JPS631449A - Catalyst for purifying exhaust gas - Google Patents

Catalyst for purifying exhaust gas

Info

Publication number
JPS631449A
JPS631449A JP61144766A JP14476686A JPS631449A JP S631449 A JPS631449 A JP S631449A JP 61144766 A JP61144766 A JP 61144766A JP 14476686 A JP14476686 A JP 14476686A JP S631449 A JPS631449 A JP S631449A
Authority
JP
Japan
Prior art keywords
catalyst
copper
carrier
exhaust gas
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61144766A
Other languages
Japanese (ja)
Inventor
Takao Takinami
滝浪 高男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Corp
Original Assignee
JGC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JGC Corp filed Critical JGC Corp
Priority to JP61144766A priority Critical patent/JPS631449A/en
Publication of JPS631449A publication Critical patent/JPS631449A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Treating Waste Gases (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE:To enhance sulfur oxide and nitrogen oxide decomposition capacity, by a method wherein a porous alumina carrier is impregnated with a solution of an alkali metal compound and, after drying, a copper component is supported by the carrier to form a catalyst for purifying exhaust gas. CONSTITUTION:After a porous alumina carrier is impregnated with a solution of an alkali metal compound, the impregnated carrier is dried to evaporate a solvent from the pores of the carrier to form spaces for allowing copper to impregnate. Subsequently, copper is supported by the alumina carrier in a solution form of an inorg. salt such as nitrate, carbonate or phosphate or an org. salt such as format or acetate to form a catalyst for purifying exhaust gas. The porous alumina carrier pref. has a water absorbing ratio of about 0.3-1.0cc/g. The copper component may be supported by either one of an impregnation method and a spray method and the content thereof is pref. 2-10wt% as metal copper.

