JPS63144276A - Signal processing system - Google Patents

Signal processing system

Info

Publication number
JPS63144276A
JPS63144276A JP29314086A JP29314086A JPS63144276A JP S63144276 A JPS63144276 A JP S63144276A JP 29314086 A JP29314086 A JP 29314086A JP 29314086 A JP29314086 A JP 29314086A JP S63144276 A JPS63144276 A JP S63144276A
Authority
JP
Japan
Prior art keywords
time
signal
azimuth
target
circuits
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29314086A
Other languages
Japanese (ja)
Other versions
JPH0693016B2 (en
Inventor
Hiroichi Niimi
博一 新美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP29314086A priority Critical patent/JPH0693016B2/en
Publication of JPS63144276A publication Critical patent/JPS63144276A/en
Publication of JPH0693016B2 publication Critical patent/JPH0693016B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

PURPOSE:To improve the S/N by leveling the distance characteristics or propagation losses of an arrival signal in each azimuth which contains noise through automatic gain control and then setting the result as a vector corresponding to the azimuth and level of the signal, and integrating it with time. CONSTITUTION:Hydrophones 1 and 2 receive background noise of an object space together with arrival signal components and supply them to AGC circuits 3 and 4. The circuits 3 and 4 bring the inputs under automatic gain control based upon preset characteristics, perform leveling within a prescribed permissible variation range in prescribed reception processing time units, and supply the results to frequency analyzing circuits 5 and 6. The circuits 5 and 6 perform frequency analyzing operations in reception processing time units to extract frequency information on input acoustic waves. An azimuth/vector arithmetic circuit 7 receives time area data and frequency area data from the circuits 5 and 6 to calculate the azimuths of the input acoustic waves to the hydrophones 1 and 2 and set them as vectors according to those receives data. A target azimuth detecting circuit 8 while integrating the input vectors including the azimuths and levels with time for a prescribed time detects the arrival azimuth of a target.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明線信号処理方式に関し、特に2個以上のハイドロ
ホンの受信信号間の位相差にもとづき目標の発する水中
音響信号の到来方位を検出する場合のS/N改41を図
ったバッシプソーナーの信号処理方式に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to the line signal processing method, and in particular detects the direction of arrival of an underwater acoustic signal emitted by a target based on the phase difference between the received signals of two or more hydrophones. This invention relates to a signal processing method for a bass sonar that aims to improve the S/N of 41 times.

〔従来の技術〕[Conventional technology]

形成すべき受波指向性等の運用条件を勘案して設定され
る配列構造を有する受波器を構成する複数ハイドロホン
を2個以上利用し、その受信信号間の位相差にもとづき
目標の方位を決定するパッシブソーナー装置の信号処理
方式によく知られている。
Using two or more multiple hydrophones that make up a receiver with an array structure set in consideration of operating conditions such as the receiving directivity to be formed, the direction of the target is determined based on the phase difference between the received signals. It is well known that the signal processing method of passive sonar equipment determines the

第2図は2個のハイドロホンの受信信号の位相差を利用
する0橡方位検出の説明図である。
FIG. 2 is an explanatory diagram of zero square azimuth detection using the phase difference between the received signals of two hydrophones.

いま、基準方位に対し方位角θにある音源からの到来音
波がハイドロホンA、Bに入射するものとすると、ハイ
ドロホンA、Bの受信信号SA、SBは次の(1) 、
 (2)式で示される。
Now, assuming that incoming sound waves from a sound source located at an azimuth angle θ with respect to the reference direction are incident on hydrophones A and B, the received signals SA and SB of hydrophones A and B are as follows (1),
It is shown by equation (2).

