紙等に転写、定着させる。
In an electrophotographic copying machine using the Carlson method, the surface of a photoreceptor is charged, an electrostatic latent image is formed by exposure, the electrostatic latent image is developed with toner, and the visible image is then transferred to paper, etc. , make it established.

一方、感光体には付着トナーの除去や除電、表面の清浄
化が施され、長期に亘って反復使用される。
On the other hand, the photoreceptor is subjected to removal of adhered toner, neutralization of static electricity, and surface cleaning, and is used repeatedly over a long period of time.

従って、電子写真感光体としては、帯電特性および感度
が良好で更に暗減衰が小さい等の電子写真特性は勿論、
加えて繰返し使用での耐刷性、耐摩耗性、耐湿性等の物
理的性質や、コロナ放電時に発生するオゾン、露光時の
紫外線等への耐性(It環境性)においても良好である
ことが要求される。
Therefore, as an electrophotographic photoreceptor, it not only has good charging characteristics and sensitivity, but also has electrophotographic characteristics such as low dark decay.
In addition, it has good physical properties such as printing durability, abrasion resistance, and moisture resistance after repeated use, as well as resistance to ozone generated during corona discharge, ultraviolet rays during exposure, etc. (It environmental resistance). required.

従来、電子写真感光体としては、セレン、酸化亜鉛、硫
化カドミウム等の無機光導電性物質を主成分とする感光
体層を有する無機感光体が広く用いられている。
Conventionally, inorganic photoreceptors having a photoreceptor layer containing an inorganic photoconductive substance such as selenium, zinc oxide, or cadmium sulfide as a main component have been widely used as electrophotographic photoreceptors.

一方、種々の有機光導電性物質を電子写真感光体の感光
体層の材料として利用することが近年活発に研究、開発
されている。
On the other hand, the use of various organic photoconductive substances as materials for photoreceptor layers of electrophotographic photoreceptors has been actively researched and developed in recent years.

例えば特公昭50−10496号には、ポリ−N−ビニ
ルカルバゾールと2.4.7−)リニトロー9−フルオ
レノンを含有した感光体層を有する有機感光体について
記載されている。しかしこの感光体は、感度及び耐久性
において必ずしも満足できるものではない。このような
欠点を改善するために、感光体層において、電荷発生機
能と電荷輸送機能とを異なる物質に個別に分担させるこ
とにより、感度が高くて耐久性の大きい有機感光体を開
発する試みがなされている。このようないわば機能分離
型の電子写真感光体においては、各機能を発揮する物質
を広い範囲のものから選択することができるので、任意
の特性を有する電子写真感光体を比較的容易に作製する
ことが可能である。
For example, Japanese Patent Publication No. 10496/1983 describes an organic photoreceptor having a photoreceptor layer containing poly-N-vinylcarbazole and 2,4,7-)linitro-9-fluorenone. However, this photoreceptor is not necessarily satisfactory in sensitivity and durability. In order to improve these drawbacks, attempts have been made to develop organic photoreceptors with high sensitivity and durability by assigning charge generation and charge transport functions to different materials in the photoreceptor layer. being done. In such so-called function-separated type electrophotographic photoreceptors, substances that exhibit each function can be selected from a wide range of materials, so it is relatively easy to produce electrophotographic photoreceptors with arbitrary characteristics. Is possible.

こうした機能分離型の電子写真感光体に有効な電荷発生
物質として、従来数多くの物質が提案されている。無機
物質を用いる例としては、例えば特公昭43−1619
8号に記載されているように、無定形セレンがある。こ
れは有機電荷輸送物質と組合される。
Many substances have been proposed as charge-generating substances that are effective for such functionally separated electrophotographic photoreceptors. Examples of using inorganic substances include, for example, Japanese Patent Publication No. 43-1619
As described in No. 8, there is amorphous selenium. This is combined with an organic charge transport material.

また、有機染料や有機顔料を電荷発生物質として用いた
電子写真感光体も多数提案されており、例えば、ビスア
ゾ化合物を含有する感光体層を有するものは、特開昭4
7−37543号、同55−22834号、同54−7
9632号、同56−116040号等により既に知ら
れている。
In addition, many electrophotographic photoreceptors using organic dyes or organic pigments as charge-generating substances have been proposed. For example, one having a photoreceptor layer containing a bisazo compound was published in
No. 7-37543, No. 55-22834, No. 54-7
It is already known from No. 9632, No. 56-116040, etc.

ところで、有機光導電性物質を用いる公知の感光体は通
常、負帯電用として使用されている。この理由は、負帯
電使用の場合には、電荷のうちホールの移動度が大きい
ことから、光感度等の面で有利なためである。
By the way, known photoreceptors using organic photoconductive substances are generally used for negative charging. The reason for this is that when negative charging is used, the mobility of holes among the charges is large, which is advantageous in terms of photosensitivity and the like.

しかしながら、このような負帯電使用の場合の問題は、
帯電器による負帯電時に雰囲気中にオゾンが発生し易く
なり、環境条件を悪くしてしまう。
However, the problem with using such a negative charge is that
Ozone is likely to be generated in the atmosphere when negatively charged by the charger, worsening the environmental conditions.

また、負帯電用感光体の現像には正極性のトナーが必要
となるが、正極性のトナーは強磁性体電荷粒子に対する
摩擦帯電系列からみて製造が困難であることである。
Further, a positive polarity toner is required for development of a negatively charged photoreceptor, but it is difficult to manufacture a positive polarity toner in view of the triboelectric charging sequence with respect to ferromagnetic charged particles.

そこで、有機光導電性物質を用いる感光体を正帯電で使
用する、例えば、電荷発生層上に電荷輸送層を積層し、
電荷輸送層を電子輸送能の大終い物質で形成する正帯電
感光体等が提案されている。
Therefore, a photoreceptor using an organic photoconductive substance is used with positive charging, for example, a charge transport layer is laminated on a charge generation layer.
Positively charged photoreceptors and the like have been proposed in which the charge transport layer is formed of a material with a high electron transport ability.

しかしながら電荷輸送層に例えばトリニトロフルオレノ
ン等を含有せしめると、該物質が発癌性である等の問題
を提起することがある。他方、ホール輸送能の大軽い電
荷輸送層上に電荷発生層を積層した正帯電感光体が考え
られるが、この機構では表面側に存在させる電荷発生層
を非常に薄くする必要があり、耐刷性等が悪くなり、実
用的な層構成ではない。
However, if the charge transport layer contains, for example, trinitrofluorenone, problems may arise, such as that the substance is carcinogenic. On the other hand, a positively charged photoreceptor in which a charge generation layer is laminated on a light charge transport layer with high hole transport ability is considered, but with this mechanism, the charge generation layer on the surface side needs to be extremely thin, and printing durability is limited. The layer structure is not practical because of poor properties.

また、正帯電感光体として、米国特許3,615,41
4号には、チアピリリウム塩(電荷発生物質)をポリカ
ーボネート(バイング樹脂)と錯体を形成するように含
有させたものが示されている。しかしこの感光体では、
メモリ現象が大きく、ゴーストも発生し易いという欠点
がある。また米国特許3,357 、989号には、7
タロシアニンを含有せしめた感光体が示されているが、
7タロシアニンは結晶型によって特性が変化する上に、
結晶型を厳密に制御する必要があり、更に短波長感度が
不足しかつメモリ現象も大かく、可視光波長域の光源を
用いる複写機には不適当である。
In addition, as a positively charged photoreceptor, U.S. Patent No. 3,615,41
No. 4 shows a product containing a thiapyrylium salt (charge generating substance) so as to form a complex with polycarbonate (baing resin). However, with this photoreceptor,
The drawbacks are that the memory phenomenon is large and ghosts are likely to occur. Also, in U.S. Patent No. 3,357,989, 7
Although a photoreceptor containing talocyanine is shown,
7 Talocyanine has properties that change depending on the crystal type, and
It is necessary to strictly control the crystal type, and furthermore, the short wavelength sensitivity is insufficient and the memory phenomenon is large, making it unsuitable for copying machines that use light sources in the visible wavelength range.

このように正帯電感光体を得るための試みが種々行なわ
れているが、いずれも光感度、メモリ現象又は労働衛生
等、また紫外線耐性、耐オゾン酸化性等の耐用性の点で
改善すべき多くの問題点がある。
Various attempts have been made to obtain positively charged photoreceptors, but all of them require improvements in terms of photosensitivity, memory phenomenon, occupational hygiene, etc., and durability such as ultraviolet resistance and ozone oxidation resistance. There are many problems.

