JPS63145954A - Moisture sensitive element - Google Patents

Moisture sensitive element

Info

Publication number
JPS63145954A
JPS63145954A JP14349687A JP14349687A JPS63145954A JP S63145954 A JPS63145954 A JP S63145954A JP 14349687 A JP14349687 A JP 14349687A JP 14349687 A JP14349687 A JP 14349687A JP S63145954 A JPS63145954 A JP S63145954A
Authority
JP
Japan
Prior art keywords
sensitive
thin film
substrate
sensitive film
bridge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14349687A
Other languages
Japanese (ja)
Inventor
Takashi Sugihara
孝志 杉原
Masaya Hijikigawa
正也 枅川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to US07/078,741 priority Critical patent/US4928513A/en
Priority to DE3724966A priority patent/DE3724966C3/en
Priority to GB8717919A priority patent/GB2194845B/en
Publication of JPS63145954A publication Critical patent/JPS63145954A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

PURPOSE:To achieve a higher sensitivity and a fast response, by forming a gap in a substrate right beneath a thin film insulation layer to mount a sensitive film on a bridge-shaped part of the thin film insulation layer. CONSTITUTION:A bridge-shaped thin film insulation layer 2 is formed on an Si substrate 1. A gap is formed between the substrate 1 and the microbridge 3 of the insulation layer 2 by crystal anisotropic etching of Si on the substrate 1. Then, a sensitive film 4 is formed on the bridge 3 as thin film sensor material and an electrode 5 is connected direct to the sensitive film 4 to detect an electric resistance. Because of the microbridge structure to build elements, this moisture sensitive element excels in heat insulation of the sensitive film 4 and extremely reduces the heat capacity thereof. The sensitive film 4 employs a thin film of a material with a large thermistor constant, for example, Ge, SiC and TaN thereby enabling a higher sensitivity, a fast response, and a low power consumption in the detection of steam.

Description

【発明の詳細な説明】 く技術分野〉 本発明は、湿度計測において直接水蒸気量を検知する絶
対湿度センサに対する検出感度の向上及び特性の高速応
答性を図ることのできる感湿素子の改良に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to an improvement in a humidity sensing element capable of improving detection sensitivity and high-speed response of characteristics for an absolute humidity sensor that directly detects the amount of water vapor in humidity measurement. It is.

〈従来技術とその問題点〉 従来より感湿素子あるいは湿度センサとしては多種類の
ものが開発されており、特に雰囲気中の相対湿度を検出
す♂センサとしては感湿材料の電気抵抗値あるいは電気
容量が雰囲気中の湿気あるいは水蒸気に感応して変化す
ることを利用し、主に次に上げるものが知られている。
<Prior art and its problems> Many types of humidity sensing elements or humidity sensors have been developed in the past, and in particular sensors for detecting relative humidity in the atmosphere are based on the electrical resistance value or electrical resistance of humidity sensitive materials. The following methods are mainly known, which take advantage of the fact that the capacitance changes in response to humidity or water vapor in the atmosphere.

■酸化鉄(F e 203 * F e 304 )、
酸化錫(SnOz)などの金属酸化物の焼結体あるいは
金属酸化@を用いたもの、■親水性高分子膜あるいは高
分子電解質さらには繊維高分子?用いたもの、■塩化リ
チウム(LiC1)等の電解質塩を用いたもの及び■吸
湿性樹脂あるいは吸湿性亮分子膜などに炭素等の導電性
粒子又は繊維を分散させたものなどである。以上のセン
サは検出湿度領域、検出感度及び精度、応答速度、信頼
性、耐環境性等大々に長所・短長を有するが、例えば電
子レンジ内の動作時における雰囲気の様に雰囲気温度が
急激に変化する様な環境下で微量な水蒸気の変化を検出
するには温度の関数である相対湿度の変化が以下の様に
考えられるため、上記湿度センサを用いた湿度計測には
大きな問題がある。即ち、検出雰囲気内の水蒸気量が一
定であると仮定し、この雰囲気の温度がのみ上昇すると
仮定した場合、相対湿度は水蒸気量が一定であっても飽
和水蒸気圧の関係で低下し、さらに温度の上昇が急激で
あれば微量の水蒸気の増加は相対湿度としては温度変化
に相殺されるかやはり低下してしまうととが予想され実
質的な小蒸気量の変化を反映した結果が得られず検出に
大きな問題を有している。従って、前述した様な環境の
湿度計測には相対湿度検知よりも直接水蒸気量を検出可
能な絶対湿度検知が有利である。
■Iron oxide (Fe 203 * Fe 304),
Sintered bodies of metal oxides such as tin oxide (SnOz) or those using metal oxides, ■Hydrophilic polymer membranes, polymer electrolytes, and even fiber polymers? (1) A method using an electrolyte salt such as lithium chloride (LiC1); and (2) A method in which conductive particles or fibers such as carbon are dispersed in a hygroscopic resin or a hygroscopic membrane. The above sensors have many advantages and disadvantages, such as detection humidity range, detection sensitivity and accuracy, response speed, reliability, and environmental resistance. In order to detect minute changes in water vapor in an environment where humidity changes, the change in relative humidity, which is a function of temperature, can be considered as follows, so there is a big problem in measuring humidity using the above humidity sensor. . In other words, if we assume that the amount of water vapor in the detection atmosphere is constant and only the temperature of this atmosphere increases, then even if the amount of water vapor is constant, the relative humidity will decrease due to the saturated water vapor pressure, and then the temperature will increase. If the rise in humidity is rapid, it is expected that the slight increase in water vapor will be offset by the change in temperature or the relative humidity will actually decrease, making it impossible to obtain results that reflect substantial changes in the amount of small vapor. There are major problems with detection. Therefore, absolute humidity detection, which can directly detect the amount of water vapor, is more advantageous than relative humidity detection in measuring the humidity of the environment as described above.