Description

【発明の詳細な説明】 発明の[1的 疫2 −1: c7) J工用分野 本発明は、ボイラー、加′熱炉等からの排ガスに含有さ
れている硫黄酸化物(以下SOxという)及び窒素酸化
物(以下NOxという)を乾式法によって同時に除去す
ることができる浄化用触媒に関するものである. 従来の技術 大気汚染物質として燃焼排ガス中に含有されるSOxと
NOxを同時に除去しようとする試みは種々研究開発さ
れ,湿式法による除去方法や、銅化合物を使用する乾式
法によるSOx.Noχの同時除去方法が試みられてい
る. 本発明に関連する後者の乾式法によるSOx,NOxの
同時除去方法として、特開昭50−133158号には
、銅又は酸化銅触媒の存在下、反応泰に排カスをアンモ
ニアと共に導入し、SOxは化学反応により硫酸銅とし
て固定し.NOxはL記反応により生成した硫酸銅を触
奴としアンモニアを還元剤として選択的に接触還元分解
する方法が開示されている. また特公昭58−37008号にも、これと同じように
酸化銅を使用しSOxとNOxを回時に除去する方法が
開示されている. 銅系触奴を用いた場合の脱SOx.脱NO:《の反応機
構を反応式に従って説明する. SOz+%(h   + SO3         (
1)2Cu+Oz    −+ 2CuO      
  (2)CuO+SOs   + CuSO4(3)
CuSO4+2H2  + Cu+SO2+2H2 0
   (4)CuO+H2+ Cu+Hz O    
  (5)上記式中(1)〜(3)はSOxの吸収反応
工程、(4)〜(5)は触媒の再生工程における反応で
ある. 即ち反応工程においてはSOx中の502及び(4)、
(5)式の再生工程で生成した金属銅は排ガス中に残存
する02により(1)、(2)式のように503とCu
Oに酸化される.生成したSO3は(3)式によって硫
酸銅となり、S03は固定される. このように生成した硫酸銅は水素又は一酸化炭素[(4
)式では水素を還元剤とした例を示す]により(4).
(5)式に示すように還元されて金属銅が再生される. 再生工程で放出される濃縮されたSO2は、硫酸製造装
置、クラウス法単体硫黄製造装置等に送られて利用され
る. 一方NOxは次の反応によってアンモニアを還元剤とし
てN2とH20に分解される.CuSO4 6NO+4NH3       5N2 +6H2 0
  (6)CuSO4 6NO2+8NH:l  − 7N2+l2H20  
(7)即ちSOxによって生成した硫酸銅が触媒として
NOXの接触分解反応を促進し、このようにしてSOx
とNOxとが同時に除去されることになる. SOxの吸収反応と触媒再生は一定時間毎に繰り返す必
要があるので、同一の反応塔を複数設置して吸収反応と
触媒再生を交互に行わせる.なおSOx吸収反応と触媒
再生は殆ど同一の温度レベルで実施される. 前記(2)式と(5)式とからわかるように、反応工程
において(3)式によりCuSOaを生成しなかったC
uOは、再生工程でH2又はCOにより還元されて金属
Cuに戻るが,そのためのH2又はCOは脱硫に寄与す
ることなく全く無駄に消費されることになる.従って反
応工程においては触媒中のCuOをできるだけ消費する
ことが触媒再生用ガスの減少という点で望ましいが、一
方触媒中の残存CuOが減少すると共に処理ガス中に漏
洩するSOxも増加するようになるという問題がある. また一般に触媒反応においては、触奴の初期性能を向上
させることは勿論、性衡及び強度の両面からその寿命を
長〈保つことがプロセスの経済性を高める上で極めて重
要である. 本発明を含め、銅触奴を使用する乾式法によるSOxの
除去においては、前記のようにSOx吸収反応工程と触
クv再生玉程を交互に行なう必要があるが、L記従来技
術における触媒は反応・再生サイクルの作り返しに伴う
性ず駈及び強度の劣化が認められる. 処理ガス中に漏洩するSOxを低レベルに維持しつつC
uO利川効率を向上させるために,特公昭57−412
97号には,乾式法によるSOx除去用アクセプターと
して、750℃以上で仮焼したアルミナ含有担体にアル
ミニウムカチオン、銅カチオン及びアルカリ金属カチ才
冫を含有する溶液を共含浸したものを用いること,即ち
銅成分の反応を促進する成分を添加することにより排ガ
ス中のSOxとの反応特性を改良する方法が開示されて
いる.またガラス粉等をアルミナ担体に加えることによ
って強度の向上を計ることが記載されている. 本発明は上記特公昭57−41297号とは異なる発明
思想によるもので、SOx除去における銅触媒の利川効
率を高めるには、Cuを担体表層に担持させればよいこ
と、また強度劣化を防止するには担体(A文203)の
硫酸化を抑制すればよいという知見を基礎とするもので
ある.発II+が解決しようとする問題点 本発明は,初期性俺が高く、またSOx吸収反応工程と
触媒再生工程の繰り返しという条件下でも性撤及び強度
の低下が少なく,さらに再生時における再生用ガスの消
費が少ない同時脱硫・脱硝触媒を提供することを目的と
する. 魚』LΩ」1戊 本発明の排ガスの浄化用触媒は、多孔賀担体アルミナに
アルカリ金属化合物溶液を含浸し乾燥した後銅成分を担
持したものであることを特徴とする. 多孔質担体アルミナに先ずアルカリ金属化合物を含浸し
乾燥することにより、担体アルミナはアルカリ金居化合
物によりカバーされ,あとから担持される銅成分は主と
して拒体表層に沈着する.そのため排ガス中のSOxと
の接触が迅速に行われる.またアルカリ成分が担体アル
ミナをカバーしているため、Al20sの硫酸化が抑制
され,触媒強度の低下が防止される. 本発明の触媒において使用する多孔質の担体としては市
販の成型済みのアルミナ又はアルミナを主成分とするも
のを使用することが出来るが、吸水率が0.3〜1 .
 0 c c / g r程度のものが好ましい. アルカリ金属化合物としては、アルカリ金属、特にKま
たはNaの水酸化物、硝酸塩.硫酸塩、炭酸塩等を弔独
又は混合物として使用でき、適当な溶剤を用いた溶液、
特に水溶液の形7Eで担体に含浸され、乾燥される. この乾炸は担体の細孔内から溶剤を蒸発させ,銅を含浸
させる空間を作るためであり、焼成条件まで温度を高め
て行ってもよい. 活性金属である銅は硝酸塩、炭酸塩、リン酸塩等の無機
酸塩、ギ酸塩、酢酸塩等の有機酸塩、又は酢酸アンモニ
ウム錯塩、シュウ酸アンモンニウム錯塩等の錯化合物な
どの水溶液の形態で担体に担持することができる.いず
れの場合も担持後焼成することにより酸化銅の形態とな
る.また硫酸塩の水溶液の形態で枦体に担持してもよい
.この場合は前記(4)式により還元され、(2)式に
より酸化されて酸化銅の形態となる. 銅成分を担持するには含浸法、噴霧法のいずれを用いて
もよい.含浸又は噴霧は常温又は加熱下で行ない、含浸
又は噴霧後乾燥し、400〜500℃で焼成する. 銅成分の含有量は担体の吸水率にもよるが、吸水率が0
.5〜0 . 7 c c / g rの担体を使用し
た場合金属銅として2〜lowt%が好ましい.2Wt
%以下ではキャパシティが小さく実用的ではなく、一方
1 0wt%以上ではボアマウスが生成し性能が低下す
る. アルカリ成分と銅成分とは、原子比で0.5〜3.0が
好ましい.アルカリ成分が0.5以下では効果が少な<
.3.0以上ではかえって効果が減少する. [比較例1] 3mmφ球形のアルミナ担体に、硝#銅溶液をCuの含
有量として4wt%になるように室温で含浸し、乾燥し
た後、流通型焼成炉で450℃で4時間、空気気流中で
焼成して触媒Aを得た.[比較例2] 比較例1で使用したアルミナ担体に、硝酸ナトリウムと
硝酸銅の混合溶液を、Cuの含有量として4wt%、C
uに対するNaの原子比で2.0となるように含浸し、
乾燥した後、流通型焼成炉で450℃で4時間、空気気
流中で焼成して触媒Bを得た. [比較例3] 比較例lで使用したアルミチ担体に、硝酸銅溶液をCu
含有量として4wt%になるように含浸し十分に乾燥し
た後、硝酸ナトリウムの溶液を、先に含浸したCuに対
するNaの原子比で2.0となるように含浸し、十分に
乾帰した後、浣通型焼成炉で450℃で4時間、空気気
流中で焼成して触媒Cを得た. [実施例l] 比較例1で使用したアルミナ担体に,水酸化ナトリウム
溶液を、Naとして、後から含浸する銅成分(C u)
に対して原子比でそれぞれ0.5、1.0,2.0、3
.0となるように含侵し、乾燥した後、その各々に硝酸
銅溶液を、Cuとして4Wt%になるように含浸し、乾
煙後、流通型焼成炉で450℃で4時間,空気気流中で
焼成して触媒D.E.F.Gを得た. [実施例2] 比較例1で使用したアルミナ担体に、硝酸ナトリウム、
R Mナトリウム及びWj.酸ナトリウムの水溶液をそ
れぞれNaとして、後から含浸する銅成分(Cu)に対
して原子比で2.0となるように含浸し、屹繰した後、
その各々に硝酸銅溶液を、Cuとして4Wt%になるよ
うに含没し、乾燥後流通型焼成炉で450℃で4時間、
空気気流中で焼成して触媒H、■、Jを得た. [実施例3] 比較例1で使用したアルミナ担体に、水酸化カリウム及
び硫酸カリウムの水溶液を4それぞれKとして、後から
含浸する銅成分(Cu)に対して原子比で2.0となる
ように含浸し乾燥した後,その各々に硝酸銅溶液を、C