Sm=Aain(ωt+p)   −−−(1)Sn=
 Aain (ωを十ψ十Δψ)・・・ (2)(1)
 、 (27式で人は振幅、ωは角周波数、ψは位相、
Δψは位相差である。いま、ΔTをハイドロホンA、H
の音波伝搬時間差とすると、第2図からR=dsin#
であシ従ってΔT=d/cainθ(Cは音速)でΔψ
=ω/cdsinθ となシ次の(3)式%式% つまシ、受信信号の位相差Δψと信号の周波数がわかれ
が(3)式から容易に方位角θを求めることができる。
Sm=Aain(ωt+p) ---(1) Sn=
Aain (ω is ten ψ ten Δψ)... (2) (1)
, (In Equation 27, human is the amplitude, ω is the angular frequency, ψ is the phase,
Δψ is the phase difference. Now, ΔT is hydrophone A, H
If the sound wave propagation time difference is R=dsin# from FIG.
Therefore, ΔT=d/cainθ (C is the speed of sound) and Δψ
= ω/cdsinθ Then, the azimuth angle θ can be easily obtained from the equation (3) given that the phase difference Δψ of the received signal and the frequency of the signal are different.

上述した内容はノ1イドロホンが2個の場合を例として
いるが、複数の場合でも、これを同数の2群に分割し、
それぞれの群ごとに配置条件にもとづく相互の位相差を
無くすように受信信号に対し整相処理を施すことによっ
て基本的には2個のハイドロホンの場合と同様に処理で
きる。
The above description is based on the case where there are two idrophones, but even in the case where there are more than one, they can be divided into two groups of the same number,
By performing phasing processing on the received signals for each group so as to eliminate the mutual phase difference based on the arrangement conditions, processing can basically be performed in the same manner as in the case of two hydrophones.

このようにして、従来のこの種の方位検出技術は、各方
位ごとに等しい複数のハイドロホンの受信信号を整相処
理して位相合成し、全体として1つの合成指向性を提供
せしめ、これら合成指向性による受信信号相互間で(3
)式を利用する位相角検出を行なっているものが多い。
In this way, this type of conventional direction detection technology performs phasing processing on the received signals of a plurality of equal hydrophones for each direction, performs phase synthesis, provides a single combined directivity as a whole, and combines these signals. Between received signals due to directivity (3
) Many devices perform phase angle detection using the equation.

2 @s もしくはそれ以上の複数ハイドロホンいずれ
を利用するにせよ、従来の方位検出では受信信号を所定
の時間にわたって時間積分しつつ利用する場合が多い。
Regardless of whether a plurality of hydrophones of 2@s or more are used, in conventional direction detection, the received signal is often integrated over a predetermined period of time.

この時間積分の目的は、積分によって自己相関性の高い
信号成分ベクトルのエネルギーが増大されるのに比し、
生起確率のランダムな雑音成分ベクトルは互いに相殺し
合い、結果として高S/N(Signal/No1se
) ?:得ルコとに6る。コノ場合、時間積分の時間長
としてはパッシブソーナーの運用条件等を考慮し通常数
10SEC程度の時間長が利用される。
The purpose of this time integration is that while integration increases the energy of highly autocorrelated signal component vectors,
Random noise component vectors with probability of occurrence cancel each other out, resulting in high S/N (Signal/No.
)? : Toku Ruko and 6 Ru. In this case, the time length of the time integration is usually about several tens of SECs, taking into consideration the operational conditions of the passive sonar.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述した従来のこの種の信号処理方式では、信号処理に
おける高S/Ni得る目的から各方位ごとの指向性の範
囲内で取得する受信信号に対し時間積分を施している。
In the above-mentioned conventional signal processing method of this type, time integration is performed on received signals acquired within the range of directivity for each direction in order to obtain a high S/Ni in signal processing.

しかしながらこのような時間積分効果によるS/NO改
善には限度があシ、信号成分ベクトルの積分効果は得ら
れるものの雑音成分ベクトルの抑圧は不十分な場合が多
いという欠点がある。この理由は基本的に、信号と同様
に雑音にも影響する伝搬損失の距離依存性と積分時間長
の条件に起因すると考えられている。
However, there is a limit to the improvement of S/NO by such a time integration effect, and although the integration effect of the signal component vector can be obtained, there is a drawback that suppression of the noise component vector is often insufficient. The reason for this is basically considered to be due to the distance dependence of propagation loss and the conditions of the integration time length, which affect noise as well as signals.