絶対湿度(水蒸気量)の検知手段としては、従来より水
蒸気によるマイクロ波の減衰や赤外線の吸収等を応用し
た計測装置が用いられている。これらは物理的手法によ
り直接水蒸気を検出可能であることから前述の急激な温
度変化を伴う様な環境においても水蒸気の少量変化検出
に有利となる反面、温度補償をも含めた装置の構成は大
がかりでありコストもかなり高いものとなる。又、湿り
空気と乾き空気の熱伝導率差を利用し、特性のそろった
2個のサーミスタを用いる熱伝導式の絶対湿度センサが
あり、小型で耐環境性にも優れているが、従来のものは
小蒸気量の微小変化に対して良好な出力が得られず検出
感度の高感度化、高速応答性という点で問題があった。
As means for detecting absolute humidity (amount of water vapor), measurement devices that utilize the attenuation of microwaves by water vapor, the absorption of infrared rays, etc. have been conventionally used. Since these devices can directly detect water vapor using physical methods, they are advantageous for detecting small changes in water vapor even in environments that involve sudden temperature changes as mentioned above, but on the other hand, the configuration of the device including temperature compensation is large-scale. Therefore, the cost is also quite high. There is also a thermal conduction type absolute humidity sensor that uses two thermistors with the same characteristics, making use of the difference in thermal conductivity between humid air and dry air.It is small and has excellent environmental resistance, but compared to conventional However, it was not possible to obtain a good output for small changes in the amount of vapor, and there were problems in terms of high detection sensitivity and high-speed response.

〈発明の概要〉 本発明は、以下に述べた様な従来の感湿素子が有してい
た欠点を解消するためになされたものであり、湿度計測
において絶対湿度を検出し、特に検出感度の従来にない
高感度化さらには高速応答化を図るものである。
<Summary of the Invention> The present invention was made in order to eliminate the drawbacks of conventional humidity sensing elements as described below. The aim is to achieve unprecedented high sensitivity and high-speed response.

絶対湿度の検出手法としては、前述した空気の熱伝導率
が空気中に含有される水蒸気量に依存することを利用し
、雰囲気の熱伝導率変化に伴う素子からの放散熱量の変
化によフ生ずる素子温度の変化から水蒸気量を検出する
。即ち、一定温度に自己加熱された2つの素子を用いそ
のうち一方(第1の素子)を検出雰囲気に露出し、他方
(第2の素子)は一定湿度雰囲気にて密閉することによ
り、検出雰囲気内の水蒸気量変化に伴う熱伝導率変化に
より生じる第1、第2の素子夫々の温度変化の差出力を
もって雰囲気温度の影響を受けることなく水蒸気量を高
精度に検知する。従って、高感度、高速応答、低消費電
力を実現するためには素子の熱容量を極力低減し、且つ
良好なる熱放散の得られる素子構造とする必要がある。
The method for detecting absolute humidity uses the fact that the thermal conductivity of air depends on the amount of water vapor contained in the air, as described above, and detects humidity by changing the amount of heat dissipated from the element as the thermal conductivity of the atmosphere changes. The amount of water vapor is detected from the resulting change in element temperature. That is, by using two elements that are self-heated to a constant temperature, one of them (the first element) is exposed to the detection atmosphere, and the other (second element) is sealed in a constant humidity atmosphere. The amount of water vapor can be detected with high accuracy without being affected by the ambient temperature by using the difference output between the temperature changes of the first and second elements caused by the change in thermal conductivity accompanying the change in the amount of water vapor. Therefore, in order to achieve high sensitivity, high-speed response, and low power consumption, it is necessary to reduce the heat capacity of the element as much as possible and to provide an element structure that provides good heat dissipation.

そこで、本発明の感湿素子は従来の熱伝導式絶対湿度セ
ンサの小型化を図るばかってなく、感応膜をマイクロマ
シニング技術を駆使して作製したブリッジ、カンチレバ
ーあるいはダイヤフラム上に形成することによ多素子の
熱容量を極力低減した構造としている。又、感応膜とし
てGe、SiC。
Therefore, the humidity sensing element of the present invention not only aims to miniaturize the conventional thermal conduction type absolute humidity sensor, but also forms a sensitive film on a bridge, cantilever, or diaphragm made by making full use of micromachining technology. The structure has a structure that reduces the heat capacity of multiple elements as much as possible. Also, Ge, SiC can be used as a sensitive film.

TaN等のサーミスタ定数の大きい材料の薄膜を用い素
子の温度変化を感応膜の抵抗変化として良好に出力でき
る。さらに、物理的手法による検出であるため、水分の
吸脱着に伴う電気特性の変化を利用する化学的手法によ
る検出に比較して感応膜等の汚染に対しても安定であり
、耐環境性にも優れたものとなる。素子作製においても
、マイクロマシニング技術、感応膜の微細加工技術等大
部分のプロセスを通常の半導体プロセスまたはその応用
プロセスによるバッチ処理が可能であるタメ素子の再現
性、互換性に優れ、また安価な素子とすることができる
By using a thin film of a material with a large thermistor constant such as TaN, the temperature change of the element can be favorably output as a resistance change of the sensitive film. Furthermore, since detection is performed using a physical method, it is more stable against contamination of sensitive membranes and has better environmental resistance than detection using chemical methods that utilize changes in electrical properties due to adsorption and desorption of moisture. will also be excellent. In device manufacturing, most processes such as micromachining technology and sensitive film microfabrication technology can be batch-processed using normal semiconductor processes or their applied processes. It can be an element.