uとして4Wt%になるよう.に含浸し、乾燥後、流通
型焼成炉で450℃で4時間,空気気波中で焼成して触
媒K. Lを得た. [実施例41 比較例1で使用したアルミナ担体に、水酸化ナトリウム
及び硝酸ナトリウムの混合溶液( NaoH/Halo
s = I.OtaaIe/rsale)を後から含浸
する銅成分(Cu)に対して原子比で2.0となるよう
に含浸し、乾燥した後、硝酸銅溶液を,Cuとして4W
t%になるように含浸し乾燥後、流通型焼成炉で450
℃で4時間、空気気流中で焼成して触媒Mを得た. [試験例1] 内径2 0 m mのパイレックスガラス反応管を有す
る固定床流通型反応装lを用いて比較例1〜3及び実施
例1〜4によって得られたA−Mの13種類の触媒各2
0ccを使用してSO2の脱硫性f七比較試験を行なっ
た. 試験ガスはN2中SO2濃度1000ppm、o2濃度
2vo l%のものを用い、反応条件は常圧,温度35
0℃、SV=2000h−1とした。
[Detailed Description of the Invention] [1st aspect of the invention 2-1: c7) J Industrial field The present invention is directed to sulfur oxides (hereinafter referred to as SOx) contained in exhaust gas from boilers, heating furnaces, etc. This invention relates to a purification catalyst that can simultaneously remove nitrogen oxides and nitrogen oxides (hereinafter referred to as NOx) by a dry method. Prior Art Various attempts have been made to simultaneously remove SOx and NOx contained in combustion exhaust gas as air pollutants, including a wet removal method and a dry method using a copper compound. Attempts have been made to simultaneously remove Noχ. As a method for simultaneous removal of SOx and NOx by the latter dry method related to the present invention, JP-A-50-133158 discloses a method in which exhaust gas is introduced together with ammonia during a reaction in the presence of a copper or copper oxide catalyst, and SOx is fixed as copper sulfate through a chemical reaction. A method has been disclosed in which NOx is selectively decomposed by catalytic reduction using copper sulfate produced by the L reaction as a catalyst and ammonia as a reducing agent. Japanese Patent Publication No. 58-37008 also discloses a similar method of simultaneously removing SOx and NOx using copper oxide. SOx removal when using copper-based touch. NO removal: The reaction mechanism of << is explained according to the reaction formula. SOz+%(h+SO3(
1) 2Cu+Oz −+ 2CuO
(2) CuO + SOs + CuSO4 (3)
CuSO4+2H2 + Cu+SO2+2H2 0
(4) CuO+H2+ Cu+Hz O
(5) In the above formula, (1) to (3) are reactions in the SOx absorption reaction process, and (4) to (5) are reactions in the catalyst regeneration process. That is, in the reaction process, 502 and (4) in SOx,
The metallic copper produced in the regeneration process of equation (5) becomes 503 and Cu due to the 02 remaining in the exhaust gas as shown in equations (1) and (2).
Oxidized to O. The generated SO3 becomes copper sulfate according to equation (3), and S03 is fixed. The copper sulfate thus produced is hydrogen or carbon monoxide [(4
) formula shows an example in which hydrogen is used as the reducing agent], and (4).
Metallic copper is regenerated by reduction as shown in equation (5). Concentrated SO2 released in the regeneration process is sent to a sulfuric acid production unit, a Claus process elemental sulfur production unit, etc., and used. On the other hand, NOx is decomposed into N2 and H20 by the following reaction using ammonia as a reducing agent. CuSO4 6NO+4NH3 5N2 +6H2 0
(6) CuSO4 6NO2+8NH:l − 7N2+l2H20
(7) That is, copper sulfate produced by SOx acts as a catalyst to promote the catalytic decomposition reaction of NOX, and in this way, SOx
and NOx are removed at the same time. Since the SOx absorption reaction and catalyst regeneration need to be repeated at regular intervals, multiple identical reaction towers are installed to alternately perform the absorption reaction and catalyst regeneration. Note that the SOx absorption reaction and catalyst regeneration are performed at almost the same temperature level. As can be seen from the above formulas (2) and (5), C that did not produce CuSOa according to formula (3) in the reaction step
