JPS6314476A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS6314476A
JPS6314476A JP15854386A JP15854386A JPS6314476A JP S6314476 A JPS6314476 A JP S6314476A JP 15854386 A JP15854386 A JP 15854386A JP 15854386 A JP15854386 A JP 15854386A JP S6314476 A JPS6314476 A JP S6314476A
Authority
JP
Japan
Prior art keywords
type
layer
highly doped
region
epitaxial layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15854386A
Other languages
Japanese (ja)
Inventor
Takeshi Oda
剛 黄田
Goro Mitarai
御手洗 五郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP15854386A priority Critical patent/JPS6314476A/en
Publication of JPS6314476A publication Critical patent/JPS6314476A/en
Pending legal-status Critical Current

Links

Landscapes

  • Bipolar Transistors (AREA)

Abstract

PURPOSE:To obtain a bipolar IC in which a vertical transistor has high dielectric strength, by forming a highly doped H-type lower collector region in a predetermined area in a P-type semiconductor substrate and forming highly doped P-type regions in predetermined areas in the collector region. CONSTITUTION:In order to provide a bipolar IC with high dielectric strength, an epitaxially grown film 5 must have a high resistivity and a large thickness. However, when the film 5 is epitaxially grown and when a highly doped P-type upper isolation layer 6 and a highly doped N-type collector layer 7 are formed, a highly doped N-type lower collector layer 2 is apt to raise up into the epitaxial layer 5 to decrease the thickness of the epitaxial layer 5. To solve this problem, regions of a highly doped P-type layer 4 are provided in the highly doped N-type lower collector layer 2 so that the raise of the highly doped Ntype lower collector layer 2 is inhibited by the highly doped Ptype layer 4. In this manner, a prescribed resistivity is obtained by the epitaxial layer directly below a base region 8 and the bipolar IC is allowed to have high dielectric strength.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体装置に関し、特にバイポーラICにおけ
る高耐圧縦型トランジスタの改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to semiconductor devices, and particularly to improvements in high voltage vertical transistors in bipolar ICs.

〔従来の技術〕[Conventional technology]

近年、OA(オフィスオートメーション)、FA(ファ
クトリ−オートメーション)に用いられる機器のモータ
制御、ディスプレイドライブ、電子バラスト等に高耐圧
バイポーラICを使用することが強く望まれており、以
下に示すようなバイポーラICにおいて高耐圧化が試み
られている。
In recent years, there has been a strong desire to use high-voltage bipolar ICs for motor control, display drives, electronic ballasts, etc. of equipment used in OA (office automation) and FA (factory automation). Attempts are being made to increase the voltage resistance of ICs.

従来のバイポーラICにおける縦型npn)ランジスタ
の製造方法を第3図(a)〜(81を用いて説明する。
A method of manufacturing a vertical NPN transistor in a conventional bipolar IC will be described with reference to FIGS. 3(a) to (81).

まず、p形半導体基板1の表面部に高濃度n最下部コレ
ククN2と高濃度p彫工面分離層3とを譬形成する(第
3図(a))。次に該基板1上に低濃度n形エピタキシ
ャルN5を成長させる(第3図山))、続いて該エピタ
キシャル層5に、高濃度p形上面分AI層6を高濃度p
彫工面分離層3に到達するように形成し、さらに高濃度
n形コレクタ層7を高濃度n彫工部コレクタ層2に到達
するように形成する(第3図(C))、次にn形エピタ
キシャル層5にp形拡散を行ってnpn)ランジスタの
ベース領域8を形成し、その後、該ベース領域8にn形
拡散を行ってエミッタ領域9を形成しく第3図(d))
、最後に上記各領域9.8.7にそれぞれエミッタ電極
10.ベース電極11.コレクタ電極12を被着して、
npnトランジスタを得る(第3図(e))。
First, a highly doped n-bottom layer N2 and a highly doped p carved surface separation layer 3 are formed on the surface of the p-type semiconductor substrate 1 (FIG. 3(a)). Next, a lightly doped n-type epitaxial layer N5 is grown on the substrate 1 (Fig.
A high concentration n-type collector layer 7 is formed so as to reach the carved surface separation layer 3 (FIG. 3(C)), and then a high concentration n-type collector layer 7 is formed so as to reach the high concentration n-type collector layer 2 (FIG. 3(C)). A p-type diffusion is performed on the epitaxial layer 5 to form a base region 8 of an npn transistor, and then an n-type diffusion is performed on the base region 8 to form an emitter region 9 (FIG. 3(d)).
, and finally emitter electrodes 10 . Base electrode 11. By depositing the collector electrode 12,
An npn transistor is obtained (FIG. 3(e)).