そこで機能上から光照射時ホール及び電子を発生する電
荷発生物質を含有する電荷発生層を上層(表面層)とし
、ホール輸送機能を有する電荷輸送物質を含む電荷輸送
層を下層とする積層構成の感光体を正、負両用帯電感光
体の基本形とし、足らざるを補完することが考えられる
Therefore, from a functional standpoint, a laminated structure in which the upper layer (surface layer) is a charge generation layer containing a charge generation substance that generates holes and electrons when irradiated with light, and the lower layer is a charge transport layer containing a charge transport substance having a hole transport function. It is conceivable to make the photoreceptor the basic form of a photoreceptor for both positive and negative charging, and to supplement what is lacking.

なおかかる感光体においては、構造中に例えば電子吸引
性基を有する電荷発生物質を用いるようにすれば、感光
体表面の正電荷を打消すための電子の移動が早くなり、
高感度特性が得られることが考えられる。
In addition, in such a photoreceptor, if a charge generating substance having, for example, an electron-withdrawing group is used in the structure, the movement of electrons to cancel the positive charge on the surface of the photoreceptor becomes faster.
It is thought that high sensitivity characteristics can be obtained.

しかしながら、前記正帯電感光体は電荷発生物質を含む
層が表面層として形成されるため、光照射、特に紫外線
等の短波光照射、コロナ放電、湿度、オゾン酸化、機械
的摩擦等外部作用に脆弱な電荷発生物質が直接に曝され
ることとなり、感光体の保存中及び像形成の過程で電子
写真性能が劣化し、画質が低下するようになる。
However, since the positively charged photoreceptor is formed with a layer containing a charge generating substance as a surface layer, it is vulnerable to external effects such as light irradiation, especially short wave light irradiation such as ultraviolet light, corona discharge, humidity, ozone oxidation, and mechanical friction. As a result, the electrophotographic performance deteriorates during the storage of the photoreceptor and during the image formation process, resulting in a decrease in image quality.

従来の電荷輸送層を表面層とする負帯電感光体において
は、前記各種の外部作用の影響は極めて少なく、むしろ
前記電荷輸送層が下層の電荷発生層を保護する作用を有
している。
In a negatively charged photoreceptor having a conventional charge transport layer as a surface layer, the effects of the various external effects described above are extremely small, and rather the charge transport layer has the effect of protecting the underlying charge generation layer.

そこで、例えば絶縁性かつ透明な樹脂から成る薄い保護
層を設け、前記電荷発生物質を含む層を外部作用から保
護することが考えられるが、光照射時発生する電荷が該
保護層でブロッキングされて光照射効果が失なわれてく
るし、また表面層となる保護層が厚い場合には感度低下
を招慇、剰え紫外線遮断効果も少いので、外部作用から
の遮蔽、特に紫外線からの保護を単なる保護層だけに委
ねることはできない。
Therefore, it is conceivable to provide a thin protective layer made of an insulating and transparent resin to protect the layer containing the charge-generating substance from external effects, but the protective layer may block the charges generated during light irradiation. The effect of light irradiation will be lost, and if the protective layer that forms the surface layer is thick, it will lead to a decrease in sensitivity and the effect of blocking excess ultraviolet rays will be small. It cannot be left to the protection layer alone.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、正、負帯電に適用することができ、良
好な感度を有し、耐環境性に優れ、特に紫外線耐性、耐
酸化性がよく、耐用物性のよい有機光導電性電子写真感
光体の提供にある。
The object of the present invention is to provide an organic photoconductive electrophotographic material that can be applied to positive and negative charging, has good sensitivity, excellent environmental resistance, particularly has good ultraviolet resistance and oxidation resistance, and has good durability. The purpose is to provide a photoreceptor.

〔発明の構成及び作用効果〕[Structure and effects of the invention]

前記本発明の目的は、導電性支持体上に電荷発生物質(
CG Mと標記)及び電荷輸送物質(CT Mと標記)
を含んでなる層を有する電子写真感光体に於て、下記一
般式で表わされる化合物を含有することを特徴とする電
子写真感光体によって達成される。
The object of the present invention is to provide a charge generating substance (
CG M) and charge transport material (CT M)
This is achieved by an electrophotographic photoreceptor having a layer containing the following, which is characterized by containing a compound represented by the following general formula.

一般式 %式% 式中、R及びR3はアルキル、アリール、アラルキルあ
るいはへテロ環の各基を表す。
General formula % Formula % In the formula, R and R3 represent alkyl, aryl, aralkyl or heterocyclic groups.

本発明に係る導電性支持体上に設ける感光体層は、CT
M及びCGMを混和した単層構成でもよいし、CTMを
含む層を下層としCGMを含む層を上層とする複層構成
でもよし或はその逆の構成でもよい。また必要に応じて
保護層 (OCLと標記)を設けてもよい。
The photoreceptor layer provided on the conductive support according to the present invention is CT
It may be a single-layer structure in which M and CGM are mixed, or a multi-layer structure in which a layer containing CTM is a lower layer and a layer containing CGM is an upper layer, or vice versa. Further, a protective layer (marked as OCL) may be provided as necessary.

本発明に係る化合物は前記の少くとも一層に添加される
が感光体層表層に添加されることが好ましい。尚表層に
最も濃密に、内部にゆくに従って逓減させる形態であっ
てもよい。
The compound according to the present invention is added to at least one of the above layers, but is preferably added to the surface layer of the photoreceptor layer. In addition, it may be in a form where it is most concentrated on the surface layer and gradually decreases toward the inside.

以下に本発明の詳細な説明する。The present invention will be explained in detail below.

カールソンプロセスに基く電子写真プロセスには、一般
に像露光、消去露光、転写前露光、クリーニング露光等
に紫外線を発生する光源が用いられており、該光源から
の光に含まれ、可視光に比べ大きなエネルギを有する紫
外線の繰返し照射は、感光体に用いられている有機化合
物分子を解裂させるに充分である。即ち感光体をなすC
GM、CTM或はバインダ等はラジカル解離を起し本来
の分子構造を失って劣化し、従って感光体の劣化を招来
し、具体的には感度低下、残電位上昇等を惹起し、かフ
リの発生、画質の低下に陥る。
In the electrophotographic process based on the Carlson process, a light source that generates ultraviolet rays is generally used for image exposure, erasing exposure, pre-transfer exposure, cleaning exposure, etc. Repeated irradiation with energetic ultraviolet light is sufficient to cleave the organic compound molecules used in the photoreceptor. That is, C forming the photoreceptor
GM, CTM, binders, etc. cause radical dissociation, lose their original molecular structure, and deteriorate, resulting in deterioration of the photoreceptor. Specifically, they cause a decrease in sensitivity, an increase in residual potential, etc. occurs, resulting in a decline in image quality.

感光体の紫外線或は紫外線及びオゾンによって誘発、派
生する複合劣化は反復して付加される各種露光処理、コ
ロナ放電によって生ずるが、露光によって発生する一重
項酸素によっても強められると考えられる。また、感光
体の層構成、CGMやCTMの種類等によっても紫外線
等による複合劣化を受ける程度は変化するが、CTMの
方が劣化を受は易く、特に有機光導電性物質を使用する
場合、その影響は極めて大かい。
The combined deterioration induced and derived from ultraviolet rays or ultraviolet rays and ozone in the photoreceptor is caused by various exposure treatments and corona discharge that are repeatedly applied, but it is also thought to be enhanced by singlet oxygen generated by exposure. In addition, the degree of combined deterioration caused by ultraviolet rays etc. varies depending on the layer structure of the photoreceptor, the type of CGM or CTM, etc., but CTM is more susceptible to deterioration, especially when organic photoconductive materials are used. The impact is extremely large.

本発明者らは、感光体の複合劣化(特に電位低下)の改
良に関し鋭意検討の結果、感光体層中に前記一般式で示
される特定のα、β不飽和ケトン類化合物が複合劣化を
着しく防止するだけでなく、その他の電子写真特性や物
理的性質の向上にも寄与することを見い出した。
As a result of intensive studies regarding the improvement of composite deterioration (particularly potential drop) of photoreceptors, the present inventors found that a specific α, β unsaturated ketone compound represented by the above general formula in the photoreceptor layer causes composite deterioration. It has been found that this method not only prevents the damage from occurring, but also contributes to improving other electrophotographic properties and physical properties.

前記の本発明に係る化合物即ち一般に紫外線吸収剤と目
される化合物の有機物質に対する安定化8!1構として
は、紫外#X(UVと標記することがある)の保有する
分解エネルギがU■吸収剤内で振動のエネルギに変貌す
ることによると思われる。
Stabilization of the compound according to the present invention, that is, a compound generally regarded as an ultraviolet absorber, against organic substances 8!1 The decomposition energy possessed by ultraviolet #X (sometimes referred to as UV) is U■ This is thought to be due to the energy being transformed into vibration energy within the absorbent.