In the regeneration process, uO is reduced by H2 or CO and returns to metal Cu, but the H2 or CO used for this purpose is completely wasted without contributing to desulfurization. Therefore, in the reaction process, it is desirable to consume as much CuO in the catalyst as possible in terms of reducing the amount of catalyst regeneration gas, but on the other hand, as the amount of CuO remaining in the catalyst decreases, the amount of SOx leaking into the process gas also increases. There is a problem. In addition, in general, in catalytic reactions, it is extremely important to not only improve the initial performance of the catalytic converter, but also to maintain its long life in terms of both balance and strength, in order to increase the economic efficiency of the process. In the removal of SOx by a dry method using a copper contactor, including the present invention, it is necessary to alternately perform the SOx absorption reaction step and the contacting and regeneration step as described above. Deterioration of strength and strength due to repetition of the reaction/regeneration cycle is observed. C while maintaining low levels of SOx leaking into the process gas.
In order to improve the efficiency of uO Icheon, the
No. 97 describes the use of an alumina-containing carrier calcined at 750° C. or higher and co-impregnated with a solution containing aluminum cations, copper cations, and alkali metal cations as an acceptor for SOx removal by dry method. A method has been disclosed for improving the reaction characteristics with SOx in exhaust gas by adding a component that promotes the reaction of copper components. It is also described that the strength can be improved by adding glass powder etc. to the alumina carrier. The present invention is based on an inventive idea different from the above-mentioned Japanese Patent Publication No. 57-41297, and it is based on the idea that to increase the efficiency of copper catalyst in SOx removal, it is sufficient to support Cu on the surface layer of the carrier, and to prevent strength deterioration. This is based on the knowledge that it is sufficient to suppress sulfation of the carrier (Article A 203). Problems to be Solved by Development II The purpose is to provide a simultaneous desulfurization and denitrification catalyst that consumes less. The catalyst for purifying exhaust gas of the present invention is characterized by impregnating porous carrier alumina with an alkali metal compound solution, drying it, and then supporting a copper component. By first impregnating the porous alumina carrier with an alkali metal compound and drying it, the alumina carrier is covered with the alkali metal compound, and the copper component supported later is mainly deposited on the surface layer of the rejector. Therefore, contact with SOx in the exhaust gas occurs quickly. Furthermore, since the alkali component covers the alumina carrier, sulfation of Al20s is suppressed and a decrease in catalyst strength is prevented. As the porous carrier used in the catalyst of the present invention, commercially available molded alumina or a carrier mainly composed of alumina can be used, but the carrier has a water absorption rate of 0.3 to 1.
Preferably, it has a value of about 0 cc/gr. Examples of alkali metal compounds include hydroxides, nitrates, etc. of alkali metals, especially K or Na. Sulfate, carbonate, etc. can be used as a substitute or a mixture, and a solution using a suitable solvent,
In particular, the carrier is impregnated in form 7E in aqueous solution and dried. The purpose of this dry blasting is to evaporate the solvent from within the pores of the carrier and create a space for impregnation with copper, and the temperature may be raised to the firing conditions. Copper, which is an active metal, is in the form of an aqueous solution such as inorganic acid salts such as nitrates, carbonates, and phosphates, organic acid salts such as formates and acetates, or complex compounds such as ammonium acetate complex salts and ammonium oxalate complex salts. It can be supported on a carrier. In either case, it becomes copper oxide by being fired after being supported. It may also be supported on a rod in the form of an aqueous sulfate solution. In this case, it is reduced according to formula (4) and oxidized according to formula (2) to form copper oxide. Either impregnation method or spraying method may be used to support the copper component. Impregnation or spraying is carried out at room temperature or under heating, and after impregnation or spraying, it is dried and baked at 400 to 500°C. The content of copper component depends on the water absorption rate of the carrier, but if the water absorption rate is 0,