すなわち、信号成分ベクトルと雑音成分ベクトル線いず
れも、波長に比して十分遠距離にあって平面波と見做し
うる場合に祉そのエネルギーは距離の自乗に反比例して
減衰する。従って、ノーイドロホンに近い点で発生した
雑音成分ベクトルは遠い光点で発生した雑音成分ベクト
ルに比し極めて高いエネルギーを有する。このような雑
音成分ベクトルは、互いに無相関であるので十分長時間
にわたって時間積分すればほぼ相殺し合うことが期待で
きるが、たかだか数IQsEc程度の限定時間で扛期待
し得る積分効果も著しく抑圧されたものとなってしまう
That is, when both the signal component vector and the noise component vector line are sufficiently far away compared to the wavelength and can be regarded as plane waves, their energy attenuates in inverse proportion to the square of the distance. Therefore, the noise component vector generated at a point close to the no-hydrophone has much higher energy than the noise component vector generated at a distant light point. Since such noise component vectors are uncorrelated with each other, it can be expected that they will almost cancel each other out if they are time-integrated over a sufficiently long period of time, but the integration effect that could be expected to occur over a limited time of at most several IQsEc is also significantly suppressed. It becomes something like that.

一方、この程度の時間積分でも、自己相関性の高い信号
成分ベクトルの積分効果は十分あられれ、全体として成
る程度のS/N改善は得られるものの雑音成分エネルギ
ーの排除は極めて不十分な状態に留る。
On the other hand, even with this degree of time integration, the integration effect of signal component vectors with high autocorrelation is sufficient, and although a certain degree of S/N improvement can be obtained as a whole, the elimination of noise component energy is extremely insufficient. stay

本発明の目的は上述した欠点金除去し、雑音を含む各方
位の到来信号の伝搬損失の距I@特性を自動利得制御に
よって平準化したあと信号の方位、レベルに対したベク
トルとして設定しこれを時間積分するという手段を備え
ることによシ、著しくS/Nf:改善しうるパッシブノ
ーナーの信号処理方式を提供することにある。
The purpose of the present invention is to eliminate the above-mentioned drawbacks, to equalize the distance I@ characteristic of the propagation loss of the arriving signal in each direction including noise by automatic gain control, and then to set it as a vector for the direction and level of the signal. It is an object of the present invention to provide a passive nonar signal processing method that can significantly improve the S/Nf by providing a means for time-integrating the signal.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の方式は、少なくとも2個のハイドロホンの受信
信号間の位相差情報にもどづき目標の発する水中前書信
号の到来方位を検出するパッシブソーナー装置の信号処
理方式において、前記ハイドロホンに対して入力する各
方位ごとの雑音信号を含む到来信号の伝搬損失を受信処
理時間単位かつ所定の許容変動範囲内で平準化するよう
に自動利得制御によって補正したのち方位およびレベル
に対応するベクトルとして設定した繭記雑音信号を含む
到来信号を所定の時間にわたって時間積分しつつ目標の
到来方位を検出することを特徴とする目標方位検出手段
を備えて構成される。  、〔実施例〕 次に図面を参照して本発明の詳細な説明する。
The method of the present invention is a signal processing method for a passive sonar device that detects the direction of arrival of an underwater foreword signal emitted by a target based on phase difference information between the received signals of at least two hydrophones. After correcting the propagation loss of the incoming signal including the noise signal for each direction input by automatic gain control so as to equalize it within a predetermined permissible fluctuation range in units of reception processing time, the signal is set as a vector corresponding to the direction and level. The target direction detection means is configured to detect the direction of arrival of the target while time-integrating the arriving signal including the noise signal generated over a predetermined period of time. , [Example] Next, the present invention will be described in detail with reference to the drawings.

第1図は本発明の一実施例のブロック図でるる。FIG. 1 is a block diagram of one embodiment of the present invention.