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来のバイポーラICにおけるトランジスタはかかる構
造になっているので、低耐圧トランジスタとして用いる
場合には問題なかったが、高耐圧トランジスタとして用
いる場合には、高耐圧化を図るため、エピタキシャル成
長層5の比抵抗を高く、かつ厚さを厚くしなければなら
なかった。また、単に該層5の比抵抗を高く、厚さを厚
くしたものでは、ベース領域8直下で規定の比抵抗が得
られず、エピタキシャル層5の比抵抗及びエピタキシャ
ル層5の厚さで決まる耐圧よりかなり低い値で降伏を起
こし高耐圧化できないという欠点があった。
The transistors in conventional bipolar ICs have such a structure, so there was no problem when used as a low voltage transistor, but when used as a high voltage transistor, the specific resistance of the epitaxial growth layer 5 was had to be made higher and thicker. Furthermore, if the specific resistance of the layer 5 is simply increased and the thickness is increased, a specified specific resistance cannot be obtained directly under the base region 8, and the breakdown voltage determined by the specific resistance of the epitaxial layer 5 and the thickness of the epitaxial layer 5 is It has the disadvantage that breakdown occurs at a much lower value than that, making it impossible to achieve a high withstand voltage.

すなわち、エピタキシャル層5の成長時には、オートド
ーピング、アウトディフュージョンによって、高濃度n
彫工部コレクタ112がエピタキシャル層5へ浮き上が
り、エピタキシャル層の厚さは実際には第4図(a)に
示すようにd5aになる。
That is, when growing the epitaxial layer 5, a high concentration of n is formed by autodoping and outdiffusion.
The carved portion collector 112 is lifted up to the epitaxial layer 5, and the thickness of the epitaxial layer actually becomes d5a as shown in FIG. 4(a).

ここで点線13はエピタキシャル層成長前の不純物濃度
分布、実vA14はエピタキシャル層成長後の不純物濃
度分布、d、は基板1の上面からエピタキシャル層5の
上面までの距離、d2は基板1の上面からコレクタ層2
の底面までの距離である。
Here, the dotted line 13 is the impurity concentration distribution before the epitaxial layer growth, the actual vA14 is the impurity concentration distribution after the epitaxial layer growth, d is the distance from the top surface of the substrate 1 to the top surface of the epitaxial layer 5, and d2 is the distance from the top surface of the substrate 1. Collector layer 2
is the distance to the bottom of the

また高濃度p形上面分離層6.高濃度n形コレクタ層7
の形成時には、長時間の拡散により高濃度n彫工部コレ
クタ層2はさらにエピタキシャル層5へ浮き上り、エピ
タキシャル層の厚さは第φ図(blに示すように実際に
はd5bになる。ここで実線15は高濃度p形上面分離
N7.高濃度n形コレクタj!i 2形成後の不純物濃
度分布である。このため、上述のように高耐圧化できな
いという欠点があった。
Also, a high concentration p-type top separation layer 6. High concentration n-type collector layer 7
During the formation of , the high concentration N engraving collector layer 2 further rises to the epitaxial layer 5 due to long-term diffusion, and the thickness of the epitaxial layer is actually d5b as shown in Figure φ (bl). The solid line 15 is the impurity concentration distribution after the formation of the high concentration p-type upper surface separation N7 and the high concentration n-type collector j!i 2.Therefore, as mentioned above, there was a drawback that a high breakdown voltage could not be achieved.

