JPS63153281A - Composite plating - Google Patents

Composite plating

Info

Publication number
JPS63153281A
JPS63153281A JP30098886A JP30098886A JPS63153281A JP S63153281 A JPS63153281 A JP S63153281A JP 30098886 A JP30098886 A JP 30098886A JP 30098886 A JP30098886 A JP 30098886A JP S63153281 A JPS63153281 A JP S63153281A
Authority
JP
Japan
Prior art keywords
silicon carbide
composite plating
carbide particles
wear
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30098886A
Other languages
Japanese (ja)
Inventor
Toshikazu Sakai
寿和 境
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Refrigeration Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Refrigeration Co filed Critical Matsushita Refrigeration Co
Priority to JP30098886A priority Critical patent/JPS63153281A/en
Publication of JPS63153281A publication Critical patent/JPS63153281A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/32Coating with nickel, cobalt or mixtures thereof with phosphorus or boron
    • C23C18/34Coating with nickel, cobalt or mixtures thereof with phosphorus or boron using reducing agents
    • C23C18/36Coating with nickel, cobalt or mixtures thereof with phosphorus or boron using reducing agents using hypophosphites

Abstract

PURPOSE:To reduce the wear of a member opposite to a sliding member without deteriorating the lubricity by specifying the particle size of silicon carbide particles in a composite film formed on the sliding member by electroless composite plating. CONSTITUTION:When a sliding member is subjected to electroless composite plating to form an Ni-P-silicon carbide composite film or the like, the particle size of silicon carbide particles dispersed in the composite film is regulated to 0.1-5mum. This particle size is slightly smaller than the surface roughness of the sliding member to be plated, so when the matrix metal in the composite film is brought into contact with an opposite member, load placed on the silicon carbide particles is reduced and the wear of the opposite member can be reduced.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、機械装置のシャフト、軸受等の摺動部表面に
施される複合メッキに関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to composite plating applied to the surfaces of sliding parts such as shafts and bearings of mechanical devices.

従来の技術 近年、機械装置の摺動部の耐摩耗性向上の要求はますま
す強くなっておシ、よシ安価に耐摩耗性を向上させる手
段として、セラミックスコーティングやメッキ等の表面
処理が開発されている。この中でも特に耐摩耗性、膜厚
均一性に優れた炭化ケイ素粒子分散型複合メッキが注目
されつつある。
Conventional technology In recent years, the demand for improving the wear resistance of sliding parts of mechanical equipment has become stronger and stronger, and surface treatments such as ceramic coating and plating have been developed as a means to improve wear resistance at a much lower cost. has been done. Among these, silicon carbide particle dispersed composite plating is attracting attention because of its excellent wear resistance and film thickness uniformity.

以下図面を参照しながら、上述の複合メッキの一例につ
いて説明する。
An example of the above-mentioned composite plating will be described below with reference to the drawings.

第3図は、従来の複合メッキの適用例であるシャフト、
軸受の断面図である。第3図において、1はシャフト、
2は複合メッキ層、3は炭化ケイ素粒子、4は軸受、6
は油である。シャフト1が回転することにより、軸受4
の内周とシャフト1に施された複合メッキ層2が摺動す
る。シャフト荷重が低負荷である場合は、油6の潤滑効
果により軸受4の内周と複合メッキ層2が接触すること
なく正常な摺動状態を長時間維持することができる。ま
た、シャフト荷重が高負荷となった場合、一般の鋼製シ
ャフトでは軸受との金属接触によシ焼きつきが生じるが
、複合メッキ2と軸受4の摺動では複合メッキ表面に突
出している炭化ケイ素粒子3と軸受4が摺動し、炭化ケ
イ素のもつ潤滑効果により正常な潤滑状態を維持するこ
とができる。
Figure 3 shows a shaft, which is an example of the application of conventional composite plating.
FIG. 3 is a cross-sectional view of the bearing. In Fig. 3, 1 is a shaft;
2 is a composite plating layer, 3 is silicon carbide particles, 4 is a bearing, 6
is oil. As the shaft 1 rotates, the bearing 4
A composite plating layer 2 applied to the inner periphery of the shaft 1 slides. When the shaft load is low, the lubricating effect of the oil 6 prevents the inner periphery of the bearing 4 and the composite plating layer 2 from coming into contact with each other, making it possible to maintain a normal sliding state for a long time. In addition, when the shaft load becomes high, a general steel shaft will suffer from seizure due to metal contact with the bearing, but when the composite plating 2 and bearing 4 slide, the carbonization that protrudes on the composite plating surface The silicon particles 3 and the bearing 4 slide against each other, and a normal lubrication state can be maintained due to the lubricating effect of silicon carbide.