第1図に示す冥施例は、ハイドロホン1,2゜AGC(
Automatic  Ga1n  Control)
回路3.42周波数分析回路5,6.方位/ベクトル演
算回路7.目標万位検出回#68等を備えて11成され
る。
The example shown in Fig. 1 is a hydrophone 1, 2° AGC (
Automatic Galn Control)
Circuit 3.42 Frequency analysis circuit 5, 6. Direction/vector calculation circuit 7. The target ten thousand position detection time #68 and the like are made 11 times.

第1−の実施例に先立ち、ます本発明の失点にろいて説
明する。
Prior to the first embodiment, the disadvantages of the present invention will be explained first.

通常、信号処理の対象となる信号成分は、遠距離目標で
あって従って方位変化も小さく、空間ベクトルとじての
このような信号成分は所定の設定処理時間内ではほぼ一
定と見做しうる場合が多い。
Normally, the signal component that is the target of signal processing is a long-range target, and therefore the change in direction is small, and such a signal component as a space vector can be considered to be almost constant within a predetermined set processing time. There are many.

−万、雑音成分ベクトルは、いわゆる背景雑音であプ、
海中の生物音、波浪等時間的にも空間的にも2ンダムに
発生することが多い。
−10,000, the noise component vector is the so-called background noise,
Undersea biological sounds, waves, etc. often occur randomly both in time and space.

このような信号成分を所定の時間にわたって積分すれば
、特定方位から到来する信号成分はエネルギーが積分さ
れ、一方信号成分とともに入力する雑音成分線方位分散
ベクトルであるのでそのエネルギーは減少し、S/Nの
改善が可能となる。
If such a signal component is integrated over a predetermined period of time, the energy of the signal component arriving from a specific direction will be integrated, while the noise component input along with the signal component is a line direction dispersion vector, so its energy will decrease, and the S/ This makes it possible to improve N.

この場合、対象空間内の雑音を効果的に減少せしめるに
は音源から受波点までの伝搬損失の距離依存性を排除し
て平準化すればよく、第1図の実施例もこのような観点
に立って構成されている。
In this case, in order to effectively reduce the noise in the target space, it is sufficient to eliminate the distance dependence of the propagation loss from the sound source to the receiving point and equalize it, and the embodiment shown in FIG. It consists of standing.

ハイドロホン1.2はバッシプソーナーの受波器を形成
するハイトロンのうち隣接する2個とし、これらは到来
する信号成分とともに対象空間の背景雑音を入力音波と
して受波し、電気信号に変換してそれぞれAGC回路3
および4に供給する。
The hydrophones 1.2 are two adjacent Hytrons that form the receiver of the bass sonar, and these receive incoming signal components as well as background noise in the target space as input sound waves, convert them into electrical signals, and convert them into electrical signals. AGC circuit 3
and 4.

AGC回路3および4は、入力に対しあらかじめ設定す
る特性の自動利得制御を所定の受信処理時間単位ごとに
所定の許容変動範囲内でかける。
The AGC circuits 3 and 4 apply automatic gain control with preset characteristics to the input within a predetermined allowable variation range for each predetermined reception processing time unit.

この場合、あらかじめ設定してお(AGC%性は、距離
の自乗に逆比例して減衰する伝搬損失を運用距離にわた
って補償する。伝搬損失特性とは逆特性のものである。
In this case, the AGC % characteristic is set in advance and compensates for the propagation loss that attenuates in inverse proportion to the square of the distance over the operational distance.

従ってAGC回路3,4から出力される内容は伝搬損失
分を正規化して平準化され九レベルを有する信号成分ベ
クトルおよび雑音成分ベクトルということになる。これ
らAGC回路3.4の出力はそれぞれ周波数分析回路5
.6に供給される。
Therefore, the content output from the AGC circuits 3 and 4 is a signal component vector and a noise component vector that are leveled by normalizing the propagation loss and have nine levels. The outputs of these AGC circuits 3 and 4 are respectively frequency analysis circuits 5 and 5.
.. 6.