本発明は上記のような欠点を解消するためになされたも
ので、その縦型トランジスタが高耐圧化されたバイポー
ラICを得ることを目的とする。
The present invention was made to eliminate the above-mentioned drawbacks, and an object of the present invention is to obtain a bipolar IC whose vertical transistor has a high breakdown voltage.

〔問題点を解決するための手段〕[Means for solving problems]

本発明にかかる半導体装置はp形半導体基板の所定の領
域に高濃度下部コレクタn型領域を形成し、さらに該領
域の所定の領域に高濃度p型領域を形成したものである
A semiconductor device according to the present invention has a highly doped lower collector n-type region formed in a predetermined region of a p-type semiconductor substrate, and further has a highly doped p-type region formed in a predetermined region of the region.

〔作用〕[Effect]

本発明においては、p形基板の高濃度下部n形コレクタ
層の所定の令頁域に高濃度p影領域を形成したから、エ
ピタキシャル層の成長時及び高濃度上面p形骨離層、高
濃度n形コレクタ層の形成時における高濃度下部n形コ
レクタ層のエピタキシャル層への浮き上りを高濃度p影
領域によって制えることができ、これにより規定のエビ
タキシャる。
In the present invention, since a high concentration p shadow region is formed in a predetermined narrow area of the high concentration lower n type collector layer of the p type substrate, during the growth of the epitaxial layer and the high concentration upper surface p type bone delamination, the high concentration During the formation of the n-type collector layer, the floating of the highly doped lower n-type collector layer to the epitaxial layer can be suppressed by the highly doped p-shade region, thereby achieving a prescribed epitaxy.

〔実施例〕〔Example〕

以下、この発明の一実施例を図について説明する。 An embodiment of the present invention will be described below with reference to the drawings.

第1図(f)は本発明の一実施例による半導体装置の構
造を示し、図において、第3図(elと同一符号は同一
のものを示し、4は高濃度下部n形コレクタ層の所定の
領域に形成された高濃度p影領域である。
FIG. 1(f) shows the structure of a semiconductor device according to an embodiment of the present invention, in which the same reference numerals as el in FIG. This is a high-density p shadow region formed in the region.

次に第1図(a)〜(f)に基づいて製造方法について
説明する。
Next, the manufacturing method will be explained based on FIGS. 1(a) to 1(f).

まず、p形半導体基板1の表面部に高濃度n彫工部コレ
クタ層2を形成する(第1図(a))。次に該基板の表
面部に咳高濃度n彫工部コレクタ層2に隣接して高濃度
p形下面分離層3を形成すると同時に、高濃度n彫工部
コレクタ層2中にも高濃度p形層4をメソシュ状に形成
する(第1図(b))。
First, a highly doped n-carved collector layer 2 is formed on the surface of a p-type semiconductor substrate 1 (FIG. 1(a)). Next, a high concentration p-type lower surface separation layer 3 is formed on the surface of the substrate adjacent to the high concentration n carved portion collector layer 2, and at the same time, a high concentration p type layer is also formed in the high concentration n carved portion collector layer 2. 4 into a mesh shape (FIG. 1(b)).