発明が解決しようとする問題点 しかしながら上記のような構成では、一般の鋼製シャフ
ト、軸受の組合せと比較して長期信頼性が低下する欠点
があった。すなわち、複合メンキは、表面に硬度の高い
炭化ケイ素が突出しているため、長時間摺動させると相
手材を研摩してしまう。このように相手材の摩耗が増大
すると、クリアランスの増加1面粗度の悪化によって音
や振動が発生するという問題が生じる。
Problems to be Solved by the Invention However, the above configuration has the disadvantage that long-term reliability is lower than that of a general steel shaft and bearing combination. In other words, since the composite coating has highly hard silicon carbide protruding from its surface, it will abrade the mating material if it is slid for a long time. When the wear of the mating material increases in this way, a problem arises in that noise and vibration are generated due to the increase in clearance and the deterioration in the roughness of one surface.

また、炭化ケイ素粒子の突出を少なくするため複合メッ
キ中の炭化ケイ素粒子の粒径を小さくすれば、荷重の圧
力によって複合メッキ表面の炭化ケイ素粒子がメッキ中
へ埋没してしまい、炭化ケイ素粒子のもつ潤滑性が得ら
れなくなシ逆に摩耗量が増大する。
Furthermore, if the particle size of the silicon carbide particles in the composite plating is made smaller in order to reduce the protrusion of the silicon carbide particles, the silicon carbide particles on the surface of the composite plating will be buried in the plating due to the pressure of the load, and the silicon carbide particles will be The lubricity that it possesses can no longer be obtained, and on the contrary, the amount of wear increases.

本発明は上記問題点に鑑み、炭化ケイ素粒子を分散する
複合メッキにおいて、炭化ケイ素粒子の潤滑性を維持し
ながら相手材の摩耗を著しく減少させる複合メッキを提
供するものである。
In view of the above problems, the present invention provides a composite plating in which silicon carbide particles are dispersed, in which the wear of a mating material is significantly reduced while maintaining the lubricity of the silicon carbide particles.

問題点を解決するための手段 上記問題点を解決するために本発明の複合メッキは、炭
化ケイ素粒子の粒径を0.1〜0.6μmとするもので
ある。
Means for Solving the Problems In order to solve the above problems, the composite plating of the present invention is such that the particle size of silicon carbide particles is 0.1 to 0.6 μm.

作  用 本発明は上記した構成によシ、相手材と複合メッキの接
触部における複合メッキの炭化ケイ素粒子とマトリック
ス金属との荷重分担化を最適化し、炭化ケイ素粒子の突
出部と相手材が主に摺動していた従来に比べて著しく相
手材の摩耗を減少させることができる。つまり、従来複
合メッキの面粗度Q、5〜1.oμmに対して粒径1.
0〜0.5μmの炭化ケイ素を分散させていたため、炭
化ケイ素がメッキ表面より突出するため相手材を研摩し
た。
Function: Based on the above configuration, the present invention optimizes the load sharing between the silicon carbide particles of the composite plating and the matrix metal at the contact area between the mating material and the composite plating, so that the protruding parts of the silicon carbide particles and the mating material are mainly The wear of the mating material can be significantly reduced compared to the conventional method in which the mating material slides on the mat. In other words, the surface roughness Q of conventional composite plating is 5 to 1. Particle size 1.0 μm.
Since silicon carbide of 0 to 0.5 μm was dispersed, the mating material was polished because the silicon carbide protruded from the plating surface.

これに対して、炭化ケイ素粒子の粒径をメッキ面粗度よ
り若干小さくすることで、メッキマトリックス金属と相
手材を接触させ炭化ケイ素粒子の分担荷重を小さくする
ことで相手材の摩耗を著しく減少させるものである。
On the other hand, by making the particle size of the silicon carbide particles slightly smaller than the roughness of the plated surface, the plating matrix metal and the mating material come into contact, reducing the shared load of the silicon carbide particles, which significantly reduces the wear of the mating material. It is something that makes you

実施例 以下本発明の一実施例の複合メッキについて、図面を参
照しながら説明する。
EXAMPLE Hereinafter, a composite plating according to an example of the present invention will be explained with reference to the drawings.