この振動のエネルギは該UV吸収剤から熱エネルギとし
て放出されるが、熱エネルギでは既に有機物質を劣化さ
せるには不充分であって、感光体は紫外線の繰返し照射
による害から保護されるものと思われる。
The energy of this vibration is released as thermal energy from the UV absorber, but the thermal energy is already insufficient to degrade the organic material, and the photoreceptor is protected from harm caused by repeated UV irradiation. Seem.

以下に本発明の化合物の代表的具体例を示すが、これに
よって本発明に用いられる化合物がこれらに限定される
ものではない。
Typical specific examples of the compounds of the present invention are shown below, but the compounds used in the present invention are not limited thereto.

R−C−CH=CH−R。R-C-CH=CH-R.

本発明において用いられる前記一般式で示される化合物
(以下、本発明の化合物と称する)の添加量は、感光体
の層構成、CTMの種類などによって一定ではないが、
CTMに対して、0.1〜100重量%、好ましくは1
〜50重量%、特に好ましくは5〜25重量%の範囲で
用いられる。
The amount of the compound represented by the above general formula used in the present invention (hereinafter referred to as the compound of the present invention) is not constant depending on the layer structure of the photoreceptor, the type of CTM, etc.
0.1 to 100% by weight, preferably 1% by weight based on CTM
It is used in an amount of 50 to 50% by weight, particularly preferably 5 to 25% by weight.

次に本発明の感光体の構成を図面によって説明する。Next, the structure of the photoreceptor of the present invention will be explained with reference to the drawings.

本発明の感光体は例えば第1図に示すように支持体1 
(導電性支持体またはシート上に導電層を設けたもの)
上にC0M5と必要に応じてバインダ樹脂を含有する電
荷発生層(以下、CGLと標記する)2を下層とし、C
TM6と必要に応じてバインダ樹脂を含有する電荷輸送
層(以下、CTLと標記する)3を上層とする積層構成
の感光体層4を設けたもの、第2図に示すように支持体
1上にCTL3を下層とし、CGL2を上層とする積層
構成の感光体層4を設けたもの、および第3図に示すよ
うに支持体1上にCGM、CTMおよび必要に応じてバ
インダ樹脂を含有する単層構成の感光体層4を設けたも
の等が挙げられる。
The photoreceptor of the present invention has a support 1 as shown in FIG.
(A conductive layer provided on a conductive support or sheet)
A charge generating layer (hereinafter referred to as CGL) 2 containing C0M5 and a binder resin as required is the lower layer, and C
As shown in FIG. 2, a photoreceptor layer 4 having a laminated structure having a charge transport layer (hereinafter referred to as CTL) 3 containing TM6 and a binder resin as an upper layer is provided, as shown in FIG. A photoreceptor layer 4 having a laminated structure with CTL3 as a lower layer and CGL2 as an upper layer is provided on the support 1, and as shown in FIG. Examples include those provided with a photoreceptor layer 4 having a layered structure.

また、第2図と同様の層構成で上層のCGLにCGMと
CTMの両方が含有されてもよく、該層の上に保護層(
OCL )を設けてもよく、支持体と感光体層の間に中
間層を設けてもよい。第4図にその1例を示しである。
In addition, both CGM and CTM may be contained in the upper CGL layer with the same layer configuration as shown in FIG. 2, and a protective layer (
OCL) may be provided, and an intermediate layer may be provided between the support and the photoreceptor layer. An example is shown in FIG.

すなわち、支持体1上に中間層7を設け、その上にCT
M6aとバインダ樹脂を含有するCTL3およびC0M
5、CTM6bおよびバインダ樹脂を含有するCGL2
を積層した感光体層4を有し、更にパイングを主成分と
する0CL8を設けた感光体である。
That is, the intermediate layer 7 is provided on the support 1, and the CT
CTL3 and C0M containing M6a and binder resin
5. CGL2 containing CTM6b and binder resin
This photoreceptor has a photoreceptor layer 4 which is a laminated layer, and is further provided with OCL8 whose main component is pine.

本発明の化合物は、感光体を構成するCGL。The compound of the present invention is CGL that constitutes a photoreceptor.

CTL、単層構成感光体層またはOCLのいずれに含有
されてもよく、複数層に含有されてもよい。
It may be contained in any of the CTL, single-layer structure photoreceptor layer, or OCL, or may be contained in multiple layers.

本発□明の効果がより顕者に発揮されるのは、CGLを
上層としCTLを下層とする積層構成の感光体において
である。
The effect of the present invention is more clearly exhibited in a photoreceptor having a laminated structure in which CGL is an upper layer and CTL is a lower layer.

次に本発明に適するCGMとしては、可視光を吸収して
フリー電荷を発生するものであれば、無機顔料及び有機
顔料の何れをも用いることができ=12− る。無定形セレン、三方晶系セレン、セレン−砒素合金
、セレン−テルル合金、硫化カドミウム、セレン化カド
ミウム、硫セレン化カドミウム、硫化水銀、酸化鉛、硫
化鉛等の無機顔料の外、次の代表例で示されるような有
機顔料が用いられる。
Next, as CGM suitable for the present invention, both inorganic pigments and organic pigments can be used as long as they absorb visible light and generate free charges. In addition to inorganic pigments such as amorphous selenium, trigonal selenium, selenium-arsenic alloy, selenium-tellurium alloy, cadmium sulfide, cadmium selenide, cadmium selenide sulfide, mercury sulfide, lead oxide, lead sulfide, the following representative examples Organic pigments such as those shown are used.

(1) モノアゾ顔料、ポリアゾ顔料、金属錯塩アゾ顔
料、ピラゾロンアゾ顔料、スチルベンアゾ及びチアゾー
ルアゾ顔料等のアゾ系顔料。
(1) Azo pigments such as monoazo pigments, polyazo pigments, metal complex azo pigments, pyrazolone azo pigments, stilbene azo and thiazole azo pigments.

(2)ペリレン酸無水物及びペリレン酸イミド等のペリ
レン系顔料。
(2) Perylene pigments such as perylene anhydride and perylene imide.

(3) アントラキノン誘導体、アントアントロン誘導
体、ジベンズピレンキノン誘導体、ピラントロン誘導体
、ビオラントロン誘導体及びイソビオラントロン誘導体
等のアントラキノン系又は多環キノン系顔料。
(3) Anthraquinone-based or polycyclic quinone-based pigments such as anthraquinone derivatives, anthanthrone derivatives, dibenzpyrenequinone derivatives, pyrantrone derivatives, violanthrone derivatives, and isoviolanthrone derivatives.

(4) インジゴ誘導体及びチ□オインジゴ誘導体等の
インジゴイド系顔料。
(4) Indigoid pigments such as indigo derivatives and thi□oindigo derivatives.

(5) 金属7タロシアニン及び無金属7タロシアニン
等の7タロシアエン系顔料。
(5) 7-thalocyanine pigments such as metallic 7-thalocyanine and non-metallic 7-thalocyanine.

(6)yフェニルメタン系顔料、トリフェニルメタン顔
料、キサンチン顔料及びアクリジン顔料等のカルボニウ
ム系顔料。
(6) Carbonium pigments such as phenylmethane pigments, triphenylmethane pigments, xanthine pigments, and acridine pigments.

(7)アジン顔料、オキサジン顔料及びチアジン顔料等
のキサンチン顔料。
(7) Xanthine pigments such as azine pigments, oxazine pigments and thiazine pigments.

(8) シアニン顔料及びアゾメチン顔料等のメチン系
顔料。
(8) Methine pigments such as cyanine pigments and azomethine pigments.

(9) キノリン系顔料。(9) Quinoline pigment.

(10)ニトロ系顔料。(10) Nitro pigment.

(11)  ニトロソ系顔料9 (12)ベンゾキノン及びす7トキノン系顔料(13)
  す7タルイミド系顔料。
(11) Nitroso pigment 9 (12) Benzoquinone and 7-toquinone pigment (13)
7 Talimide pigment.

(14)  ビスベンズイミグゾール誘導体等のペリノ
ン系顔料。
(14) Perinone pigments such as bisbenzimiguzole derivatives.

前記本発明に用いられるアゾ系顔料としては、例えば次
の例示構造化合物群(1)〜(V)で示されるものがあ
り、該例示構造化合物群の中の個々の好ましい具体的化
合物の数例を併せ掲げる。
Examples of the azo pigments used in the present invention include those shown in the following exemplary structural compound groups (1) to (V), and some examples of preferable specific compounds among the exemplary structural compound groups: are also listed.

その好ましい具体的化合物の全容については特願昭61
−195881号が参照される。
For details of the preferred specific compounds, please refer to the patent application filed in 1983.
Reference is made to No.-195881.

、讐。, enemy.

例示構造化合物群〔I〕: 例示構造化合物群CII ) : 例示構造化合物1!f、 CIll ) 。Exemplary structural compound group [I]: Exemplary structural compound group CII): Exemplary structural compound 1! f, CIll).