続いてp形基板1上に、低濃度n形エピタキシャル層5
を成長させる(第1図(C1))。次にn形エピタキシ
ャル層5中に高濃度p形上面分鉗層6を上記高濃度p形
下面分離層3に到達する様に形成し、また高濃度n形コ
レクタ層7を上記高濃度n彫工部コレクタ[2に到達す
る様に形成する(第1図(d))。続いて、n形エピタ
キシャル層5にp形拡散を行ってnpn)ランジスタの
ベース領域8を形成し、その後該ベース領域8にn形拡
散を行ってエミッタ領域9を形成して(第1図(e))
、上記領域9.8.7にエミッタ電極10、ベース電極
11.コレクタ電極12を被着して、npnトランジス
タを得る(第1図(f))。
Subsequently, a low concentration n-type epitaxial layer 5 is formed on the p-type substrate 1.
(Fig. 1 (C1)). Next, a high-concentration p-type upper separation layer 6 is formed in the n-type epitaxial layer 5 so as to reach the high-concentration p-type lower separation layer 3, and a high-concentration n-type collector layer 7 is formed in the high-concentration n-type epitaxial layer 5. It is formed so as to reach the collector [2] (FIG. 1(d)). Subsequently, p-type diffusion is performed on the n-type epitaxial layer 5 to form a base region 8 of an npn transistor, and then n-type diffusion is performed on the base region 8 to form an emitter region 9 (see FIG. 1). e))
, an emitter electrode 10, a base electrode 11., in the region 9.8.7. A collector electrode 12 is deposited to obtain an npn transistor (FIG. 1(f)).

次に作用効果について説明する。Next, the effects will be explained.

この様にして得られた縦型トランジスタは、従来の構造
において高耐圧化を試みたトランジスタとは異なり高濃
度n彫工部コレクタr?12中に□高濃度p形層4の領
域を持つので、エピタキシャル層5の成長時及び高濃度
p形上面分離層6.高濃度n形コレクタ層7の形成時に
、高濃度n彫工部コレクタ層2がエピタキシャル層5へ
浮き上るのを高濃度p形層4により制えることができ、
これにより第2図(a)、 (b)に示すようにエピタ
キシャル層5の厚さは変化せず、エピタキシャルN5の
比抵抗が低下するのを防ぐことができる。ここで、13
.14.15.ds+  d2は第4図と同一のもの、
d4は基板1の上面から高濃度p形層4の底面での距離
である。従って、上記ベース領域8の直下の領域でもエ
ピタキシャル層の比抵抗を規定の値に保つことができ、
エピタキシャル層5の比抵抗及び厚さで決まる耐圧とほ
ぼ同程度の耐圧を得ることができる。また、高濃度n彫
工部コレクタ層2中の高濃度p形層4を所定の形状(例
えばメソシュ状)にすることで高濃度n彫工部コレクタ
層2中の全面にp形半導体の層を形成する構造と比べて
も耐圧をそれ程低下させることなく、かつ大きな電流を
確保できるという利点がある。
The vertical transistor obtained in this way differs from transistors with a conventional structure in which a high breakdown voltage has been attempted, in that the collector r? 12 has a region of □highly doped p-type layer 4, so that when the epitaxial layer 5 is grown and the highly doped p-type upper surface isolation layer 6. When forming the high concentration n-type collector layer 7, the high concentration p-type layer 4 can prevent the high concentration n carved portion collector layer 2 from floating up to the epitaxial layer 5.
As a result, the thickness of the epitaxial layer 5 does not change as shown in FIGS. 2(a) and 2(b), and it is possible to prevent the specific resistance of the epitaxial layer N5 from decreasing. Here, 13
.. 14.15. ds+ d2 is the same as in Figure 4,
d4 is the distance from the top surface of the substrate 1 to the bottom surface of the highly doped p-type layer 4. Therefore, the specific resistance of the epitaxial layer can be maintained at a specified value even in the region immediately below the base region 8,
A breakdown voltage approximately equal to that determined by the resistivity and thickness of the epitaxial layer 5 can be obtained. Furthermore, by forming the highly doped p-type layer 4 in the highly doped n-carved collector layer 2 into a predetermined shape (for example, mesoche-like), a p-type semiconductor layer is formed over the entire surface of the highly doped n-carved collector layer 2. Compared to other structures, this structure has the advantage that a large current can be secured without significantly lowering the withstand voltage.