.. 5-0. When using a carrier of 7 cc/gr, 2-lowt% of metallic copper is preferable. 2Wt
If it is less than 10 wt%, the capacity is too small to be practical, while if it is more than 10 wt%, bore mouth will be generated and the performance will be degraded. The atomic ratio of the alkali component and copper component is preferably 0.5 to 3.0. If the alkaline component is less than 0.5, the effect is small.
.. Above 3.0, the effect actually decreases. [Comparative Example 1] A spherical alumina carrier with a diameter of 3 mm was impregnated with a nitrate/copper solution at room temperature so that the Cu content was 4 wt%, dried, and then heated in a flow-through firing furnace at 450°C for 4 hours with air flow. Catalyst A was obtained by calcination. [Comparative Example 2] A mixed solution of sodium nitrate and copper nitrate was added to the alumina carrier used in Comparative Example 1, with a Cu content of 4 wt% and C.
Impregnated so that the atomic ratio of Na to u is 2.0,
After drying, catalyst B was obtained by calcining in a flow-through calcining furnace at 450°C for 4 hours in a stream of air. [Comparative Example 3] Copper nitrate solution was applied to the aluminum carrier used in Comparative Example 1.
After impregnating to a content of 4 wt% and sufficiently drying, impregnating with a solution of sodium nitrate so that the atomic ratio of Na to Cu impregnated earlier is 2.0, and thoroughly drying. Catalyst C was obtained by calcining in an air stream at 450°C for 4 hours in a through-hole type calcining furnace. [Example 1] The alumina carrier used in Comparative Example 1 was later impregnated with a sodium hydroxide solution as Na (Cu).
0.5, 1.0, 2.0, 3 respectively in atomic ratio to
.. After drying, each was impregnated with a copper nitrate solution to give a Cu content of 4 Wt%, and after drying, it was heated in a flow-through kiln at 450°C for 4 hours in an air stream. Calcinate the catalyst D. E. F. I got a G. [Example 2] Sodium nitrate,
RM sodium and Wj. After impregnating with an aqueous solution of sodium acid so that the atomic ratio is 2.0 with respect to the copper component (Cu) to be impregnated later, and repeating,
A copper nitrate solution was impregnated into each of them to give a Cu content of 4 Wt%, and after drying, the mixture was heated in a flow-through kiln at 450°C for 4 hours.
Catalysts H, ■, and J were obtained by calcination in an air stream. [Example 3] Aqueous solutions of potassium hydroxide and potassium sulfate were added to the alumina carrier used in Comparative Example 1, with K being 4, respectively, so that the atomic ratio was 2.0 with respect to the copper component (Cu) to be impregnated later. After impregnating with C and drying, copper nitrate solution was added to each
So that u is 4Wt%. After drying, the catalyst K. I got L. [Example 41 A mixed solution of sodium hydroxide and sodium nitrate (NaoH/Halo
s = I. The copper component (Cu) to be impregnated later was impregnated with atomic ratio of 2.0, and after drying, a copper nitrate solution was added as Cu to 4W.
After impregnation and drying to a concentration of 450% in a flow-through kiln,
C. for 4 hours in an air stream to obtain catalyst M. [Test Example 1] Thirteen types of catalysts A to M obtained in Comparative Examples 1 to 3 and Examples 1 to 4 using a fixed bed flow-through reactor having a Pyrex glass reaction tube with an inner diameter of 20 mm. 2 each
A comparative test of SO2 desulfurization performance f7 was conducted using 0cc. The test gases used were SO2 concentration 1000 ppm and O2 concentration 2 vol% in N2, and the reaction conditions were normal pressure and temperature 35.
It was set to 0 degreeC and SV=2000h-1.