以上述べた様に、本発明は、上記幾多の利点を有し、特
に、水蒸気検出感度の高感度化、高速応答性に優れ、電
子レンジにおける食品仕上シセンサ等としての応用に適
した感湿素子?提供することを目的とするものである。
As described above, the present invention has many of the above-mentioned advantages, and is particularly excellent in high water vapor detection sensitivity and high-speed response, and is suitable for application as a food finishing sensor in a microwave oven, etc. ? The purpose is to provide

〈実施例〉 第1図(a) (b) (c) (d)は本発明の1実
施例を示す感湿素子の構造模式図及び断面図である。第
1図(a) (b)に示す如(Si基板1上にブリッジ
形状の薄膜絶縁層2を形成した後、基板1であるSiの
結晶軸異方性エツチングを行なうことによV絶縁層ブリ
ッジ部下のエツチングにて基板1−絶縁層ブリッジ部(
以下マイクロブリッジト称ス。)3間に中空構造を有し
、熱絶縁すなかち低熱容量化に優れた素子構造とし、さ
らにマイクロブリッジ3上に薄膜センサ材料である感応
膜4を形成している。感応膜4には第1図(C) (d
)に示す如く電気抵抗を検出するための電画5が直結さ
れている。この素子のマイクロブリッジ3の作製プロセ
スについて詳細に述べると、まず結晶軸の方位により化
学エツチングの速度が異なるSi基板上に、マイクロブ
リッジ3となり且つエツチング時のマスクとなる薄膜絶
縁層2を材料に応じて熱酸化法、真空蒸着法、スパッタ
法またはCVD法等により積層形成し、ホトリソグラフ
ィー技術と化学エツチング法もしくはドライエツチング
法によりブリッジ形状に微細加工を行う。又、ブリッジ
の強度等を考慮し、マイクロブリッジ部3の絶縁層下面
に所定の厚みのSiを残存させて、その下方を空洞化し
絶縁層と基板材料のSi層が重畳された2層構造から成
るブリッジを形成することも有用であり、その場合は基
板のブリッジ部表面に予めB(ポロン)等を高濃度に拡
散あるいはドープすることによりその部分を異方性エツ
チング(化学エツチング)時のストップ層として利用す
れば結果として絶縁層と5i(Bドープ)材料からなる
ブリッジが形成される。このようにして得られたマイク
ロブリッジ3上に感応膜4と電極5が搭載される。尚、
絶縁層材料としてはS i 02 M、 Si3N4゜
A6203  、ZrO2等低熱容量にて基板と比較的
熱膨張率の近い厚さ100μm以下のものが良く形状と
しては上記ブリッジ以外に片持ち梁(カンチレバー)構
造も有用である。
<Example> FIGS. 1(a), (b), (c), and (d) are a schematic structural diagram and a sectional view of a moisture-sensitive element showing one example of the present invention. As shown in FIGS. 1(a) and 1(b) (after forming a bridge-shaped thin film insulating layer 2 on a Si substrate 1, a V insulating layer is formed by performing crystal axis anisotropic etching of Si, which is the substrate 1). By etching the lower part of the bridge, the substrate 1-insulating layer bridge part (
Hereafter referred to as Microbridge. ) has a hollow structure between the micro bridges 3 and has an element structure excellent in thermal insulation and low heat capacity, and furthermore, a sensitive film 4, which is a thin film sensor material, is formed on the micro bridge 3. The sensitive film 4 has a structure shown in FIG. 1 (C) (d
), an electrical image 5 for detecting electrical resistance is directly connected. To describe in detail the manufacturing process of the microbridge 3 of this device, first, a thin film insulating layer 2, which will become the microbridge 3 and serve as a mask during etching, is formed on a Si substrate whose chemical etching speed differs depending on the orientation of the crystal axis. Depending on the case, the layers are formed by a thermal oxidation method, vacuum evaporation method, sputtering method, CVD method, etc., and microfabricated into a bridge shape by photolithography technology and chemical etching method or dry etching method. In addition, in consideration of the strength of the bridge, etc., a predetermined thickness of Si is left on the lower surface of the insulating layer of the micro bridge part 3, and the lower part is hollowed out, resulting in a two-layer structure in which the insulating layer and the Si layer of the substrate material are superimposed. It is also useful to form a bridge, in which case the surface of the bridge portion of the substrate is preliminarily diffused or doped with B (poron) etc. at a high concentration to prevent the area from being etched during anisotropic etching (chemical etching). When used as a layer, a bridge consisting of an insulating layer and a 5i (B-doped) material is formed as a result. A sensitive film 4 and an electrode 5 are mounted on the microbridge 3 thus obtained. still,
Insulating layer materials such as Si02M, Si3N4゜A6203, ZrO2, etc., with a thickness of 100 μm or less, which have a low heat capacity and a coefficient of thermal expansion relatively similar to that of the substrate, are recommended.In addition to the above-mentioned bridges, the shape can be a cantilever. Structure is also useful.

第2図(a) (b) (c)は本発明の他の実施例を
示すものでカンチレバー構造を有する感湿素子の斜視図
、X−x断面図及びY−Y断面図である。第1図同様S
i基板1上に薄膜絶縁層2が層設され、この薄膜絶縁層
がSi基板1の空洞部上で片持ち梁となるように加工さ
れてカンチレバ一部6を形成している。このカンチレバ
一部6に感応膜4が配設されさらに電気抵抗検出用の1
対の電極5が対向して設けられている。電画5は短形、
櫛歯状、波形状等種々の形状のものが利用できる。カン
チレバ一部6は同様に絶縁層とSi基板材料の2層構造
としても良い。
FIGS. 2(a), 2(b), and 2(c) show another embodiment of the present invention, and are a perspective view, a cross-sectional view along line X-x, and a cross-sectional view along line Y-Y of a moisture-sensitive element having a cantilever structure. Same as Figure 1 S
A thin film insulating layer 2 is layered on the i-substrate 1, and this thin film insulating layer is processed to form a cantilever over the cavity of the Si substrate 1 to form a cantilever portion 6. A sensitive membrane 4 is disposed on this cantilever part 6, and a membrane 4 for detecting electrical resistance is further provided.
A pair of electrodes 5 are provided facing each other. Electric picture 5 is rectangular,
Various shapes such as comb-shaped and wavy shapes can be used. The cantilever portion 6 may similarly have a two-layer structure of an insulating layer and a Si substrate material.

上記各実施例において感応膜4は真空蒸着法、スパッタ
リング法、CVD法等により、マイクロブリッジ3ある
いはカンチレバ一部6に成膜された後、ホトリソグラフ
ィ技術、エツチング技術により微細加工される。感応膜
4の配置される薄膜絶縁層2の領域はブリッジ形状やカ
ンナレバー形状以外にダイヤフラム構造としてもよい。
In each of the above embodiments, the sensitive film 4 is formed on the microbridge 3 or the cantilever part 6 by vacuum evaporation, sputtering, CVD, etc., and then microfabricated by photolithography or etching. The region of the thin film insulating layer 2 where the sensitive film 4 is disposed may have a diaphragm structure in addition to a bridge shape or a cannular shape.