周波数分析回路5.6は、こうして入力するAGC回路
3.4の出力の周波数分析を受信処理時間単位ごとに行
なってハイトロン1.2で取得した入力音波に関する周
波数情報を抽出する。この周波数分析はFFT (Fa
st  FourierTranaform)と利用し
て行なわれ、入力はレベル対周波数スペクトルとして周
波数領域データ502.602  に変換され方位/ベ
クトル演算回路7に供給される。周波数分析回路5,6
0入力した時間領域データ501,601も相互間の位
相差情報等を利用するため方位/ベクトル演算回路7に
供給される。
The frequency analysis circuit 5.6 performs frequency analysis of the input output of the AGC circuit 3.4 for each reception processing time unit, and extracts frequency information regarding the input sound wave acquired by the Hytron 1.2. This frequency analysis is performed using FFT (Fa
The input is converted into frequency domain data 502, 602 as a level vs. frequency spectrum and supplied to the azimuth/vector calculation circuit 7. Frequency analysis circuit 5, 6
The input time domain data 501 and 601 are also supplied to the azimuth/vector calculation circuit 7 in order to utilize mutual phase difference information and the like.

さて、万位/ベクトル演算回路7はこうして周波数分析
回路5,6から時間領域データ501゜601および周
波数領域502,602’i受け、これらデータにもと
づきハイドロホン1.2に対する入力音波の方位の算出
ならびにベクトルとしての設定を行なう。
Now, the ten thousand position/vector calculation circuit 7 thus receives the time domain data 501°601 and the frequency domain data 502, 602'i from the frequency analysis circuits 5 and 6, and calculates the direction of the input sound wave to the hydrophone 1.2 based on these data. and set it as a vector.

この場合、方位の算出も受信処理時間単位ごとに行なわ
れ、時間領域データ501,601からは両者の位相差
情報が方位算出時間刻みで提供され、一方間波数領域デ
ータ502,602からは同一受信処理時間単位ごとに
抽出した周波数スペクトルの対応時間における周波数成
分のうち最大レベルに対応する周波数情報が提供され(
3)式にもとづく演算から方位角が方位算出時間刻みで
出力される。
In this case, the direction is also calculated for each reception processing time unit, and the time domain data 501 and 601 provide phase difference information between the two for each direction calculation time, while the wave number domain data 502 and 602 provide information about the same reception. Frequency information corresponding to the maximum level of the frequency components at the corresponding time of the frequency spectrum extracted for each processing time unit is provided (
3) The azimuth angle is output in azimuth calculation time increments from calculations based on the formula.

方位算出は算出時間刻みごとに入力するAGC処理後の
入力音波の最大値を対象として行なわれるので上述した
位相差、周波数情報の設定によって正確な方位情報の算
出が可能となる。
Since azimuth calculation is performed using the maximum value of the input sound wave after AGC processing that is input at each calculation time step, accurate azimuth information can be calculated by setting the above-mentioned phase difference and frequency information.

こうして、ハイトロンホン1,2を介して入力した入力
音波に含まれる信号、雑音成分は処理時間単位ごとにそ
れぞれ方位を算出されそのレベル情報を加えてベクトル
量として設定され目標方位検出回路8に供給される。ま
た、周波数領域データ502,602によってもたらさ
れた周波数スペクトル情報も目標方位検出回路8に供給
される。
In this way, the directions of the signals and noise components included in the input sound waves inputted via the Hytronphones 1 and 2 are calculated for each processing time unit, and the level information is added to set them as vector quantities and supplied to the target direction detection circuit 8. Ru. Frequency spectrum information provided by the frequency domain data 502, 602 is also supplied to the target orientation detection circuit 8.

目標方位検出口−8は、こうして入力した方位角ならび
にレベルを含むベクトルを所定の時間にわたって時間積
分するとともに、方位角についても前記積分時間にわた
ってその時間変化特性をとる。目標方位検出回路8は、
こうして入力ベクトルの時間積分データと、入力の方位
角時間特性ならびに周波数スペクトルに関するデータを
得てこれら3a類のデータにもとづいてハイドロホン1
゜2′f!:介して入力した入力を波が所望の目標であ
るか否かの判定を行ない、目標から到来したと判定した
場合にはそのレベルならびに周波数も併せ決定するが、
その処理内容は次のと2)でおる。
The target azimuth detection port-8 time-integrates the vector including the azimuth angle and level thus inputted over a predetermined period of time, and also determines the time-varying characteristics of the azimuth angle over the integration time. The target direction detection circuit 8 is
In this way, the time integral data of the input vector, the azimuth time characteristics of the input, and the data regarding the frequency spectrum are obtained, and based on these data of class 3a, the hydrophone 1
゜2'f! : It is determined whether or not the wave is the desired target, and if it is determined that the wave has come from the target, its level and frequency are also determined.
The processing details are as follows and 2).