また、以下の多環キノン顔料から成る例示構造化合物群
[VI)〜〔■〕はCGMとして最も好ま\−−−、″ 例示構造化合物群〔■〕: 例示構造化合物JIT、 (Vll )・例示構造化合
物11T (■〕・ 次に本発明で使用可能なCT Mとしては、特に9A− 制限はないが、例えばオキザゾール誘導体、オキザジア
ゾール誘導体、チアゾール誘導体、チアジアゾール誘導
体、トリアゾール誘導体、イミダゾール誘導体、イミダ
ゾール誘導体、イミダゾリジン誘導体、ビスイミダゾリ
ジン誘導体、スチリル化合物、ヒドラゾン化合物、ピラ
ゾリン誘導体、オキザゾロン誘導体、ベンゾデアゾール
誘導体、ベンズイミダゾール誘導体、キナゾリン誘導体
、ベンゾフラン誘導体、アクリジン誘導体、フェナジン
誘導体、アミノスチルベン誘導体、ポリ−N−ビニルカ
ルバゾール、ポリ−1−ビニルピレン、ポリ−9−ビニ
ルアントラセン等であってよい。
In addition, the following exemplary structural compound groups [VI] to [■] consisting of polycyclic quinone pigments are most preferable as CGM\---,'' Exemplary structural compound group [■]: Exemplary structural compounds JIT, (Vll)・Examples Structural compound 11T (■) Next, CTM that can be used in the present invention is 9A- Although there is no particular restriction, examples include oxazole derivatives, oxadiazole derivatives, thiazole derivatives, thiadiazole derivatives, triazole derivatives, imidazole derivatives, imidazole derivatives, Imidazolidine derivatives, bisimidazolidine derivatives, styryl compounds, hydrazone compounds, pyrazoline derivatives, oxazolone derivatives, benzodeazole derivatives, benzimidazole derivatives, quinazoline derivatives, benzofuran derivatives, acridine derivatives, phenazine derivatives, aminostilbene derivatives, poly-N- It may be vinylcarbazole, poly-1-vinylpyrene, poly-9-vinylanthracene, etc.

しかしながら光照射時発生ずるホールの支持体側への輸
送能力が優れている外、前記CGMとの組合せに好適な
ものが好ましく用いられ、かかるC ’It” Mとし
ては、例えば下記例示構造化合物群〔IX〕又は(X)
で示されるスヂル化合物が使用される。該例示構造化合
物群中の個々の具体的化合物の数例を併せ掲げるが、そ
の全貌については特願昭61−1.95881号が参照
される。
However, compounds that have an excellent ability to transport holes generated during light irradiation to the support side and are suitable for combination with the above-mentioned CGM are preferably used, and examples of such C 'It'' M include, for example, the following exemplified structural compounds [ IX] or (X)
The sudhir compound shown is used. Several examples of individual specific compounds in the group of exemplified structural compounds are listed below, and for the complete details, refer to Japanese Patent Application No. 1988-1.95881.

tq− 例示構造化合物flT、 (IX )・また、Ci’ 
Mとして下記例示構造化合物群〔刈〕〜(XV)で示さ
れるヒドラゾンメヒ合物も使用可能である。向側々の具
体的化合物の全容につL)では特願昭61−19588
1号が参照される。
tq- Exemplary structural compound flT, (IX)・Also, Ci'
As M, hydrazone compounds represented by the following exemplary structural compound groups [Kari] to (XV) can also be used. Regarding the complete details of specific compounds on the opposite side, Patent Application No. 1988-19588
No. 1 is referred to.

例示構造化合物1バ(XV〕: 例示構造化合物群(XVI:l: また、CTMとして下記例示構造化合物群〔X■〕で示
されるアミン誘導体も使用可能である。
Exemplary Structural Compound 1 (XV): Exemplary Structural Compound Group (XVI:l) In addition, amine derivatives shown in the following Exemplary Structural Compound Group [X■] can also be used as CTMs.

尚詳しくは特願昭61−195881号が参照される。For details, refer to Japanese Patent Application No. 195881/1981.

本発明の感光体の層構成は前記のように積層構成と単層
構成とがあるが、表面層となるCTL。
The layer structure of the photoreceptor of the present invention has a laminated structure and a single layer structure as described above, and CTL is used as the surface layer.

CGL、OCL、単層感光体層またはOCLの−ずれか
、もしくは複数層には感度の向上、残留電位ないし反復
使用時の疲労低減等を目的として、1種または2種以上
の電子受容性物質を含有せしめることができる。
One or more electron-accepting substances are added to CGL, OCL, a single photoreceptor layer, or one or more layers of OCL for the purpose of improving sensitivity, reducing residual potential or fatigue during repeated use, etc. can be made to contain.

本発明の感光体に使用可能な電子受容性物質としては、
例えば無水琥珀酸、無水マレイン酸、ジブロム無水マレ
イン酸、無水7タル酸、テトラクロル無水7タル酸、テ
トラブロム無水7タル酸、3−ニトロ無水7タル酸、4
−ニトロ無水7タル酸、無水ピロメリット酸、無水メリ
ット酸、テトラシアノエチレン、テトラシアツキ7ノメ
タン、0−ジニトロベンゼン、1−ジニ(ロベンゼン、
1,3,5.−トリニトロベンゼン、パラニトロベンゾ
ニトリル、ピクリルクロライド、キノンクロルイミド、
クロラニル、ブルマニル、2−メチルナフトキノン、ジ
クロロジシアノバラベンゾキノン、アントラキノン、ジ
ニトロアントラキノン、)リニトロフルオレノン、9−
フルオレニリデン〔ジシアノメチレンマロノジニトリル
〕、ポリニトロ−9−フルオレニリデンー〔ジシアノメ
チレンマロノジニトリル〕、ピクリン酸、7タル酸等が
挙げられる。
Electron-accepting substances that can be used in the photoreceptor of the present invention include:
For example, succinic anhydride, maleic anhydride, dibromaleic anhydride, 7-talic anhydride, tetrachloro-7-talic anhydride, tetrabromo-7-talic anhydride, 3-nitro-7-talic anhydride, 4
-Nitro-7-talic anhydride, pyromellitic anhydride, mellitic anhydride, tetracyanoethylene, tetracyano-7-thalic anhydride, 0-dinitrobenzene, 1-dini(lobenzene,
1, 3, 5. - trinitrobenzene, paranitrobenzonitrile, picryl chloride, quinone chlorimide,
Chloranil, brumanil, 2-methylnaphthoquinone, dichlorodicyanobarabenzoquinone, anthraquinone, dinitroanthraquinone,) linitrofluorenone, 9-
Examples include fluorenylidene [dicyanomethylenemalonodinitrile], polynitro-9-fluorenylidene [dicyanomethylenemalonodinitrile], picric acid, heptatalic acid, and the like.

本発明において感光体層に使用可能なバインダ樹脂とし
ては、例えばポリエチレン、ポリプロピレン、アクリル
樹脂、メタクリル樹脂、塩化ビニル樹脂、酢酸ビニル樹
脂、エポキシ樹脂、ポリウレタン樹脂、フェノール樹脂
、ポリエステル樹脂、アルキッド樹脂、ポリカーボネー
ト樹脂、シリコン樹脂、メラミン樹脂等の付加重合型樹
脂、重付加型樹脂、重縮合型樹脂並びにこれらの樹脂の
繰返し単位のうちの2つ以上を含む共重合体樹脂、例え
ば塩化ビニル−酢酸ビニル共重合体樹脂、塩化ビニル−
酢酸ビニル−無水マレイン酸共重合体樹脂等の絶縁性樹
脂の他、ポリ−N−ビニルカルバゾール等の高分子有機
半導体が挙げられる。
Examples of binder resins that can be used in the photoreceptor layer in the present invention include polyethylene, polypropylene, acrylic resin, methacrylic resin, vinyl chloride resin, vinyl acetate resin, epoxy resin, polyurethane resin, phenol resin, polyester resin, alkyd resin, and polycarbonate. Addition polymer resins such as resins, silicone resins, and melamine resins, polyaddition resins, polycondensation resins, and copolymer resins containing two or more of the repeating units of these resins, such as vinyl chloride-vinyl acetate copolymer resins. Polymer resin, vinyl chloride
In addition to insulating resins such as vinyl acetate-maleic anhydride copolymer resins, polymeric organic semiconductors such as poly-N-vinylcarbazole may be used.