また感応膜4と電極5は上下の配置を逆に即ち、薄膜絶
縁層2上に電極5を形成した後、この電極5に接触する
ように感応膜4を積層する構成としてもよい。この場合
雰囲気と接触する感応膜4の表面積が電画5によって遮
蔽されないため大きくなり、より高感度の検出ができる
。感応膜4の材料としてはサーミスタ定数の大きい材料
としてGe。
Alternatively, the sensitive film 4 and the electrode 5 may be arranged in reverse order, that is, the electrode 5 may be formed on the thin film insulating layer 2, and then the sensitive film 4 may be laminated so as to be in contact with the electrode 5. In this case, the surface area of the sensitive film 4 that comes into contact with the atmosphere is not shielded by the electric image 5, and therefore becomes larger, allowing for higher sensitivity detection. The material for the sensitive film 4 is Ge, which has a large thermistor constant.

S iC,TaN等を用いることができ、ここではGe
を用いている。この後、感応膜4上(もしくは下)に形
成される金属薄膜の電極5は真空蒸着法、スパッタ法、
CVD法等にてオーミック接触が得られる様に形成する
。電極形状は必ずしも感応膜4片面に設けられる1対の
対向電極である必要はなく、感応膜の比抵抗等によって
は感応膜4を挾持するように両面に形成しても良い。S
i基板1裏面の薄膜絶縁層2はエツチング防止の為に被
覆されている。Si基板1の側面にも同様の薄膜絶縁層
2が被覆される。
SiC, TaN, etc. can be used, and here Ge
is used. After this, the metal thin film electrode 5 formed on (or under) the sensitive film 4 can be formed using a vacuum evaporation method, a sputtering method, or the like.
It is formed using a CVD method or the like to obtain ohmic contact. The shape of the electrodes does not necessarily have to be a pair of opposing electrodes provided on one side of the sensitive film 4, and depending on the resistivity of the sensitive film, etc., they may be formed on both sides so as to sandwich the sensitive film 4. S
The thin film insulating layer 2 on the back surface of the i-substrate 1 is coated to prevent etching. A similar thin film insulating layer 2 is also coated on the side surface of the Si substrate 1.

以上の工程の後、基板のSiを所定の時間E。After the above steps, the Si substrate was heated to E for a predetermined period of time.

p、 w、 (エチレンジアミン−ピロカテコール−水
)等の溶液を用いて化学エツチングすなわち結晶軸異方
性エツチングを行うとエツチング液のマスクとなる絶縁
層のない部分から優先結晶軸方向にSiのエツチングが
進行して行き、絶縁層ブリッジパターン下のSiが除か
れ結果として、マイクロブリッジ構造の微小チップ感湿
素子が得られる。このエツチングの進行状況を第3図(
a) (b) (c)に示す。
When chemical etching, that is, crystal axis anisotropic etching, is performed using a solution such as p, w, (ethylenediamine-pyrocatechol-water), Si is etched in the preferential crystal axis direction from the part where there is no insulating layer that serves as a mask for the etching solution. As the process progresses, the Si under the insulating layer bridge pattern is removed, and as a result, a microchip moisture sensing element having a microbridge structure is obtained. The progress of this etching is shown in Figure 3 (
Shown in a) (b) and (c).

次に、絶対湿度センサとしての詳細な動作機構について
説明する。前述した様に、検出(測定)雰囲気の熱伝導
率が含有される水蒸気の量によって変化することを利用
した熱伝導式の絶対湿度センサを構成する2つの感湿素
子からなり、第1の素子は検出雰囲気に露出して設置し
、検出雰囲気の水蒸気量変化が熱伝導率の変化として素
子に伝搬される。一方、第2の素子は一定湿度雰囲気具
体的には乾燥蟹素等を封入し密閉した状態とし、外部か
らの水蒸気の混入のない構造とする。この状態にて第1
、第2の素子を同一温度に加熱し水蒸気量の検出を行な
う。この時、検出雰囲気の水蒸気量が一定と仮定し、雰
囲気の温度が変化した場合、第1、第2の素子ではとも
に同一変化幅の素子温度変化を生じる。ところが、雰囲
気中の水蒸気量の変化に関しては、窮1と第2の素子と
では夫々の素子の周囲雰囲気の熱伝導率が水蒸気によっ
て異なるため、2つの素子夫々の素子温度変化幅は異な
り且つ雰囲気温度による影響は第1゜第2素子とも同様
であるため、結果としてその素子温度変化幅の差分は水
蒸気量に依存するものとなる。従って、2つの素子の差
出力を得ることによシ雰囲気温度の変動に依らず高精度
に水蒸気量の検出が可能となる。又、素子からの出力信
号としては素子温度変化によるセンサ薄膜の抵抗変化に
より得ることができる。
Next, a detailed operating mechanism as an absolute humidity sensor will be explained. As mentioned above, a thermal conduction type absolute humidity sensor that utilizes the fact that the thermal conductivity of the detection (measurement) atmosphere changes depending on the amount of water vapor contained in the atmosphere is comprised of two humidity sensing elements. is installed exposed to the detection atmosphere, and changes in the amount of water vapor in the detection atmosphere are propagated to the element as changes in thermal conductivity. On the other hand, the second element is kept in a constant humidity atmosphere, specifically, in a sealed state in which dried crab meat or the like is sealed, and has a structure that prevents water vapor from entering from the outside. In this state, the first
, the second element is heated to the same temperature and the amount of water vapor is detected. At this time, assuming that the amount of water vapor in the detection atmosphere is constant, if the temperature of the atmosphere changes, the element temperature changes with the same width in both the first and second elements. However, regarding changes in the amount of water vapor in the atmosphere, the thermal conductivity of the surrounding atmosphere of the first and second elements differs depending on the water vapor. Since the influence of temperature is the same for the first and second elements, as a result, the difference in the width of temperature change between the elements depends on the amount of water vapor. Therefore, by obtaining the differential output of the two elements, it is possible to detect the amount of water vapor with high accuracy regardless of fluctuations in the ambient temperature. Further, an output signal from the element can be obtained by a change in the resistance of the sensor thin film due to a change in the temperature of the element.