また脱硫反応時反応管出口S02濃度が100PPmに
なった時に還元ガスとしてH275%、N2バランスを
用い、再生反応を行った.8回再生後の脱硫試験結果を
第一表に示す.第1表 ※:出口SO2e度が100ppmに到達するまでの時
間この試験結果から明らかなように、各実施例の触媒(
D−M)は比較例の触媒(A−C)に比し反応管出口S
02濃度が100ppmに到達するまでの使用時間(分
)が延長される。
In addition, when the S02 concentration at the outlet of the reaction tube during the desulfurization reaction reached 100 PPm, a regeneration reaction was performed using 75% H2 and N2 balance as the reducing gas. Table 1 shows the desulfurization test results after eight regenerations. Table 1 *: Time until the outlet SO2e level reaches 100 ppm As is clear from the test results, the catalyst of each example (
D-M) has a lower reaction tube outlet S than the comparative example catalyst (A-C).
The usage time (minutes) until the 02 concentration reaches 100 ppm is extended.

このことは、同量の触媒を使用した場合には反応一再生
サイクル時間を延長でき,また同じ反応一再生サイクル
時間を採用するならば触媒量を減らし反応器の大きさを
小さくすることができることを意味すると共に,触媒中
のCuOがより多く反応しているので,前記(5)式に
よりそれを還元するために消費されるH2  (または
CO)の量が減少することを意味する. また触媒D−Gの試験結果からわかるように、N a 
/ C uの原子比が0.5〜3.0の範囲において脱
硫活性が高く,特に2.0〜3.Oi囲においてその効
果がWJ著である. 含侵するアルカリ金属化合物の溶液としては、水酸化物
、硝酸塩、硫酸塩、炭酸塩等いずれでも効果が得られ、
又これらを混合して使用した場合ても同じ効果が得られ
る. [試験例2] 触媒A.C及びFについて,試験例1と同じ条件で脱硫
反応とH2による再生反応の繰り返しを行ない、脱硫活
性の経時変化について試験した.再生反応は還元ガスと
してH275%、N2バラ7/(を用い、温度350℃
.SV=640h−’ffi行った. この結果を第1図に示す。図において横軸は脱硫/再生
回数、縦軸は反応器出口のSO2が100ppmに到達
するまでの時間(分)を表し、口印は比較例1の触媒A
の場合、Δ印は比較例3の触媒Cの場合で、経時的に劣
化した後低いレベルで定常状態となるのに対し、O印は
実施例1の触媒Fの場合で、使用当初より高レベルの活
性を示し,脱硫/再生を崩り返してもその活性が持続す
ることを示している. [試験例3] 触媒A,C.F,Mについて脱硫、脱硝の同時除去比較
試験を行なった.試験例1と同様の装置を用い、502
 1000ppm.NO100ppm,NH3 100
ppm.H2 015V0 1%、022VO1%.N
2バランスのガスを使用し、反応条件として温度350
℃、常圧、SV=20ooh−tで行なった。8回再生
後の試験結果を第2表に示す. ※:第1表の注参照 なお,触媒A(比較例l)及び触媒F(実施例l)につ
いては脱硫度及び脱硝度の経時的変化も第2図に示した
.第2図において右縦軸は反応器出口ガス中のSO2e
度(ppm).左縦軸は反応器出口ガス中のNOg度(
ppm).横軸は反応時間(分)を表し、 ●印は触媒Aを用いた場合のSO2儂度、▲印は触媒F
を用いた場合のSO2e度、O印は触媒Aを用いた場合
のNOc度,Δ印は触媒Fを用いた場合のNO5度,を
示す.第2表及び第2図に示された試験成績からも、本
発明による触媒の性fEが優れていることが明らかであ
る. また第2図から、本発明の触媒を使用すれば、NOxの
接触分解反応における初期の反応を促進し.SOx,N
Oxの同時除去を効果的に実施することが出来ることが
わかる. [試験例4] 触媒A(比較例1)、触媒F(実施例1)及び触奴M(
実施例4)について、502処理前後の触媒強度の変化
を側定した.またそのl′2担体アルミナが硫酸化され
てfi’l2  (SO4 )sを生成している度合も
測定した.S02処理はト記試験例lと同じ条件下で4
80時間行った。
This means that if the same amount of catalyst is used, the reaction-regeneration cycle time can be extended, and if the same reaction-regeneration cycle time is used, the amount of catalyst can be reduced and the size of the reactor can be reduced. This also means that since more CuO in the catalyst is reacting, the amount of H2 (or CO) consumed to reduce it according to equation (5) above is reduced. Moreover, as can be seen from the test results of catalyst D-G, Na
/ Cu atomic ratio is high in the range of 0.5 to 3.0, especially in the range of 2.0 to 3.0. The effect in the Oi area is written by W.J. As a solution of the alkali metal compound to be impregnated, any of hydroxide, nitrate, sulfate, carbonate, etc. can be effective.
The same effect can also be obtained by using a mixture of these. [Test Example 2] Catalyst A. For C and F, desulfurization reactions and regeneration reactions using H2 were repeated under the same conditions as Test Example 1, and changes in desulfurization activity over time were tested. The regeneration reaction used 75% H2 and 7/2% N2 as reducing gases at a temperature of 350°C.
.. SV=640h-'ffi went. The results are shown in FIG. In the figure, the horizontal axis represents the number of times of desulfurization/regeneration, the vertical axis represents the time (minutes) until SO2 at the reactor outlet reaches 100 ppm, and the tick mark represents catalyst A of Comparative Example 1.
In the case of , Δ mark is for catalyst C of Comparative Example 3, which reaches a steady state at a low level after deteriorating over time, whereas O mark is for catalyst F of Example 1, which is at a low level and reaches a steady state from the beginning of use. This shows that the activity persists even after desulfurization/regeneration is reversed. [Test Example 3] Catalysts A, C. A comparison test of simultaneous desulfurization and denitrification was conducted for F and M. Using the same apparatus as Test Example 1, 502
1000ppm. NO100ppm, NH3 100
ppm. H2 015V0 1%, 022VO1%. N
Using two balance gases, the reaction conditions were a temperature of 350℃.
The test was carried out at .degree. C., normal pressure, and SV=20 ooh-t. Table 2 shows the test results after eight plays. *: See note to Table 1. Figure 2 also shows the changes over time in the degree of desulfurization and denitrification for catalyst A (Comparative Example 1) and catalyst F (Example 1). In Figure 2, the right vertical axis is SO2e in the reactor outlet gas.
degree (ppm). The left vertical axis is the degree of NOg in the reactor outlet gas (
ppm). The horizontal axis represents the reaction time (minutes), the ● mark is the SO2 temperature when using catalyst A, and the ▲ mark is for catalyst F.
The O mark indicates the NOc degree when catalyst A is used, and the Δ mark indicates the NO5 degree when catalyst F is used. It is clear from the test results shown in Table 2 and Figure 2 that the catalyst according to the present invention has excellent properties fE. Moreover, from FIG. 2, the use of the catalyst of the present invention promotes the initial reaction in the catalytic cracking reaction of NOx. SOx,N
It can be seen that simultaneous removal of Ox can be carried out effectively. [Test Example 4] Catalyst A (Comparative Example 1), Catalyst F (Example 1) and Catalyst M (
Regarding Example 4), changes in catalyst strength before and after the 502 treatment were evaluated. We also measured the degree to which the l'2 carrier alumina was sulfated to produce fi'l2 (SO4)s. The S02 treatment was carried out under the same conditions as Test Example 1.
I went for 80 hours.