また、前記中間層は接着層又はバリヤ層等として機能す
るもので、上記バインダ樹脂の外に、例えばポリビニル
アルコール、エチルセルロース、カルボキシメチルセル
ロース、塩化ビニル−酢酸ビニル共重合体、塩化ビニル
−酢酸ビニル−無水マレイン酸共重合体、カゼイン、N
−フルコキシメチル化ナイロン、澱粉等が用いられる。
Further, the intermediate layer functions as an adhesive layer or a barrier layer, and in addition to the binder resin, for example, polyvinyl alcohol, ethyl cellulose, carboxymethyl cellulose, vinyl chloride-vinyl acetate copolymer, vinyl chloride-vinyl acetate-anhydrous Maleic acid copolymer, casein, N
- Flucoxymethylated nylon, starch, etc. are used.

次に前記感光体層を支持する導電性支持体としては、ア
ルミニウム、ニッケルなどの金属板、金属ドラム又は金
属箔、アルミニウム、酸化錫、酸化インジウムなどを蒸
着したプラスチックフィルムあるいは導電性物質を塗布
した紙、プラスチックなどのフィルム又はドラムを使用
することがで終る。
Next, the conductive support supporting the photoreceptor layer may be a metal plate made of aluminum or nickel, a metal drum or metal foil, a plastic film coated with aluminum, tin oxide, indium oxide, etc., or a conductive material coated thereon. One ends up using a film or drum of paper, plastic, etc.

CGLは既述のCGMを上記支持体上に真空蒸着させる
方法、CGMを適当な溶剤に単独もしくは適当なバイン
ダ樹脂と共に溶解もしくは分散せしめたものを塗布して
乾燥させる方法により設けることができる。
The CGL can be provided by vacuum-depositing the above-mentioned CGM on the support, or by applying a solution or dispersion of CGM alone or together with a suitable binder resin in a suitable solvent and drying it.

上記CGMを分散せしめてCGLを形成する場合、当該
CGMは2μ−以下、好ましくは1μ−以下の平均粒径
の粉粒体とするのが好ましν1゜即ち、粒径があまり大
きいと層中への分散が悪くなると共に、粒子が表面に一
部突出して表面の平滑性力ず悪くなり、場合によっては
粒子の突出部分で放電が生じたり或はそこにトナー粒子
が付着してトナーフィルミング現象が生じ易い。
When the above CGM is dispersed to form a CGL, it is preferable that the CGM is powder with an average particle size of 2μ or less, preferably 1μ or less. As well as the dispersion becomes poor, some particles protrude from the surface, resulting in poor surface smoothness, and in some cases, discharge may occur at the protruding parts of the particles, or toner particles may adhere there, resulting in toner filming. phenomenon is likely to occur.

ただし、上記粒径があまり小さ111と却って凝集し易
く、層の抵抗が上昇したり、結晶欠陥が増えて感度及び
繰返し特性が低下したり、或111は微細化する上で限
界があるから、平均粒径の下限を0.01μ閣とするの
が望まし−1゜ CGLは、次の如き方法によって設けることができる。
However, if the particle size of 111 is too small, it tends to agglomerate, increasing the resistance of the layer, increasing crystal defects and reducing sensitivity and repeatability, or because 111 has a limit in terms of miniaturization. It is desirable to set the lower limit of the average particle size to 0.01 μm, and -1° CGL can be provided by the following method.

即ち、記述のCGLをボールミル、ホモミなす等によっ
て分散媒中で微細粒子とし、ノイインダ樹脂を加えて混
合分散して得られる分散液を塗布する方法である。この
方法にお(1て超音波の作用下に粒子を分散させると、
均一分散が可能である。
That is, this is a method in which the CGL described above is made into fine particles in a dispersion medium by ball milling, homogenization, etc., and a dispersion obtained by adding Neuinda resin and mixing and dispersing is applied. In this method (1) when particles are dispersed under the action of ultrasound,
Uniform dispersion is possible.

CTLの形成に用いられる溶媒としては、例えばN、N
−ジメチルホルムアミド、ベンゼン、トルエン、キシレ
ン、モノクロルベンゼン、1.Z−ジクロロエタン、ジ
クロロメタン、1,1.2−)リクロロエタン、テトラ
ヒドロ7ラン、メチルエチルケトン、酢酸エチル、酢酸
ブチル等を挙げることができる。
Examples of solvents used to form CTL include N, N
-dimethylformamide, benzene, toluene, xylene, monochlorobenzene, 1. Z-dichloroethane, dichloromethane, 1,1.2-)lichloroethane, tetrahydro7rane, methyl ethyl ketone, ethyl acetate, butyl acetate and the like can be mentioned.

前記第1,2図及び第4図の様な機能分離層構成では、
CGL中CGMバインダ樹脂100重量当す20〜20
0重量部、好ましくは25〜100重量部である。CG
Mがこれより少ないと光感度が低く、残留電位の増加を
招き、又これより多いと暗減衰が増大し、かつ受容電位
が低下する。
In the functional separation layer configuration as shown in FIGS. 1, 2, and 4,
20 to 20 per 100 weight of CGM binder resin in CGL
0 parts by weight, preferably 25 to 100 parts by weight. CG
If M is less than this, the photosensitivity will be low and the residual potential will increase, and if it is more than this, dark decay will increase and the acceptance potential will decrease.

以上のようにして形成されるCGLの膜厚は、正帯電用
構成の場合は好ましくは、1〜10μm、特に好ましく
は3〜7μ論であり、負帯電用構成の場合は好ましくは
0.01〜10μ輪、特に好ましくは0.1〜3μmで
ある。
The thickness of the CGL formed as described above is preferably 1 to 10 μm, particularly preferably 3 to 7 μm in the case of a positive charging configuration, and preferably 0.01 μm in the case of a negative charging configuration. ~10 μm, particularly preferably 0.1 to 3 μm.

前記正帯電用構成においてはCGLが表面層となるので
耐傷性に欠け、耐用性向上のためにはCGL膜厚を厚く
する必要があるが、感度低下を引き起こす。これを抑制
する手段としてCGL中へCTMが添加される。この場
合のCGMとCTMの比はCGM100重量部に対して
CTM30重量部から400重量部である。
In the configuration for positive charging, since the CGL is a surface layer, it lacks scratch resistance, and in order to improve durability, it is necessary to increase the thickness of the CGL film, but this causes a decrease in sensitivity. CTM is added to CGL as a means to suppress this. The ratio of CGM to CTM in this case is 30 to 400 parts by weight of CTM to 100 parts by weight of CGM.

しかしながら、このCTMはCGMに比べ複合劣化を受
は易い構造を有するので、紫外線等により容易に劣化を
受は感光体の耐久性が損なわれる。
However, since this CTM has a structure that is more susceptible to complex deterioration than CGM, it is easily deteriorated by ultraviolet rays and the like, which impairs the durability of the photoreceptor.

本発明は、この悪循環を本発明の化合物の添加により解
消したものである。
The present invention eliminates this vicious cycle by adding the compound of the present invention.

次に、CTLは、既述のCTMを上述のCGLと同様に
して(即ち、単独であるいは上述のバインダ樹脂と共に
溶解、分散せしめたものを塗布、乾燥して)形成するこ
とがで詐る。
Next, CTL can be formed by forming the above-mentioned CTM in the same manner as the above-mentioned CGL (that is, by applying and drying the CTM alone or dissolved and dispersed together with the above-mentioned binder resin).

CTL中のCTM量はバインダ樹脂100重量部当り2
0〜200重量部、好ましくは30〜150重量部であ
る。
The amount of CTM in CTL is 2 per 100 parts by weight of binder resin.
The amount is 0 to 200 parts by weight, preferably 30 to 150 parts by weight.

CTMの含有割合がこれより少ないと光感度が悪く残留
電位が高くなり易く、又これより多いと溶媒溶解性が悪
くなる。
If the CTM content is less than this, the photosensitivity will be poor and the residual potential will tend to be high, and if it is more than this, the solvent solubility will be poor.

形成されるCTLの膜厚は、好ましくは5〜50μ艶、
特に好ましくは5〜30μ「である。また、CGLとC
TLの膜厚比は1:(1〜30)であるのが好ましい。
The thickness of the CTL to be formed is preferably 5 to 50μ gloss,
Particularly preferably, it is 5 to 30μ.
The film thickness ratio of TL is preferably 1:(1 to 30).

前記第3図に示した単層構成の場合、CGMがバインダ
樹脂に含有される割合は、バインダ樹脂100重量部に
対して20〜200重量部、好ましくは25〜100重
量部である。
In the case of the single-layer structure shown in FIG. 3, the proportion of CGM contained in the binder resin is 20 to 200 parts by weight, preferably 25 to 100 parts by weight, based on 100 parts by weight of the binder resin.

CGMの含有割合がこれより少ないと光感度が低く、残
留電位の増加を招き、又これより多いと暗減衰及び受容
電位が低下する。
If the content of CGM is less than this, the photosensitivity will be low and the residual potential will increase, and if it is more than this, dark decay and acceptance potential will decrease.