以上の如き動作機構を基本とするため、特性の高感度化
、高速応答性及び低消費電力特性を得るためには熱絶縁
に優れた基体上に感応膜を形成することにより素子の熱
容量を極めて小さくし且つサーミスタ定数の大きい感応
膜材料の薄膜形成か重要である。そこで、本実施例の素
子はマイクロマシニング技術及びホI−IJソグラフィ
等の微細加工技術を導入し従来にない低熱容量の構造と
し、さらにセンサ材料として市販の低温用サーミスタ(
ビード型等)のサーミスタ定数と同程度のサーミスタ定
数を有するGe、SiC等の薄膜を用いることによシ、
飛躍的な検出感度の向上と高速応答性及び低電力消費を
実現可能とするものである。
Based on the operating mechanism described above, in order to obtain high sensitivity, high-speed response, and low power consumption characteristics, the heat capacity of the device must be maximized by forming a sensitive film on a substrate with excellent thermal insulation. It is important to form a thin film of a sensitive film material that is small and has a large thermistor constant. Therefore, the device of this example introduced microfabrication technology such as micromachining technology and H-IJ lithography to create a structure with an unprecedentedly low heat capacity, and also used a commercially available low-temperature thermistor (
By using a thin film of Ge, SiC, etc., which has a thermistor constant comparable to that of a bead-type thermistor, etc.
This enables dramatic improvement in detection sensitivity, high-speed response, and low power consumption.

第4図には、感応膜としてGet用いたマイクロブリッ
ジ型絶対湿度センサ(図中実線)の一定湿度雰囲気にお
ける第1、第2感湿素子夫々の抵抗変化出力の比即ち「
感度」を従来の熱伝導式絶対湿度センサ(図中一点鎖線
)の同一雰囲気条件における出力比を「1」としてノー
マライズしマイクロブリッジ厚(d)に対して示しであ
る。マイクロブリッジ厚を薄くするに従い素子の熱容量
が低下しd=10(μrrL)では従来の10倍以上の
感度が得られる。
FIG. 4 shows the ratio of the resistance change outputs of the first and second humidity sensing elements in a constant humidity atmosphere of a microbridge type absolute humidity sensor (solid line in the figure) using Get as a sensitive film, that is, "
"Sensitivity" is normalized to "1", which is the output ratio of a conventional thermal conduction type absolute humidity sensor (dotted chain line in the figure) under the same atmospheric conditions, and is shown relative to the microbridge thickness (d). As the thickness of the microbridge becomes thinner, the heat capacity of the element decreases, and when d=10 (μrrL), a sensitivity more than 10 times that of the conventional device can be obtained.

この様に、上記実施例の感湿素子は絶対湿度センサへの
応用に適し、熱伝導式のため直接水蒸気量を検知でき従
来にない高い検出感度と高速応答性を有するものであり
、又、物理的手法によって検出するため耐環境性にも優
れており電子レンジ0食品仕上りセンサ等への応用に有
益である。
As described above, the humidity sensing element of the above embodiment is suitable for application to an absolute humidity sensor, and because it is of a thermal conduction type, it can directly detect the amount of water vapor, and has unprecedented high detection sensitivity and high-speed response. Since it is detected by a physical method, it has excellent environmental resistance and is useful for applications such as microwave oven-free food finishing sensors.

次に第5図(a) (b) (c)は本発明の更に他の
実施例?示す感湿素子の構造模式斜視図と断面図である
。Si基板1上と基板裏面及び側面に薄膜絶縁層2を形
成し且つSi基板1裏面の薄膜絶縁層2はダイヤフラム
形成に必要なパターンに応じ異方性エツチングのマスク
として所定の形状、寸法にてエツチングしておき、薄膜
絶縁層2の形成されていないSi基板1裏面中央より異
方性エツチングを行なうことによシ、Si基板1の中央
部が薄くなりSi基板1の表面に被着された薄膜絶縁層
とSi基板材料の2層構造より成るダイヤフラム部7が
形成される。このダイヤフラム部7上に所定形状及び寸
法にパターン化された感応膜4を配設し、感応膜4に櫛
歯状電極5を直結することにより感応膜40抵抗変化が
検出される。
Next, FIGS. 5(a), (b), and (c) are still other embodiments of the present invention. FIG. 2 is a schematic perspective view and a cross-sectional view of the structure of the humidity-sensitive element shown in FIG. A thin film insulating layer 2 is formed on the Si substrate 1 and on the back and side surfaces of the substrate, and the thin film insulating layer 2 on the back surface of the Si substrate 1 is formed into a predetermined shape and size as a mask for anisotropic etching according to the pattern required for forming the diaphragm. By performing anisotropic etching from the center of the back surface of the Si substrate 1 on which the thin film insulating layer 2 is not formed, the center portion of the Si substrate 1 becomes thinner and is adhered to the surface of the Si substrate 1. A diaphragm portion 7 having a two-layer structure of a thin film insulating layer and a Si substrate material is formed. A sensitive film 4 patterned in a predetermined shape and size is disposed on the diaphragm portion 7, and a comb-shaped electrode 5 is directly connected to the sensitive film 4, whereby a change in resistance of the sensitive film 40 is detected.

ダイヤフラム部7の基板材料にヌトップ層を形成する手
段としては、予めB等を高濃度にドープすることによシ
得ている。従って、ダイヤフラムはこのBドープされた
基板材料と絶縁層の2層によって形成されている。又、
ダイヤフラム部7の基板材料の厚みは必ずしもB等をド
ープすることで制御する必要はなく、異方性エツチング
の時間のみによって制御することも可能であり、さらに
は、この部分の基板材料をすべてエツチングし、絶縁層
のみによりダイヤプラムを形成する構造であっても良い
The Nutop layer can be formed on the substrate material of the diaphragm portion 7 by doping B or the like at a high concentration in advance. The diaphragm is therefore formed by two layers: this B-doped substrate material and an insulating layer. or,
The thickness of the substrate material of the diaphragm portion 7 does not necessarily have to be controlled by doping with B or the like, but can also be controlled only by the anisotropic etching time. However, a structure in which the diaphragm is formed only by an insulating layer may be used.