結果を第3表に示す. 第3表 比較例の触媒Aは480時間のSo2処理にょり触奴強
度が低下しているが本発明の触媒F及びMは殆ど強度が
低下していない. また担体アルミナ中のAn2 (S04 )s生成量と
対比すれば、Al2 (SO4 )3の生成量と触媒強
度の低下とは相関関係があり、本発明における硫酸アル
カリの添加はAl2  (504 )3の生成を効果的
に抑制することによって触媒強度の低下を防止している
ものと考えられる.発明の効果 従来技術に開示されている銅触媒に夕シして、以下の効
果が得られる。
The results are shown in Table 3. Catalyst A, Comparative Example in Table 3, showed a decrease in strength after 480 hours of So2 treatment, but catalysts F and M of the present invention showed almost no decrease in strength. Furthermore, when compared with the amount of An2(S04)s produced in the support alumina, there is a correlation between the amount of Al2(SO4)3 produced and the decrease in catalyst strength, and the addition of alkali sulfate in the present invention It is thought that the reduction in catalyst strength is prevented by effectively suppressing the formation of . Effects of the Invention In contrast to the copper catalysts disclosed in the prior art, the following effects can be obtained.

1)第1表及び第1図に示すように2従来の触媒に比し
脱硫性濠が著しく向上する. 2)その結果、同聞.の触媒を使用した場合には反応一
再生サイクル時間を延長でき、また同じ反応一再生サイ
クル時間を採用するならば触媒かを減らし反応器の大き
さを小さくすることができる. 3)説硫反応後における再生ガスの消費1,tを節減す
ることが出来る. 4)第2図に示されるように、NOxの接触分解反応に
おける初期の反応を促進し、SOx、NOxの同時除去
を効果的に実施することが出来る. 5)アルミナ担体の硫酸塩化を防止し、触媒の強度低下
を抑制し、寿命の延長が計られる.
1) As shown in Table 1 and Figure 1, desulfurization performance is significantly improved compared to conventional catalysts. 2) As a result, same opinion. If a catalyst is used, the reaction-regeneration cycle time can be extended, and if the same reaction-regeneration cycle time is used, the catalyst can be reduced and the size of the reactor can be made smaller. 3) The consumption of regeneration gas after the sulfurization reaction can be reduced by 1,000 tons. 4) As shown in Figure 2, the initial reaction in the catalytic cracking reaction of NOx can be promoted and SOx and NOx can be effectively removed simultaneously. 5) Prevents sulfation of the alumina support, suppresses decrease in catalyst strength, and extends life.