すなわち、所定の積分時間にわたりて得られた方位角の
時間特性にあられれる方位角の分散を求め、この分散が
所定の判定しきい値の許容範囲に入っている場合には、
この方位角を提供した入力が目標による到来音波である
と判定する。このことは、ハイドロホン1,2に対して
十分遠方におる目標とハイドロホン1,2のなす相対方
位角の時間変化特性明らかになシ小さく、かつ比較的に
規則的な変化を示すのでその方位角データの分散も少な
いことにもとづく。この場合の判定しきい値は数多くの
運用実績、設計データ等にもとづいてあらかじめ設定さ
れる。
That is, find the variance of the azimuth angle that can be found in the time characteristics of the azimuth angle obtained over a predetermined integration time, and if this variance is within the allowable range of the predetermined judgment threshold,
It is determined that the input that provided this azimuth angle is the incoming sound wave from the target. This is because the time change characteristic of the relative azimuth between hydrophones 1 and 2 and a target that is sufficiently far away from hydrophones 1 and 2 clearly shows small and relatively regular changes. This is based on the fact that the dispersion of the azimuth angle data is also small. The determination threshold in this case is set in advance based on a large number of operational results, design data, and the like.

こうして、目l!io方位が決定する一方、同じ積分時
間で時間積分されたベクトル扛そのレベルを提供する。
In this way, the eyes! io orientation is determined, while providing the level of the time-integrated vector with the same integration time.

この時間積分は伝搬減衰をAGC回路3.4によってノ
ーマライズ(normalige) L、たものであり
、生起確率とのベクトル方向のランダムな雑音ベクトル
はノーマライズしない従来の時間積分の場合に比し著し
く大きい相殺効果を示し、ベクトル方向変化が小さくか
つ本質的にほぼ定常的と見做し得る信号ベクトルは強い
自己相関上もっと累積されS/Nが大幅に改善された状
態となる。このよりなS/N改善の確保もまた方位分散
データとともに目標決定のパラメータとして利用しうる
ものでアシ、またこうして得られる高S/NO時間積分
値の時間平均値は信号レベルを代表するデータとして利
用される。
This time integral has the propagation attenuation normalized by the AGC circuit 3.4, and the random noise vector in the vector direction with the occurrence probability has a significantly larger cancellation than in the case of conventional time integral without normalization. Signal vectors that show an effect, have small changes in vector direction, and can be considered essentially stationary are accumulated more due to strong autocorrelation, resulting in a state in which the S/N ratio is greatly improved. Securing this further S/N improvement can also be used as a parameter for target determination along with the azimuth dispersion data, and the time average value of the high S/NO time integral value obtained in this way can be used as data representative of the signal level. used.

また、こうしてハイドロホンし2が目l!を捕捉したと
判定されるときの具体的方位決定は前述した分散の中入
−値を求めることによって行なわれる。
Also, like this, the second one is the hydrophone! When it is determined that the image has been captured, the specific direction is determined by finding the intermediate value of the variance described above.

さらに、目標方位検出回路1j入力音波に関する周波数
スペクトルを提供されている。この周波数スペクトルに
関するデータも積分時間にわたってその積分値がとられ
、レベルを示すスペクトル包絡の最大点に対応する周波
数が信号の周波数として判定される。
Further, a frequency spectrum regarding the input sound wave to the target direction detection circuit 1j is provided. The integral value of data regarding this frequency spectrum is also taken over an integration time, and the frequency corresponding to the maximum point of the spectrum envelope indicating the level is determined as the frequency of the signal.