この様にして得られるダイヤフラム型の感湿素子は、従
来の熱伝導式の感湿素子に比較して、感応膜の熱絶縁す
なわち素子の熱容量低減に関しては飛躍的な向上が得ら
れるものの、ブリッジあるいはカンナレバー型の素子と
比較すると応答特性の面で若干劣る。しかし、ダイヤフ
ラム部の機械的強度を考えるとブリッジあるいはカンチ
レバー型に比較して有利であり、従って、高感度、高速
応答、低消費電力を有し、機械的強度を要求される使用
環境への適用に有益である。
The diaphragm-type moisture-sensing element obtained in this way has a dramatic improvement in thermal insulation of the sensitive film, that is, in terms of reducing the heat capacity of the element, compared to conventional heat-conduction type moisture-sensing elements. Alternatively, it is slightly inferior in response characteristics when compared to a cannular lever type element. However, considering the mechanical strength of the diaphragm part, it is advantageous compared to the bridge or cantilever type, and therefore has high sensitivity, fast response, and low power consumption, and can be applied to usage environments that require mechanical strength. It is beneficial for

第6図は本発明の更に他の実施例を示す構造模式斜視図
である。本実施例ではダイヤフラム型の感湿素子を用い
ることで検出用素子8と参照用素子9とを積層し、参照
用素子9の感応膜形成部が検出用素子8のダイヤフラム
下の空隙内に内包され且つ一定湿度雰囲気にて気密封止
した構造としている。この素子構造により検出用素子8
と参照用素子9を一体化した1チツプの絶対湿度センサ
が溝築できセンサ構成の一層の小型化が図れる。
FIG. 6 is a schematic structural perspective view showing still another embodiment of the present invention. In this example, a diaphragm-type moisture-sensitive element is used to stack the detection element 8 and the reference element 9, and the sensitive film forming portion of the reference element 9 is contained in the gap below the diaphragm of the detection element 8. The structure is airtight and hermetically sealed in a constant humidity atmosphere. With this element structure, the detection element 8
A one-chip absolute humidity sensor that integrates the reference element 9 and the reference element 9 can be constructed, and the sensor structure can be further miniaturized.

又、参照用素子9の気密封止を検出用素子8との接合に
より達成するため、気密封止プロセスをウェハ一単位の
バッチ処理可能とし、従来の素子単位で作製でき、しか
も別部品を用いて形成していた気密封止プロセスに比較
すると、煩雑さが解消されるとともに別部品も必要とし
ないことから一層の低コスト化も実現できる。
In addition, since the reference element 9 is hermetically sealed by bonding it to the detection element 8, the hermetic sealing process can be performed in batches on a wafer basis, and can be fabricated in units of elements as in the past, while using separate parts. Compared to the hermetic sealing process that was previously used, it is less complicated and does not require separate parts, making it possible to achieve further cost reductions.

素子作製プロセスの詳細は上記各実施例に準じ、薄膜絶
縁層2から成るダイヤフラム7上に1対の対向電照5を
設け、さらに感応膜4を形成した素子構成とする。次に
検出用素子8と参照用素子9の接合プロセスについて述
べる。まず検出用素子8の作製に際し、異方性エツチン
グによる絶縁層ダイヤプラム部7形成時に、参照用素子
9のパッド用窓すなわち参照用素子9のリード取り出し
部10となる部分を基板の表裏両面から異方性エツチン
グして作製する。一方、参照用素子9については、感応
膜4形成面に接合媒体11をスパッタ法、真空蒸着法、
CVD法等によ多形成し、接合に必要な部分を雑し他は
エツチングにより除去してパターン化する。又、接合媒
体11のパターンニングに関しては、あらかじめ接合に
不要な部分をレジスト等でマスクしておき、接合媒体1
1形成後マスクを除去してパターン化するか、あるいは
接合媒体11の材料によっては全面に形成しパッド部の
みを除去し他はすべて残す構成として良い。尚、接合媒
体11としては低融点ガラス、PbO等の比較的低融点
材料の薄膜を用いる。以上の工程の後、検出用素子8と
参照用素子9の接合を行なう。検出用素子8、参照用素
子9を夫々形成した2枚のウェハーの位置合わせを行い
、積層状態にして治具で固定し、N2 + Ar等の希
ガス雰囲気内で所定時間、所定温度にて焼成し希ガスを
気密封止した積層構造を得る。最後に積層接合された2
枚のウェハーを同時にダイシングすることによりlチッ
プの絶対湿度センサとすることができる。
The details of the device fabrication process are similar to those of the above embodiments, and the device has a structure in which a pair of opposing lights 5 are provided on a diaphragm 7 made of a thin film insulating layer 2, and a sensitive film 4 is further formed. Next, a process for joining the detection element 8 and the reference element 9 will be described. First, when manufacturing the detection element 8, when forming the insulating layer diaphragm part 7 by anisotropic etching, the pad window of the reference element 9, that is, the part that will become the lead extraction part 10 of the reference element 9, is removed from both the front and back sides of the substrate. Manufactured by anisotropic etching. On the other hand, regarding the reference element 9, the bonding medium 11 was applied to the surface on which the sensitive film 4 was formed by sputtering, vacuum evaporation, or
A large number of layers are formed by a CVD method or the like, and the portions necessary for bonding are removed and the remaining portions are removed by etching to form a pattern. In addition, regarding patterning of the bonding medium 11, parts unnecessary for bonding are masked with resist etc. in advance, and the bonding medium 11 is patterned.
After forming the bonding medium 11, the mask may be removed and patterned, or depending on the material of the bonding medium 11, it may be formed over the entire surface and only the pad portions may be removed while leaving everything else. Note that as the bonding medium 11, a thin film of a relatively low melting point material such as low melting point glass or PbO is used. After the above steps, the detection element 8 and the reference element 9 are bonded. The two wafers on which the detection element 8 and the reference element 9 have been formed are aligned, stacked, fixed with a jig, and heated in a rare gas atmosphere such as N2 + Ar at a predetermined temperature for a predetermined time. A laminated structure is obtained by firing and hermetically sealing the rare gas. 2 finally laminated and bonded
By dicing two wafers at the same time, a one-chip absolute humidity sensor can be obtained.