第1図は、本発明の一実施例における摺動部の断面図で
ある。第1図において、6は回転片基材、7は複合メッ
キ層、8は炭化ケイ素粒子、9は固定片、10は油であ
る。一定の回転数で回転している回転片6に対して、固
定片9を一定荷重で圧着させて摺動させる。各部の詳し
い諸元は以下の通シである。
FIG. 1 is a sectional view of a sliding portion in one embodiment of the present invention. In FIG. 1, 6 is a rotating piece base material, 7 is a composite plating layer, 8 is silicon carbide particles, 9 is a fixed piece, and 10 is oil. A fixed piece 9 is pressed against a rotating piece 6 rotating at a constant number of rotations under a constant load and is slid thereon. The detailed specifications of each part are as follows.

(1)形状 回転片 :外径33 、 Off1m 1幅12.0m
m固定片 :奥行12.0111111j幅12.0m
m5高さ18、On++++ (巧 材質 回転片基材:鋳鉄(FC30生材、JAS相当品) 複合メッキ=(組成)ニッケル89wt%。
(1) Shape rotating piece: Outer diameter 33, Off 1m 1 width 12.0m
m fixed piece: depth 12.0111111j width 12.0m
m5 height 18, On++++ (Takumi) Material Rotating piece base material: Cast iron (FC30 raw material, JAS equivalent) Composite plating = (composition) Nickel 89wt%.

リン8wt%、炭化ケイ素(β 型)3wtチ (膜厚)20μm (硬度) Hv 1000 固定片 : 鋳鉄(FC20生材、JIS相当品) (3)摺動条件 摺動速度:  1m/s 荷重  :  20Kpf 時間  二 60分 潤滑油 : 鉱油(VCl2) また、上記複合メッキは、無電解複合メッキ法にて作製
した後、400Cで約1時間保持しメッキ硬度をHvl
oooに調整した。
Phosphorus 8wt%, silicon carbide (β type) 3wt (film thickness) 20μm (hardness) Hv 1000 Fixed piece: Cast iron (FC20 raw material, JIS equivalent) (3) Sliding conditions Sliding speed: 1m/s Load: 20Kpf Time 2 60 minutes Lubricating oil: Mineral oil (VCl2) In addition, after the above composite plating is produced by the electroless composite plating method, it is held at 400C for about 1 hour to increase the plating hardness to Hvl.
Adjusted to ooo.

以上のように構成された摺動部材において、複合メッキ
中の炭化ケイ素粒子の粒径を0.06〜1.7μmまで
変化させて、複合メッキの相手材である固定片の摩耗量
を測定した。また、比較のため複合メッキを施していな
い回転片と固定片を同一条件で摺動させその摩耗量分測
定した。測定!Ij果?第2図に示す。図より明らかな
ように、粒径が粒径範囲Aで示す0.1〜0.6μmの
炭化ケイ素粒子を分散した複合メッキは、従来の粒径i
、o〜S、Oμmの炭化ケイ素を分散した複合メッキに
比べて、固定片の摩耗が175〜1/1o以下となって
おり、また、複合メッキを施していない回転片に比べて
も固定片の摩耗は減少している。一方、複合メッキを施
した回転片の摩耗はいずれも0.1μm以下の痕跡程度
であ)静かす←←測測定きなかったが。
In the sliding member configured as described above, the particle size of the silicon carbide particles in the composite plating was varied from 0.06 to 1.7 μm, and the amount of wear on the fixed piece, which is the mating material of the composite plating, was measured. . In addition, for comparison, a rotating piece and a stationary piece without composite plating were slid under the same conditions, and the amount of wear was measured. measurement! Ij fruit? Shown in Figure 2. As is clear from the figure, the composite plating in which silicon carbide particles with particle size range A of 0.1 to 0.6 μm are dispersed is different from the conventional particle size i
Compared to composite plating in which silicon carbide of , o to S, O μm is dispersed, the wear of the fixed piece is 175 to 1/1 o or less, and the wear of the fixed piece is less than 1/10000 mm compared to the rotating piece without composite plating. wear is reduced. On the other hand, the wear of the composite-plated rotating pieces is only a trace of less than 0.1 μm (although I could not measure it).

複合メッキを施していない回転片は2〜3μmの摩耗が
見られた。
Abrasion of 2 to 3 μm was observed on the rotating piece that was not subjected to composite plating.