こうして高S/N状態のもとて目標の方位、レベルなら
びに周波数を検出することができる。
In this way, the direction, level, and frequency of the target can be detected under high S/N conditions.

なお、第1図の実施例はバッシプソーナー装置會構成す
るハイドロホンのうち、隣接する2個をとシ上げて説明
したが受波器を構成する他のノ・イドロホンの24rj
Aずつの組合せについても全く同様にして実施しうろこ
とは明らかであプ、またζ02個のハイドロホンが2個
以上の複数1161を利用して行なわれる合成指向性を
代表するものとしても勿論差支えない。
Although the embodiment shown in FIG. 1 has been explained by focusing on two adjacent hydrophones among the hydrophones constituting the bass sonar device, the other two hydrophones constituting the receiver may also be used.
It is clear that the combination of A's can be implemented in exactly the same way, and it is of course possible that ζ02 hydrophones represent the synthetic directivity performed using two or more 1161. do not have.

〔発明の効果〕〔Effect of the invention〕

以上設定したように本発明によれば、2個もしくはそれ
以上のハイドロホンによる受信信号の位相差情報にもと
づき水中音臀信号の到来方位を検出するパッシブンーナ
ーの信号処理方式において、各方位の雑音を含む到来信
号の伝ffi損失の距離特性をAGCによって平準化し
たのち信号の方位および大きさに対応するベクトルとし
て時rdj積分するという手段を備えることKより著し
くS/Nを改善しうる信号処理方式が実現でさるという
効果がある。
As set above, according to the present invention, in a passive tuner signal processing method that detects the direction of arrival of an underwater sound signal based on phase difference information of signals received by two or more hydrophones, A signal that can significantly improve the S/N than K by providing means for leveling the distance characteristics of the propagation loss of an incoming signal containing noise by AGC and then integrating the time rdj as a vector corresponding to the direction and magnitude of the signal. The effect is that the processing method is realized.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明、の−実施例のブロック図、第2図は2
個のハイドロホンによる受信信号の位相差金利用する目
標方位検出の脱明図である。 1,2・・・・・・ハイドロy、3.4・・・・−・A
GC回路、5.6・・・・・・周波数分析回路、7・・
・・・・方位/ベクトル演算回路、8・・・・・・目標
方位検出回路。 長 / 、 2−−−−−一へイFロオ、ン3.4−−−−
−−Aec回A、 5、 、< −一−−−一用琥数伸目瓜7 −−−−−
−  ・方(k/、N”7 トtlaKm’fl!+δ
 −一一一一一一 日十和力位検出回ヱ家υt、iw 
−−−−−−Il!を間頗域デゝ夕!;02,1t)2
 −−−−−−一 周彼数々有域データ第1図
FIG. 1 is a block diagram of an embodiment of the present invention, and FIG. 2 is a block diagram of an embodiment of the present invention.
FIG. 3 is a diagram illustrating how to detect a target direction using the phase difference of signals received by two hydrophones. 1,2...Hydro y, 3.4...A
GC circuit, 5.6... Frequency analysis circuit, 7...
... Direction/vector calculation circuit, 8... Target direction detection circuit. Long/, 2-----1 Hei F Roo, N 3.4----
---Aec times A, 5, ,<-1----1 use 琥楥次目瓜7 ------
- ・way(k/, N”7 tlaKm'fl!+δ
−111111 Day 11 power position detection times ヱ家υt, iw
-------Il! A date in between! ;02,1t)2
−−−−−−1 Zhuhe Numerous regional data Figure 1

Claims (1)