この様に、検出用素子8と参照用素子9を積層接合する
ことにより、従来にない超小型の絶対湿度センサを溝築
することができ且つへウジングにおける部品数の大幅な
低減と簡便さ等によシ低コストのセンサとすることがで
き多方面への応用に有益である。
In this way, by laminating and bonding the detection element 8 and the reference element 9, it is possible to construct an unprecedented ultra-compact absolute humidity sensor, and it is possible to greatly reduce the number of parts and simplify the housing. It can be made into a low-cost sensor and is useful for many applications.

〈発明の効果〉 本発明に係る感湿素子は、以下に示す実用上面めで有益
な特性を有する。
<Effects of the Invention> The moisture-sensitive element according to the present invention has the following properties which are useful from a practical standpoint.

(1)熱伝導式の絶対湿度センサに応用でき水蒸気量を
直接検知可能であり、特に検出雰囲気の温度が急激な変
化を伴う様な場合の湿度計測に際して相対湿度検知より
有利となる。
(1) It can be applied to a thermal conduction type absolute humidity sensor and can directly detect the amount of water vapor, which is more advantageous than relative humidity detection especially when measuring humidity when the temperature of the detection atmosphere is accompanied by rapid changes.

(2)マイクロブリッジ、カンチレバーあるいはダイヤ
フラム構造を用いた素子構成であるため感応膜の熱絶縁
に優れ、すなわち、素子の熱容量を極力低減し、且つ感
応膜としてGe、SiC。
(2) Since the element structure uses a microbridge, cantilever, or diaphragm structure, the thermal insulation of the sensitive film is excellent, that is, the heat capacity of the element is reduced as much as possible, and the sensitive film is made of Ge or SiC.

TaNその他のサーミスタ定数の大きい材料の薄膜を用
いることで、従来にない水蒸気検出の高感度化、高速応
答性、低消費電力化を達成している。
By using a thin film of TaN or other material with a large thermistor constant, we have achieved unprecedented high sensitivity, high-speed response, and low power consumption for water vapor detection.

(3)物理的手法によシ水蒸気を検出するため素子表面
の汚染等に対して安定であシ良好なる耐環境性を有して
いる。
(3) Since water vapor is detected by a physical method, it is stable against contamination of the element surface and has good environmental resistance.

(4)素子の作製が通常の半導体プロセスあるいはその
応用プロセスにてパッチ処理可能であり再現性、互換性
に優れておシ、又安価な素子とすることができる。
(4) The device can be manufactured by patch processing using a normal semiconductor process or an application process thereof, and has excellent reproducibility and compatibility, and can be an inexpensive device.

以上詳述した如く本発明の感湿素子は絶対湿度の検出に
有効であり、安価に作製できるとともに良好なる耐環境
性を有し、大幅な熱容量の低減を図った素子構造により
、高感度な検出感度、高速応答性さらには低消費電力動
作等多くの優れた特性を有し、多方面への応用に適し、
感湿素子として実用上極めて有益である。
As detailed above, the humidity sensing element of the present invention is effective in detecting absolute humidity, can be produced at low cost, has good environmental resistance, and has a highly sensitive element structure with a significantly reduced heat capacity. It has many excellent characteristics such as detection sensitivity, high-speed response, and low power consumption operation, making it suitable for many applications.
It is extremely useful in practice as a moisture-sensitive element.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a) (b) (c) (d)は本発明の1実
施例を示すブリッジ型感湿素子の構造模式斜視図及び断
面図である。 第2図(a) (b) (c)は本発明の1実施例を示
すカンナレバー型感湿素子の構造模式斜視図及び断面図
である。 m 3図(a) (b) (c)はエツチングの進行状
況を説明する説明図である。 第4図は本実施例の感湿素子にて構成した絶対湿度セン
サの湿度感度と従来の絶対湿度センサの湿度感度とを比
較する説明図である。 第5図(a) (b) (c)は本発明の1実施例を示
すダイヤフラム型感湿素子の構造模式斜視図及び断面図
である。 第6図は本発明の1実施例を示すダイヤフラム型素子を
積層接合した1チップ絶対湿度センサの構造模式斜視図
である。 1・・・Si基板  2・・・薄膜絶縁層  3・・・
マイクロブリッジ  4・・・感応膜  5・・・電極
6・・・カンチレバ一部  7・・・ダイヤプラム部8
・・・検出用素子  9・・・参照用素子<h> (C) (d) 第1図 Y (il)                    (
C)第2図 1!%3図 d(月m) 第5図
FIGS. 1(a), 1(b), 1(c), and 1(d) are a schematic perspective view and a cross-sectional view of the structure of a bridge-type moisture-sensitive element showing one embodiment of the present invention. FIGS. 2(a), 2(b), and 2(c) are a schematic structural perspective view and a sectional view of a cannular lever type moisture sensing element showing one embodiment of the present invention. Figures 3(a), 3(b), and 3(c) are explanatory diagrams for explaining the progress of etching. FIG. 4 is an explanatory diagram comparing the humidity sensitivity of the absolute humidity sensor configured with the humidity sensing element of this embodiment and the humidity sensitivity of a conventional absolute humidity sensor. FIGS. 5(a), 5(b), and 5(c) are a schematic structural perspective view and a sectional view of a diaphragm type moisture sensing element showing one embodiment of the present invention. FIG. 6 is a schematic perspective view of the structure of a one-chip absolute humidity sensor in which diaphragm type elements are laminated and bonded, showing one embodiment of the present invention. 1...Si substrate 2...Thin film insulating layer 3...
Micro bridge 4... Sensitive membrane 5... Electrode 6... Part of cantilever 7... Diaphragm part 8
...Detection element 9...Reference element <h> (C) (d) Fig. 1 Y (il) (
C) Figure 2 1! %3 figure d (month m) figure 5