なお、上記実施例では縦型npn)ランジスタについて
説明したが、本発明はpnp)ランジスタにも適用でき
、この場合も上記実施例と同様な効果を奏することは言
うまでもない。
In the above embodiment, a vertical npn) transistor has been described, but the present invention can also be applied to a pnp transistor, and it goes without saying that the same effects as in the above embodiment can be achieved in this case as well.

また上記実施例では上記高濃度p形層4をメツシュ状に
形成したものを示したが、これはストライプ状あるいは
島状に形成してもよい。
Further, in the above embodiment, the high concentration p-type layer 4 is formed in a mesh shape, but it may be formed in a stripe shape or an island shape.

〔発明の効果〕〔Effect of the invention〕

以上の様に本発明にかかる半導体装置によれば、バイポ
ーラICにおける縦型トランジスタのp形基板の高濃度
n彫工部コレクタ層中に高濃度p形層の領域を形成した
ので、エピタキシャル層の成長時及び高濃度p形上面分
離層、高濃度n形コレクタ層の形成時の高濃度n彫工部
コレクタ層の浮き上りを防ぐことができ、これにより規
定の比抵抗をベース領域の直下のエピタキシャル層で確
保でき、バイポーラICの高耐圧化を図ることができる
As described above, according to the semiconductor device according to the present invention, since the region of the highly doped p-type layer is formed in the collector layer of the highly doped n carved portion of the p-type substrate of the vertical transistor in the bipolar IC, the growth of the epitaxial layer is prevented. When forming a highly doped p-type upper surface separation layer and a highly doped n-type collector layer, lifting of the highly doped n-carved collector layer can be prevented. This allows the bipolar IC to have a high breakdown voltage.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例による半導体装置の構造を示
す断面図、第2図は該半導体装置の構造における拡散プ
ロファイルを示す図、第3図は従来のバイポーラICに
おける縦型トランジスタの構造を示す断面図、第4図は
従来のトランジスタの構造における拡散プロファイルを
示す図である。 図中、1はp形基板、2は高濃度n彫工部コレクタ層、
3は高濃度p形下面分離層、4は高濃度p形層、5は低
濃度n形エピタキシャル層、6は高濃度p形上面分離層
、7は高濃度n形コレクタ層、8はベース領域、9はエ
ミッタ領域である。 なお図中同一符号は同−又は相当部分を示す。
FIG. 1 is a cross-sectional view showing the structure of a semiconductor device according to an embodiment of the present invention, FIG. 2 is a diagram showing a diffusion profile in the structure of the semiconductor device, and FIG. 3 is the structure of a vertical transistor in a conventional bipolar IC. FIG. 4 is a diagram showing a diffusion profile in the structure of a conventional transistor. In the figure, 1 is a p-type substrate, 2 is a collector layer with a high concentration n carved part,
3 is a highly doped p-type bottom isolation layer, 4 is a highly doped p-type layer, 5 is a lightly doped n-type epitaxial layer, 6 is a highly doped p-type top isolation layer, 7 is a highly doped n-type collector layer, and 8 is a base region. , 9 is an emitter region. Note that the same reference numerals in the figures indicate the same or equivalent parts.

Claims (4)