またCTMがバインダ樹脂に対して含有される割合は、
バインダ樹脂100重量部に対して20〜200重量部
、好ましくは30〜150重量部である。
In addition, the ratio of CTM to the binder resin is
The amount is 20 to 200 parts by weight, preferably 30 to 150 parts by weight, based on 100 parts by weight of the binder resin.

CTMの含有割合がこれより少ないと光感度が悪く残留
電位が高くなり易(、又これより多いと溶媒溶解性が悪
くなる。
If the content of CTM is less than this, the photosensitivity will be poor and the residual potential will tend to be high (and if it is more than this, the solvent solubility will be poor).

単層構成の場合感光体層中のCGMに対するCTMの量
比は重量比で1:3〜1:2とするのが好ましい。また
、この場合の感光体層の膜厚は7〜50μm1 好まし
くは10〜30μmである。
In the case of a single layer structure, the weight ratio of CTM to CGM in the photoreceptor layer is preferably 1:3 to 1:2. Further, the thickness of the photoreceptor layer in this case is 7 to 50 μm, preferably 10 to 30 μm.

本発明おいて必要に応じて設けられるOCLのバインダ
として体積抵抗108Ωelfi以上、好ましくは10
10ΩC−以上、より好ましくは1013Ωam以上の
透明樹脂が用いられる。又前記バインダは光又は熱=4
0− により硬化する樹脂を少なくとも50重量%以上含有す
るものとされる。
In the present invention, the OCL binder provided as necessary has a volume resistance of 108 Ωelfi or more, preferably 10
A transparent resin having a resistance of 10 ΩC or more, more preferably 10 13 Ωam or more is used. Further, the binder is exposed to light or heat = 4
It contains at least 50% by weight of a resin that hardens by 0-.

かかる光又は熱により硬化する樹脂としては、例えば熱
硬化性アクリル樹脂、シリコン樹脂、エポキシ樹脂、ウ
レタン樹脂、尿素樹脂、フェノール樹脂、ポリエステル
樹脂、アルキッド樹脂、メラミン樹脂、光硬化性の桂皮
酸樹脂等又はこれらの共重合もしくは共縮合樹脂があり
、その外電子写真材料に供される光又は熱硬化性樹脂の
全てが利用される。又前記CGL中には加工性及び物性
の改良(亀裂防止、柔軟性付与等)を目的として必要に
より熱可塑性樹脂を50重量%未満含有せしめることが
できる。かかる熱可塑性樹脂としては、例えばポリプロ
ピレン、アクリル樹脂、メタクリル樹脂、塩化ビニル樹
脂、酢酸ビニル樹脂、エポキシ樹脂、ブチラール樹脂、
ポリカーボネー) 111脂、シリコン樹脂、又はこれ
らの共重合樹脂、例えば塩化ビニル−酢酸ビニル共重合
体樹脂、塩化ビニル−酢酸ビニル−無水マレイン酸共重
合体樹脂、ボIJ−N−ビニルカルバゾール等の高分子
有機半導体、その他電子写真材料に供される熱可塑性樹
脂の全てが利用される。
Examples of such resins that harden with light or heat include thermosetting acrylic resins, silicone resins, epoxy resins, urethane resins, urea resins, phenol resins, polyester resins, alkyd resins, melamine resins, and photocurable cinnamic acid resins. In addition to these copolymerized or cocondensed resins, all of the photo- or thermosetting resins used in electrophotographic materials can be used. If necessary, the CGL may contain less than 50% by weight of a thermoplastic resin for the purpose of improving processability and physical properties (preventing cracks, imparting flexibility, etc.). Examples of such thermoplastic resins include polypropylene, acrylic resin, methacrylic resin, vinyl chloride resin, vinyl acetate resin, epoxy resin, butyral resin,
Polycarbonate) 111 resin, silicone resin, or copolymer resins thereof, such as vinyl chloride-vinyl acetate copolymer resin, vinyl chloride-vinyl acetate-maleic anhydride copolymer resin, and vinyl carbazole. Polymer organic semiconductors and other thermoplastic resins used in electrophotographic materials can all be used.

また前記OCLは、電子受容性物質を含有してもよく、
その他、必要によりCGLを保護する目的で酸化防止剤
等を含有してもよく、前記バインダと共に溶剤に溶解さ
れ、例えばディップ塗布、スプレー塗布、ブレード塗布
、ロール塗布等により塗布・乾燥されて2μ舶以下、好
ましくは1μ−以下の層厚に形成される。
Further, the OCL may contain an electron-accepting substance,
In addition, if necessary, an antioxidant or the like may be included for the purpose of protecting the CGL, which is dissolved in a solvent together with the binder, applied and dried by, for example, dip coating, spray coating, blade coating, roll coating, etc. Hereinafter, the layer thickness is preferably 1 μm or less.

〔実施例〕〔Example〕

以下、本発明を実施例により説明するが、これにより本
発明の実施のtssが限定されるものではない。
EXAMPLES The present invention will be described below with reference to Examples, but the implementation of the present invention is not limited thereby.

実施例 1 アルミニウム箔をラミネートしたポリエステルフィルム
、及びアルミニウムドラムより成る導電性支持体上に、
塩化ビニル−酢酸ビニル−無水マレイン酸共重合体(エ
スレックM F −10、種水化学工業社!!りよりな
る厚さ0,111mの申開層を形成した。
Example 1 On a conductive support consisting of a polyester film laminated with aluminum foil and an aluminum drum,
An open layer with a thickness of 0,111 m was formed from a vinyl chloride-vinyl acetate-maleic anhydride copolymer (S-LEC MF-10, manufactured by Tanemizu Chemical Industry Co., Ltd.).

次いでCT M (1’!−75)/ポリカーボネート
樹脂(パンライトL−1250.帝人化成社製)= 7
5/ 100(重量比)を1665重里%含有する1、
2−ジクロルエタン溶液を前記中間層上にディップ塗布
、乾燥して15μ麺厚のCTLを得た。
Then CT M (1'!-75)/polycarbonate resin (Panlite L-1250. manufactured by Teijin Chemicals) = 7
1 containing 1665% of 5/100 (weight ratio),
A 2-dichloroethane solution was dip coated onto the intermediate layer and dried to obtain a CTL having a noodle thickness of 15 μm.

次いで、CGMとして昇華した4、10−ノブロモアン
スアンスロン(Vl−3)/パンライ) L−1250
= 50/ 100(重量比)をボールミルで24時間
粉砕し、9重量%になるよう1,2−ジクロルエタンを
加えて更にボールミルで24時間分散した液にCTM 
([−75)をパンライ)L−1250に対して75重
量%および本発明の化合物(1)をCTMに対して10
重量%加えた。この分散液にモノクロロベンゼンを加え
てモノクロロベンゼン/ 1,2−ジクロルエタン=3
/7(体積比)になるよう調製したものをCTL上にス
プレー塗布方法により厚さ5μ−のCGLを形成し、積
層構成の感光体層を有する本発明の感光体試料1を得た
Then, 4,10-nobromoanthrone (Vl-3)/Panrai) L-1250 was sublimed as CGM.
= 50/100 (weight ratio) was ground in a ball mill for 24 hours, 1,2-dichloroethane was added to make it 9% by weight, and the mixture was further dispersed in a ball mill for 24 hours.
([-75) is 75% by weight based on L-1250 and 10% by weight of the compound (1) of the present invention based on CTM.
wt% added. Add monochlorobenzene to this dispersion to obtain monochlorobenzene/1,2-dichloroethane=3
/7 (volume ratio) was prepared and a CGL having a thickness of 5 μm was formed on the CTL by a spray coating method to obtain a photoreceptor sample 1 of the present invention having a photoreceptor layer having a laminated structure.

比較例(1) CGL中の化合物(1)を除いた以外は実施例1と同様
にして比較用の感光体試料(1)を得た。
Comparative Example (1) A comparative photoreceptor sample (1) was obtained in the same manner as in Example 1 except that compound (1) in CGL was removed.

実施例 2 実施H1における化合物(1)に代えて、化合物(2)
を添加した以外は実施例1と同様にして感光体2を得た
Example 2 Compound (2) was substituted for compound (1) in Example H1.
Photoreceptor 2 was obtained in the same manner as in Example 1 except that .