Claims (5)

【特許請求の範囲】[Claims] 1.基板上にブリッジ形状、片持ち梁形状あるいはダイ
ヤフラム形状に微細加工された薄膜絶縁層を有し、該薄
膜絶縁層の前記ブリッジ形状、片持ち梁形状あるいはダ
イヤフラム形状の直下の基板が空隙部を有し、前記薄膜
絶縁層の前記ブリッジ形状片持ち梁形状あるいはダイヤ
フラム形状に感応膜を搭載したことを特徴とする感湿素
子。
1. A thin film insulating layer microfabricated into a bridge shape, a cantilever shape, or a diaphragm shape is provided on a substrate, and the substrate directly under the bridge shape, cantilever shape, or diaphragm shape of the thin film insulating layer has a void portion. A moisture sensing element characterized in that a sensitive film is mounted on the bridge-shaped cantilever shape or diaphragm shape of the thin film insulating layer.
2.薄膜絶縁層の厚みが100μm以下である特許請求
の範囲第1項記載の感湿素子。
2. The moisture-sensitive element according to claim 1, wherein the thin film insulating layer has a thickness of 100 μm or less.
3.第1の感応膜を検出雰囲気に露出し、第2の感応膜
一定湿度雰囲気に密閉し、両感応膜夫々の外周囲雰囲気
の熱伝導率の差によって生ずる温度変化の差出力をもっ
て水蒸気量を検知する特許請求の範囲第1項記載の感湿
素子。
3. The first sensitive film is exposed to a detection atmosphere, the second sensitive film is sealed in a constant humidity atmosphere, and the amount of water vapor is detected by the differential output of the temperature change caused by the difference in thermal conductivity of the surrounding atmosphere of both sensitive films. A moisture-sensitive element according to claim 1.
4.感応膜が、SiC,TaNもしくはGeあるいはこ
れらを主成分とする材料の薄膜である特許請求の範囲第
1項又は第3項記載の感湿素子。
4. 4. The moisture-sensitive element according to claim 1, wherein the sensitive film is a thin film of SiC, TaN, Ge, or a material containing these as main components.
5.第10感応膜と第2の感応膜が積層方向に配置され
て成る特許請求の範囲第3項記載の感湿素子。
5. The moisture-sensitive element according to claim 3, wherein the tenth sensitive film and the second sensitive film are arranged in the stacking direction.
JP14349687A 1986-07-29 1987-06-08 Moisture sensitive element Pending JPS63145954A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US07/078,741 US4928513A (en) 1986-07-29 1987-07-28 Sensor
DE3724966A DE3724966C3 (en) 1986-07-29 1987-07-28 sensor
GB8717919A GB2194845B (en) 1986-07-29 1987-07-29 A sensor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP61-179625 1986-07-29
JP17962586 1986-07-29

Publications (1)

Publication Number Publication Date
JPS63145954A true JPS63145954A (en) 1988-06-18

Family

ID=16069036

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14349687A Pending JPS63145954A (en) 1986-07-29 1987-06-08 Moisture sensitive element

Country Status (1)

Country Link
JP (1) JPS63145954A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5048336A (en) * 1988-12-29 1991-09-17 Sharp Kabushiki Kaisha Moisture-sensitive device
KR100474516B1 (en) * 2002-03-25 2005-03-09 전자부품연구원 Humidity sensor using cantilever and method of manufacturing the same
JP2012078089A (en) * 2010-09-30 2012-04-19 Figaro Eng Inc Gas sensor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5794641A (en) * 1980-12-04 1982-06-12 Ricoh Co Ltd Manufacture of electric heater
JPS5872059A (en) * 1981-10-09 1983-04-28 ハネウエル・インコ−ポレ−テツド Semiconductor device and its manufacture

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5794641A (en) * 1980-12-04 1982-06-12 Ricoh Co Ltd Manufacture of electric heater
JPS5872059A (en) * 1981-10-09 1983-04-28 ハネウエル・インコ−ポレ−テツド Semiconductor device and its manufacture

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5048336A (en) * 1988-12-29 1991-09-17 Sharp Kabushiki Kaisha Moisture-sensitive device
KR100474516B1 (en) * 2002-03-25 2005-03-09 전자부품연구원 Humidity sensor using cantilever and method of manufacturing the same
JP2012078089A (en) * 2010-09-30 2012-04-19 Figaro Eng Inc Gas sensor

Similar Documents

Publication Publication Date Title
US4928513A (en) Sensor
Lee et al. Humidity sensors: a review
EP0376721B1 (en) Moisture-sensitive device
JP3704685B2 (en) Capacitance sensor
US5108193A (en) Thermal flow sensor
KR20010033399A (en) Capacitive vacuum measuring cell
KR20100053082A (en) The capacitance type humidity sensor and fabrication method thereof
JPH0342566A (en) Measuring cell for electrochemical gas sensor
US5448444A (en) Capacitive pressure sensor having a reduced area dielectric spacer
WO1997049998A1 (en) Accelerometer without proof mass
JPS63145954A (en) Moisture sensitive element
CZ393190A3 (en) Sensor based on self-supporting fiber and process for producing thereof
US5440931A (en) Reference element for high accuracy silicon capacitive pressure sensor
JPS63289443A (en) Moisture sensing element
JP2860086B2 (en) Microcap for humidity sensor and humidity sensor
JP3083901B2 (en) Atmosphere sensor
JPH0795054B2 (en) Humidity sensor
CN109752418B (en) Miniature thermal conductivity gas sensor
JPH0196549A (en) Sensor element
JPS63293459A (en) Detecting element
KR100679894B1 (en) Gas sensor and method for fabricating the same
KR200351291Y1 (en) solid electrolyte type CO2 sensor
GB2078973A (en) A moisture sensor formed by an electrical capacitor
JPH0795002B2 (en) Sensor element
JPH08304201A (en) Pressure sensor element and its pressure sensor