【特許請求の範囲】[Claims] (1)第1導電形半導体基板と、 該半導体基板の表面部の所定の部分に形成された高不純
物濃度の第1の第2導電形半導体領域と、上記第1の半
導体領域中の所定の部分に形成された第2の第1導電形
半導体領域と、 上記半導体基板上に形成された第2導電形コレクタ領域
と、 該コレクタ領域中に形成された第1導電形ベース領域と
、 該ベース領域中に形成された第2導電形エミッタ領域と
を備えたことを特徴とする半導体装置。
(1) a first conductivity type semiconductor substrate; a first second conductivity type semiconductor region having a high impurity concentration formed in a predetermined portion of the surface portion of the semiconductor substrate; and a predetermined region in the first semiconductor region; a second conductivity type semiconductor region formed on the semiconductor substrate, a second conductivity type collector region formed on the semiconductor substrate, a first conductivity type base region formed in the collector region, and the base. a second conductivity type emitter region formed in the semiconductor device.
(2)上記第2の半導体領域は上記第1の半導体領域中
にメッシュ状に形成されたものであることを特徴とする
特許請求の範囲第1項記載の半導体装置。
(2) The semiconductor device according to claim 1, wherein the second semiconductor region is formed in a mesh shape in the first semiconductor region.
(3)上記第2の半導体領域は上記第1の半導体領域中
にストライプ状に形成されたものであることを特徴とす
る特許請求の範囲第1項記載の半導体装置。
(3) The semiconductor device according to claim 1, wherein the second semiconductor region is formed in a stripe shape in the first semiconductor region.
(4)上記第2の半導体領域は上記第1の半導体領域中
に島状に形成されたものであることを特徴とする特許請
求の範囲第1項記載の半導体装置。
(4) The semiconductor device according to claim 1, wherein the second semiconductor region is formed in an island shape within the first semiconductor region.
JP15854386A 1986-07-04 1986-07-04 Semiconductor device Pending JPS6314476A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15854386A JPS6314476A (en) 1986-07-04 1986-07-04 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15854386A JPS6314476A (en) 1986-07-04 1986-07-04 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS6314476A true JPS6314476A (en) 1988-01-21

Family

ID=15674004

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15854386A Pending JPS6314476A (en) 1986-07-04 1986-07-04 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS6314476A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5530273A (en) * 1992-11-26 1996-06-25 Nec Corporation Semiconductor device capable of preventing reduction of cut-off frequency by Kark effect even when operated within a high electric current density range
JP2007185082A (en) * 2005-06-28 2007-07-19 Denso Corp Field-winding synchronous machine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5530273A (en) * 1992-11-26 1996-06-25 Nec Corporation Semiconductor device capable of preventing reduction of cut-off frequency by Kark effect even when operated within a high electric current density range
JP2007185082A (en) * 2005-06-28 2007-07-19 Denso Corp Field-winding synchronous machine

Similar Documents

Publication Publication Date Title
US4038680A (en) Semiconductor integrated circuit device
EP0685891B1 (en) Integrated semiconductor diode
US4564855A (en) High current PNP transistor forming part of an integrated monolithic circuit
US4641172A (en) Buried PN junction isolation regions for high power semiconductor devices
JP3302403B2 (en) Avalanche diode
US3840409A (en) Insulating layer pedestal transistor device and process
US5837553A (en) Method of making high voltage, junction isolation semiconductor device having dual conductivity type buried regions
JPS6314476A (en) Semiconductor device
US3825451A (en) Method for fabricating polycrystalline structures for integrated circuits
US3959039A (en) Method of manufacturing vertical complementary bipolar transistors each with epitaxial base zones
US5273912A (en) Method for manufacturing semiconductor device
US4144106A (en) Manufacture of an I2 device utilizing staged selective diffusion thru a polycrystalline mask
US4197147A (en) Method of manufacturing an integrated circuit including an analog circuit and an I2 L circuit utilizing staged diffusion techniques
JPH0195552A (en) Manufacture of monolithic integrated semiconductor device
US6624497B2 (en) Semiconductor device with a reduced mask count buried layer
US6448125B1 (en) Electronic power device integrated on a semiconductor material and related manufacturing process
JP2518929B2 (en) Bipolar semiconductor integrated circuit
JP4681090B2 (en) Manufacturing method of semiconductor device
KR0163924B1 (en) A lateral transistor and method of fabricating thereof
JPS6022358A (en) Semiconductor integrated circuit device
JPH0256935A (en) Semiconductor integrated circuit device
JPS633461A (en) Semiconductor device
JPH02232929A (en) Semiconductor device with buried layer
JPH02216873A (en) Semiconductor device
JPS63245957A (en) Lateral pnp transistor and manufacture thereof