以上のように本実施例によれば、ニッケルーリンをマト
リックスとする無電解複合メッキにおいて炭化ケイ素粒
子粒径を0.1〜0.5μmとすることにより、従来に
比べて相手材の摩耗量を115〜1/10以下とするこ
とができる。
As described above, according to this example, by setting the silicon carbide particle size to 0.1 to 0.5 μm in electroless composite plating using nickel-phosphorus as a matrix, the amount of wear on the mating material is reduced compared to the conventional method. 115 to 1/10 or less.

発明の効果 以上のように本発明は、炭化ケイ素粒子を分散した複合
メッキにおいて炭化ケイ素の粒径を0.1〜0.5μm
とすることにより、炭化ケイ素のもつ潤滑性を損なうこ
となく相手材の摩耗を著しく減少することができる。
Effects of the Invention As described above, the present invention provides composite plating in which silicon carbide particles are dispersed, with the particle size of silicon carbide being 0.1 to 0.5 μm.
By doing so, wear of the mating material can be significantly reduced without impairing the lubricity of silicon carbide.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例における摺動部材の断面図、
第2図は本発明の一実施例における相手材の摩耗量を従
来と比較して示したグラフ、第3図は従尾の複合メッキ
の適用例であるシャフトと軸受の断面図である。 7・・・・・・複合メッキ層。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名7−
 複合メッキ層 8− 炭化ケイ素粒子 第1図 第2図 回転片複合メ、ツキの
FIG. 1 is a sectional view of a sliding member in an embodiment of the present invention;
FIG. 2 is a graph showing the amount of wear of a mating material in an embodiment of the present invention compared to a conventional one, and FIG. 3 is a cross-sectional view of a shaft and a bearing, which is an example of application of composite plating. 7...Composite plating layer. Name of agent: Patent attorney Toshio Nakao and 1 other person7-
Composite plating layer 8 - Silicon carbide particles Figure 1 Figure 2 Rotating piece composite plate, thickness

Claims (1)

【特許請求の範囲】[Claims] 炭化ケイ素粒子を分散した複合メッキにおいて、炭化ケ
イ素の粒径を0.1〜0.5μmとすることを特徴とす
る複合メッキ。
A composite plating in which silicon carbide particles are dispersed, characterized in that the particle size of the silicon carbide is 0.1 to 0.5 μm.
JP30098886A 1986-12-17 1986-12-17 Composite plating Pending JPS63153281A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30098886A JPS63153281A (en) 1986-12-17 1986-12-17 Composite plating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30098886A JPS63153281A (en) 1986-12-17 1986-12-17 Composite plating

Publications (1)

Publication Number Publication Date
JPS63153281A true JPS63153281A (en) 1988-06-25

Family

ID=17891476

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30098886A Pending JPS63153281A (en) 1986-12-17 1986-12-17 Composite plating

Country Status (1)

Country Link
JP (1) JPS63153281A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05171455A (en) * 1991-12-25 1993-07-09 Sankyo Seiki Mfg Co Ltd Sic composite plating

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05171455A (en) * 1991-12-25 1993-07-09 Sankyo Seiki Mfg Co Ltd Sic composite plating

Similar Documents

Publication Publication Date Title
JP4244106B2 (en) Coated rolling bearing
JP2693369B2 (en) Multi-layered end bearing and manufacturing method thereof
JP2902419B2 (en) Plain bearing
JP2891745B2 (en) piston ring
JPH01316514A (en) Multilayer sliding material
JP2000314424A (en) Slide bearing and slide bearing structure
JPS6045717B2 (en) Piston rings for internal combustion engines
US6045929A (en) Composite sliding contact bearing
JPH0971899A (en) Sliding member
JPS63153281A (en) Composite plating
JP2002147459A (en) Sliding bearing with overlay layer quality-improved
JP2552638B2 (en) piston ring
JP3513273B2 (en) Gas bearing unit
GB2390877A (en) A bearing and crankshaft arrangement for an internal combustion engine
US20220106982A1 (en) Sliding member
JPH0238714A (en) Sliding bearing
JPS6367044B2 (en)
JP2519556B2 (en) Sliding member
JP3335744B2 (en) Combination of sliding members
JP2020125838A (en) Slide member
JP2519557B2 (en) Sliding member
JP2020125839A (en) Slide member
JPH05248441A (en) Cu base bearing material
JPS6212305B2 (en)
JPS59232981A (en) Ceramic sliding material