実施例 3 実施例1のCGLから化合物(1)を除いた感光体(比
較例1の感光体に同じ)上に、熱硬化性アクリル−メラ
ミン−エポキシ(1:1 :1 )樹脂1.55重・置
部および本発明の化合物(1) 0.155重量部をモ
ノクロロベンゼン/1,1.2−トリクロロエタン(j
/ 1体積比)混合溶媒100重量部中に溶解して得ら
れた塗布液をスプレー塗布、乾燥して1μ−厚のOCL
を形成し、本発明の感光体3を得た。
Example 3 On a photoreceptor (same as the photoreceptor of Comparative Example 1) obtained by removing compound (1) from the CGL of Example 1, 1.55% of thermosetting acrylic-melamine-epoxy (1:1:1) resin was applied. 0.155 parts by weight of the compound (1) of the present invention was added to monochlorobenzene/1,1,2-trichloroethane (j
/ 1 volume ratio) A coating solution obtained by dissolving in 100 parts by weight of a mixed solvent was spray applied and dried to form a 1μ-thick OCL.
was formed to obtain photoreceptor 3 of the present invention.

実施例 4 実施例1のCGLから化合物(1)を除いた感光体上に
、シリコンハードコート用プライマPH91(東芝シリ
コン社製)を0.1μI厚にスプレー塗布し、更にその
上にシリコンハードコートトスガード510(東芝シリ
コン社製)および化合物(1)を樹脂100重量44一 部に対して10重量部となるよう添加した溶液をスプレ
ー塗布、乾燥して1μm0cLを形成し、本発明の感光
体4を得た。
Example 4 Primer PH91 for silicone hard coat (manufactured by Toshiba Silicon Corporation) was spray-coated to a thickness of 0.1μI on the photoreceptor obtained by removing compound (1) from the CGL of Example 1, and then a silicone hard coat was further applied on top of the photoreceptor. A solution containing Tosgard 510 (manufactured by Toshiba Silicon Co., Ltd.) and compound (1) added in an amount of 10 parts by weight per 44 parts by weight of 100 resin was spray-coated and dried to form a 1 μm0 cL photoreceptor of the present invention. I got 4.

実施例 5 アルミニウム箔なラミネートしたポリエステルフィルム
、及びアルミニウムドラムより成る導電性支持体上に実
施例1と全く同様の中間層を形成した。
Example 5 An intermediate layer exactly as in Example 1 was formed on a conductive support consisting of a polyester film laminated with aluminum foil and an aluminum drum.

次いでCTL用塗布液としてブチラール樹脂(エスレッ
クBX−1、積木化学社製)8重量%、CTM(ff−
75)6重量%となるようメチルエチルケトンに溶解し
て得られる溶液を前記中間層上に塗布、乾燥して10μ
誼厚のCTLを形成した。
Next, 8% by weight of butyral resin (S-LEC BX-1, manufactured by Block Chemical Co., Ltd.) and CTM (ff-
75) A solution obtained by dissolving 6% by weight in methyl ethyl ketone is applied onto the intermediate layer and dried to form a 10μ
A thick CTL was formed.

次いでCG M (R1−7)0.2gをペイントコン
デショナ(Paint Conditioners R
ed Devi1社製)で30分粉砕し、これにポリカ
ーボネート樹脂(パンライトL−1250、前出)を1
,2−ジクロロエタン/1,1,2−)リクロロエタン
混合溶媒に0.5重量%となるよう溶解させた溶液を8
.3g加えて3分間分散した後、これにポリカーボネー
ト樹脂、CTM (ff−75)および化合物(1)を
、それぞれ3.3重量%、2.6重量%および0.26
重量%となるよう1.2−ジクロロエタン/1,1.2
−)ジクロロエタン混合溶媒に溶解して得られる溶液1
9.1irを加えて更に30分間分散した。
Next, 0.2 g of CG M (R1-7) was applied to a paint conditioner (Paint Conditioners R).
(manufactured by ED Devi1) for 30 minutes, and to this was added 1 portion of polycarbonate resin (Panlite L-1250, mentioned above).
, 2-dichloroethane/1,1,2-)lichloroethane mixed solvent to a concentration of 0.5% by weight.
.. After adding 3g and dispersing for 3 minutes, polycarbonate resin, CTM (ff-75) and compound (1) were added at 3.3% by weight, 2.6% by weight and 0.26% by weight, respectively.
1.2-dichloroethane/1,1.2 to give weight%
-) Solution 1 obtained by dissolving in dichloroethane mixed solvent
9.1ir was added and dispersed for an additional 30 minutes.

かくして得られた分散液を前記CTL上にスプレー塗布
し、かつ乾燥して5μm厚のCGLを形成し、積層構成
の感光体層を有する本発明の態様の感光体5を得た。
The thus obtained dispersion was spray-coated onto the CTL and dried to form a CGL with a thickness of 5 μm, thereby obtaining a photoreceptor 5 according to an embodiment of the present invention having photoreceptor layers having a laminated structure.

比較例 (2) CGL中の化合物(1)を除いた以外は実施例5と同様
にして比較用の感光体(2)を得た。
Comparative Example (2) A comparative photoreceptor (2) was obtained in the same manner as in Example 5 except that compound (1) in CGL was removed.

実施例 6 実施例5における化合物(1)に代えて、化合物(2)
を添加した以外は実施例5と同様にして本発明の感光体
6を得た。
Example 6 Compound (2) was substituted for compound (1) in Example 5.
Photoreceptor 6 of the present invention was obtained in the same manner as in Example 5 except that .

実施例 7 実施例5のCGLから化合物(1)を除いた感光体(比
較例2の感光体に同じ)上に、実施例3に用いた化合物
(1)を含有するOCLを設け、本発明の感光体7を得
た。
Example 7 OCL containing the compound (1) used in Example 3 was provided on a photoreceptor (same as the photoreceptor of Comparative Example 2) obtained by removing compound (1) from the CGL of Example 5, and the present invention A photoreceptor 7 was obtained.

実施例 8 実施例5のCGLから化合物(1)を除いた感光体上に
、実施例4に用いた化合物(1)を含有するOCLを設
け、本発明の感光体8を得た。
Example 8 OCL containing the compound (1) used in Example 4 was provided on a photoreceptor obtained by removing compound (1) from the CGL of Example 5 to obtain photoreceptor 8 of the present invention.

実施例 9 アルミニウム箔をラミネートしたポリエステルフィルム
、及びアルミニウムドラム上に、実施例1と全く同様の
中間層を形成した。
Example 9 An intermediate layer exactly the same as in Example 1 was formed on a polyester film laminated with aluminum foil and an aluminum drum.

次いで昇華した4、10−ジブロモアンスアンスロン(
■−3)40gを磁製ボールミルにて40rpmで24
時間粉砕し、パンライトL−1250、(前出)20g
と1,2−ジクロロエタン1.300m1を加え、更に
24時間分散してCGL用塗布液とした。これを前記中
間層上に塗布し膜厚1μmのCGLを設けた。
Then sublimed 4,10-dibromoanthrone (
■-3) 40g in a porcelain ball mill at 40rpm for 24 hours
Pulverized for a while, Panlite L-1250, (mentioned above) 20g
and 1.300 ml of 1,2-dichloroethane were added thereto, and the mixture was further dispersed for 24 hours to obtain a CGL coating solution. This was applied onto the intermediate layer to form a CGL having a thickness of 1 μm.

次いでCT M (rX −61)7.5g、パンライ
トL −125010gおよび化合物(1)0.75g
を、1,2−ジクロロエタン80m1に溶解した溶液を
前記CGLに塗布して膜厚15μmのCTLを形成し、
本発明の感光体9を作成した。
Then 7.5 g of CT M (rX-61), 10 g of Panlite L-1250 and 0.75 g of compound (1)
was dissolved in 80 ml of 1,2-dichloroethane and applied to the CGL to form a CTL with a film thickness of 15 μm,
Photoreceptor 9 of the present invention was created.

比較例 (3) CTI−中の化合物(1)を除いた以外は実施例9と同
様にして比較用の感光体(3)を得た。
Comparative Example (3) A comparative photoreceptor (3) was obtained in the same manner as in Example 9 except that compound (1) in CTI- was omitted.

実施例10 アルミニウム箔をラミネートしたポリエステルフィルム
、及びアルミニウムドラムから成る導電性支持体上に、
実施例1と全く同様の中間層を形成した。
Example 10 On a conductive support consisting of a polyester film laminated with aluminum foil and an aluminum drum,
An intermediate layer exactly the same as in Example 1 was formed.

次いでCGLとしてビスアゾ化合物(■−7)1.51
9を1,2−ジクロロエタン/モノエタノールアミン(
1000/1体積比)混合溶媒100mN中にボールミ
ルで8時間分散させた分散液を上記中間層上に塗布し、
充分乾燥して0.3g厚のCGLを設けた。
Then bisazo compound (■-7) 1.51 as CGL
9 to 1,2-dichloroethane/monoethanolamine (
1000/1 volume ratio) A dispersion solution that was dispersed in 100 mN of a mixed solvent for 8 hours using a ball mill was applied on the intermediate layer,
After sufficiently drying, a 0.3 g thick CGL was provided.