【特許請求の範囲】 少なくとも2個のハイドロホンの受信信号間の位相差情
報にもとづき目標の発する水中音響信号の到来方位を検
出するパッシブソーナー装置の信号処理方式であって、 前記ハイドロホンに対して入力する各方位ごとの雑音信
号を含む到来信号の伝搬損失を受信処理時間単位から所
定の許容変動範囲内で平準化するように自動利得制御に
よって補正したのち方位およびレベルに対応するベクト
ルとして設定した前記雑音信号を含む到来信号を所定の
時間にわたって時間積分しつつ目標の到来方位を検出す
ることを特徴とする目標方位検出手段を備えて成ること
を特徴とする信号処理方式。
[Scope of Claims] A signal processing method for a passive sonar device that detects the direction of arrival of an underwater acoustic signal emitted by a target based on phase difference information between received signals of at least two hydrophones, the method comprising: Automatic gain control is used to correct the propagation loss of the incoming signal, including the noise signal input for each direction, within a predetermined allowable fluctuation range from the reception processing time unit, and then set as a vector corresponding to the direction and level. 1. A signal processing method comprising a target direction detection means for detecting the direction of arrival of a target while time-integrating the arriving signal including the noise signal over a predetermined period of time.
JP29314086A 1986-12-08 1986-12-08 Signal processing device for passive sonar Expired - Lifetime JPH0693016B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29314086A JPH0693016B2 (en) 1986-12-08 1986-12-08 Signal processing device for passive sonar

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29314086A JPH0693016B2 (en) 1986-12-08 1986-12-08 Signal processing device for passive sonar

Publications (2)

Publication Number Publication Date
JPS63144276A true JPS63144276A (en) 1988-06-16
JPH0693016B2 JPH0693016B2 (en) 1994-11-16

Family

ID=17790937

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29314086A Expired - Lifetime JPH0693016B2 (en) 1986-12-08 1986-12-08 Signal processing device for passive sonar

Country Status (1)

Country Link
JP (1) JPH0693016B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08184660A (en) * 1994-12-28 1996-07-16 Nec Corp Orientation detector
JP2015087132A (en) * 2013-10-28 2015-05-07 株式会社東芝 Signal detection device and signal detection method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101523278B1 (en) * 2013-10-29 2015-05-27 국방과학연구소 Method for forming a vector beam using multiple omni-directional hydro-phones

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08184660A (en) * 1994-12-28 1996-07-16 Nec Corp Orientation detector
JP2015087132A (en) * 2013-10-28 2015-05-07 株式会社東芝 Signal detection device and signal detection method

Also Published As

Publication number Publication date
JPH0693016B2 (en) 1994-11-16

Similar Documents

Publication Publication Date Title
US10602265B2 (en) Coprime microphone array system
US9479867B2 (en) Method and circuitry for direction of arrival estimation using microphone array with a sharp null
CN101828407A (en) Microphone array processor based on spatial analysis
US7453770B2 (en) Method for directional location and locating system
WO2020116054A1 (en) Signal processing device and signal processing method
US20130148814A1 (en) Audio acquisition systems and methods
EP0187851B1 (en) Adaptive predictor of surface reverberation in a bistatic sonar
US10084965B2 (en) Omnidirectional high resolution tracking and recording apparatus and method
US8218787B2 (en) Microphone array signal processing apparatus, microphone array signal processing method, and microphone array system
JP3154468B2 (en) Sound receiving method and device
JPS63144276A (en) Signal processing system
Kim et al. Multi-microphone target signal enhancement using generalized sidelobe canceller controlled by phase error filter
US7228236B2 (en) Subarray matching beamformer apparatus and method
Nunn Performance assessments of a time-domain adaptive processor in a broadband environment
CN113189544B (en) Multi-sound source localization method for removing wild points by using active intensity vector weighting
Messer The potential performance gain in using spectral information in passive detection/localization of wideband sources
US7126876B1 (en) Harmonic ambiguity resolver and inter array harmonic tracker
CN113450769B (en) Speech extraction method, device, equipment and storage medium
JP2850872B2 (en) Sonobuoy signal processor
KR101715903B1 (en) Method and Apparatus for robust detection of target bearings for triplet sensor arrays against to noise signals, arrangement distortions, and angle errors
JP2010152107A (en) Device and program for extraction of target sound
US11153703B2 (en) Specific sound source automatic adjusting method and electronic device using same
JP2919350B2 (en) Signal detection method
US20040174771A1 (en) Panoramic audio device for passive sonar
JP2913923B2 (en) Underwater sound direction detection device