【図面の簡単な説明】[Brief explanation of drawings]

Claims (1)

【特許請求の範囲】 1 多孔質担体アルミナにアルカリ金属化合物溶液を含
浸し乾燥した後銅成分を担持したものであることを特徴
とする硫黄酸化物及び窒素酸化物を含有する排ガスの浄
化用触媒。 2 銅成分を金属銅として2〜10wt%含有する特許
請求の範囲第1項記載の排ガスの浄化用触媒。 3 アルカリ金属成分と銅成分の原子比が0.5〜3で
ある特許請求の範囲第1項記載の排ガスの浄化用触媒。
[Scope of Claims] 1. A catalyst for purifying exhaust gas containing sulfur oxides and nitrogen oxides, characterized in that a porous carrier alumina is impregnated with an alkali metal compound solution, dried, and then a copper component is supported thereon. . 2. The catalyst for purifying exhaust gas according to claim 1, which contains a copper component of 2 to 10 wt% as metallic copper. 3. The catalyst for purifying exhaust gas according to claim 1, wherein the atomic ratio of the alkali metal component to the copper component is 0.5 to 3.
JP61144766A 1986-06-23 1986-06-23 Catalyst for purifying exhaust gas Pending JPS631449A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61144766A JPS631449A (en) 1986-06-23 1986-06-23 Catalyst for purifying exhaust gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61144766A JPS631449A (en) 1986-06-23 1986-06-23 Catalyst for purifying exhaust gas

Publications (1)

Publication Number Publication Date
JPS631449A true JPS631449A (en) 1988-01-06

Family

ID=15369911

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61144766A Pending JPS631449A (en) 1986-06-23 1986-06-23 Catalyst for purifying exhaust gas

Country Status (1)

Country Link
JP (1) JPS631449A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000044466A3 (en) * 1999-01-27 2008-10-02 Porocel Corp Hc1 adsorbent, method of making same and process for removing hc1 from fluids
JP2015516291A (en) * 2012-03-30 2015-06-11 フューエル テック インコーポレーテッド Dry method, apparatus, composition and system for reducing sulfur oxides and HCl
US9802154B2 (en) 2012-03-30 2017-10-31 Fuel Tech, Inc. Process for sulfur dioxide, hydrochloric acid and mercury mediation

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000044466A3 (en) * 1999-01-27 2008-10-02 Porocel Corp Hc1 adsorbent, method of making same and process for removing hc1 from fluids
JP2015516291A (en) * 2012-03-30 2015-06-11 フューエル テック インコーポレーテッド Dry method, apparatus, composition and system for reducing sulfur oxides and HCl
EP2833989A4 (en) * 2012-03-30 2015-12-09 Fuel Tech Inc Dry processes, apparatus, compositions and systems for reducing sulfur oxides and hci
US9802154B2 (en) 2012-03-30 2017-10-31 Fuel Tech, Inc. Process for sulfur dioxide, hydrochloric acid and mercury mediation

Similar Documents

Publication Publication Date Title
US4001375A (en) Process for the desulfurization of flue gas
CA2193638C (en) Exhaust gas treating systems
JP7216380B2 (en) Ship exhaust gas purification device and method
JP7270157B2 (en) Ship exhaust gas purification device and method
JPS5915022B2 (en) Catalyst for removing nitrogen oxides from exhaust gas
JP2801423B2 (en) Nitrogen oxide purification catalyst
JPH0771616B2 (en) Method for removing sulfur oxides from gas using an absorbent material that can be regenerated by reaction with hydrogen sulfide
US4031185A (en) Process for making nitrogen oxides contained in flue gas harmless
JP4861018B2 (en) Nitric oxide oxidation catalyst and nitric oxide oxidation method
JPS631449A (en) Catalyst for purifying exhaust gas
JPH04354538A (en) Catalyst for denitrifying exhaust gas and exhaust gas treating device
JPS62298452A (en) Catalyst for purifying exhaust gas
JP2007175654A (en) Catalyst for deoxidizing nitrogen oxide selectively
JP3944597B2 (en) Nitrogen oxide removing catalyst and nitrogen oxide removing method
JPH04244218A (en) Method for purifying exhaust gas
JPS5837009B2 (en) NH3 Niyori Endo Gaskara NOX Ojiyokyo Surhouhou
JPS5823136B2 (en) How to remove nitrogen oxides from exhaust gas
JP4048043B2 (en) Catalysts and methods for decomposition of carbonyl sulfide and hydrogen cyanide
EP0914191A1 (en) Catalyst composition, its preparation, and its use in catalytic incineration
JPS6333891B2 (en)
EP0914193B1 (en) Catalytic incineration process and catalyst composition useful therefor
KR20010035327A (en) De-NOx CATALYSTS AND METHOD BY DIRECT CATALYTIC REDUCTION
JPS593219B2 (en) High-gastric Unochitsuso Sankabutsu Omugai Kasurutexita
KR100325126B1 (en) Method of denitrificating exhaust gas
JPS5857967B2 (en) Method for detoxifying exhaust gas containing nitrogen oxides