次いでCTMとしてスチリル化合物(IX−43)11
.25g、パンライトL−1250(前出)15gおよ
び化合物(1)1.1251?を1,2−ジクロロエタ
ン10oIIINに溶解した溶液を前記CGL上に塗布
し、充分乾燥して15μm厚のCTLを形成し、本発明
の感光体10を作成した。
Then styryl compound (IX-43) 11 as CTM
.. 25g, Panlite L-1250 (above) 15g and compound (1) 1.1251? A solution prepared by dissolving 1,2-dichloroethane 10oIIIN was applied onto the CGL and sufficiently dried to form a 15 μm thick CTL, thereby producing the photoreceptor 10 of the present invention.

比較例 (4) CTL中の化合物(1)を除いた以外は、実施例10と
同様にして比較用の感光体(4)を作成した。
Comparative Example (4) A comparative photoreceptor (4) was prepared in the same manner as in Example 10 except that compound (1) in the CTL was removed.

前記実施例試料1〜10及び比較例試料(1)〜(4)
についてUV耐性について、帯電性に対する2万回の実
写テスト及びUV曝射による感度変化の定量的測定を行
った。
The above Example Samples 1 to 10 and Comparative Example Samples (1) to (4)
Regarding UV resistance, we conducted a 20,000-shot photo test on chargeability and quantitatively measured changes in sensitivity due to UV exposure.

帯電性実写テストは、U−Bix 2812 MR(小
西六写真工業(株)製)の改造実験機に試料感光体ドラ
ムを装着し、正または負帯電させ、前記感光体に対する
像露光をはじめとする各工程及び定着からなる単位サイ
クルを2万回繰返し、実写テスト初期の正、負帯電電位
を±Vo、2万回終了後回終了後帯電電位を士■、とす
る。
In the chargeability live-action test, a sample photoreceptor drum was attached to a modified experimental machine U-Bix 2812 MR (manufactured by Konishiroku Photo Industry Co., Ltd.), and the sample photoreceptor drum was charged positively or negatively, and the photoreceptor was subjected to image exposure. The unit cycle consisting of each process and fixing is repeated 20,000 times, and the positive and negative charging potentials at the beginning of the live-action test are ±Vo, and the charging potentials after the end of the 20,000-time test are 20,000 times.

またUV曝射による感度変化は、既知強度の紫外線を試
料フィルムを断裁した感光体シートに照射し、その照射
前後に於て、十または一600■に帯電させた該感光体
の電位を夫々±100Vにまで奢す露光量E600を用
いて求めた。
Changes in sensitivity due to UV exposure can be determined by irradiating ultraviolet rays of known intensity onto a photoreceptor sheet obtained by cutting a sample film, and before and after the irradiation, the potential of the photoreceptor, which has been charged to 10 or 1600 cm, is adjusted to ± It was determined using an exposure amount E600 that extends to 100V.

感光体の感度S 1.t E”0cc 1 /Sの関係
として定義され、E600が小さいほど感度Sは大きく
硬調な画像かえられる。
Sensitivity S of photoreceptor 1. It is defined as the relationship tE''0cc 1 /S, and the smaller E600, the greater the sensitivity S, and the higher the contrast of the image.

UV曝射前後の感度を夫々5o=S+とすれば、その逆
数比Rs;(1/ S +)/ (1/ S o)= 
S o/ S 、はUV1it性を表し、Rsが大かい
はどUV耐性があることになる。
If the sensitivity before and after UV exposure is 5o=S+, then its reciprocal ratio Rs; (1/S+)/(1/So)=
S o/S represents UV1it property, and the larger Rs is, the more UV resistant it is.

UV照射は理化学用水銀ランプS HL −100U 
V−2((株)東芝製)を用い試料の感光体シートを3
0cIIの鉗離に置鯵他の電磁波を遮断しUV強度15
00cd/m2で100分間照射を行い、感度測定は静
電試験1fl(川口電機製作所:5P−428型)によ
った。
UV irradiation is done using a physical and chemical mercury lamp S HL-100U
Using V-2 (manufactured by Toshiba Corporation), the sample photoreceptor sheet was
Placed in the 0cII separation block other electromagnetic waves and UV intensity 15
Irradiation was performed at 00 cd/m2 for 100 minutes, and sensitivity was measured using an electrostatic test 1fl (Kawaguchi Electric Seisakusho: Model 5P-428).

第1表 註;括弧を付した試料No、は比較試料第1表からも明
らかなように、本発明の化合物を添加することにより、
紫外線照射下におけるコロナ帯電での電位低下が着しく
改善される。しかも、本発明の化合物の添加により、感
度低下も殆どないことが判る。
Note to Table 1: Sample numbers in parentheses are comparative samples.As is clear from Table 1, by adding the compound of the present invention,
Potential drop due to corona charging under ultraviolet irradiation is significantly improved. Furthermore, it can be seen that there is almost no decrease in sensitivity due to the addition of the compound of the present invention.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜#4図は本発明の感光体の断面図である。 1・・・支持体 2・・・電荷発生層(CG L ) 3・・・電荷輸送層(CT L ) 4・・・感光層 5・・・電荷発生物質(CGM) 6・・・電荷輸送物質(CTM) 7・・・中間層 8・・・保護層(OCL ) FIGS. 1 to 4 are cross-sectional views of the photoreceptor of the present invention. 1...Support 2... Charge generation layer (CGL) 3... Charge transport layer (CT L) 4...Photosensitive layer 5... Charge generating material (CGM) 6...Charge transport material (CTM) 7...middle class 8...Protective layer (OCL)

Claims (1)

【特許請求の範囲】 導電性支持体上に電荷発生物質及び電荷輸送物質を含ん
でなる層を有する電子写真感光体に於て、下記一般式で
表される化合物を含有することを特徴とする電子写真感
光体。 一般式 ▲数式、化学式、表等があります▼ 〔式中、R及びR_1はアルキル、アリール、アラルキ
ルあるいはヘテロ環の各基を表す。〕
[Scope of Claims] An electrophotographic photoreceptor having a layer containing a charge-generating substance and a charge-transporting substance on a conductive support, characterized by containing a compound represented by the following general formula. Electrophotographic photoreceptor. General formula ▲ Numerical formula, chemical formula, table, etc. are available ▼ [In the formula, R and R_1 represent alkyl, aryl, aralkyl, or heterocyclic groups. ]
JP30355686A 1986-12-17 1986-12-17 Electrophotographic sensitive body Granted JPS63153554A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30355686A JPS63153554A (en) 1986-12-17 1986-12-17 Electrophotographic sensitive body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30355686A JPS63153554A (en) 1986-12-17 1986-12-17 Electrophotographic sensitive body

Publications (2)

Publication Number Publication Date
JPS63153554A true JPS63153554A (en) 1988-06-25
JPH0513494B2 JPH0513494B2 (en) 1993-02-22

Family

ID=17922434

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30355686A Granted JPS63153554A (en) 1986-12-17 1986-12-17 Electrophotographic sensitive body

Country Status (1)

Country Link
JP (1) JPS63153554A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06327840A (en) * 1993-05-19 1994-11-29 Bandai Co Ltd Robot model toy

Also Published As

Publication number Publication date
JPH0513494B2 (en) 1993-02-22

Similar Documents

Publication Publication Date Title
JPS6352146A (en) Positively electrifiable electrophotographic sensitive body
JPS6318355A (en) Electrophotographic sensitive body
JPS63159856A (en) Electrophotographic positive charge sensitive body and its image forming process
JPH0513493B2 (en)
JPS6318356A (en) Electrophotographic sensitive body
JPS63159859A (en) Electrophotographic sensitive body
JPS6350851A (en) Electrophotographic sensitive body for positive charging
JPS6344662A (en) Positively electrifiable electrophotographic sensitive body
JPS63153554A (en) Electrophotographic sensitive body
JPS6396662A (en) Positive electrifiable electrophotographic sensitive body
JPS63159858A (en) Electrophotographic sensitive body
JPS63159860A (en) Electrophotographic sensitive body
JPS63155047A (en) Electrophotographic sensitive body
JPS6350850A (en) Electrophotographic sensitive body for positive charging
JPS63155049A (en) Electrophotographic positive charge sensitive body and image forming process thereof
JPH0560858B2 (en)
JPS63163360A (en) Electrophotographic sensitive body
JPS63155048A (en) Electrophotographic sensitive body
JPS63153553A (en) Electrophotographic sensitive body
JPS6314153A (en) Electrophotographic sensitive body for positive electric charge
JPS63163359A (en) Electrophotographic sensitive body
JPS63158554A (en) Electrophotographic sensitive body
JPS63132244A (en) Electrophotographic sensitive body
JPS6371856A (en) Electrophotographic sensitive body
JPH0549220B2 (en)