JPS63143877A - Amorphous solar cell - Google Patents

Amorphous solar cell

Info

Publication number
JPS63143877A
JPS63143877A JP61290416A JP29041686A JPS63143877A JP S63143877 A JPS63143877 A JP S63143877A JP 61290416 A JP61290416 A JP 61290416A JP 29041686 A JP29041686 A JP 29041686A JP S63143877 A JPS63143877 A JP S63143877A
Authority
JP
Japan
Prior art keywords
type
layer
film
solar cell
buffer layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61290416A
Other languages
Japanese (ja)
Other versions
JPH0620151B2 (en
Inventor
Sunao Matsubara
松原 直
Juichi Shimada
嶋田 寿一
Shinichi Muramatsu
信一 村松
Haruo Ito
晴夫 伊藤
Nobuo Nakamura
信夫 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP61290416A priority Critical patent/JPH0620151B2/en
Publication of JPS63143877A publication Critical patent/JPS63143877A/en
Publication of JPH0620151B2 publication Critical patent/JPH0620151B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/075Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PIN type, e.g. amorphous silicon PIN solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To increase an open circuit voltage and to improve optoelectronic conversion efficiency, by providing a buffer layer at a heterojunction between p-type a-Sic and an i-type a-SiGe. CONSTITUTION:A p/i interface forms a heterojunction in a Si amorphous solar cell comprising p-type a-SiC 13/i-type a-SiGe 15/n-type muc (microcrystal) 16. As a buffer layer 14 for the p-i interface, at least one layer of an i-type Si thin film consisting Si, which is common one main element of the p layer and the i layer, or an i-type a-SiCGe thin film consisting Si, C and Ge, which are three main elements constituting type p layer and the i layer, is used. The buffer layer improves the continuity of the band of the junction of p-type a-SiC/ i-type a-SiGe: especially, the conduction bands are continuously connected. Thus the barrier at the p-i interface can be alleviated, the recombination speed at the interface is decreased and the open circuit voltage is expanded. In this way, the amorphous solar cell having the excellent optoelectronic transducing characteristics can be simply manufactured.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、アモルファス太陽電池に係り、特に大きな開
放電圧を有する高効率化せしめるに好適なアモルファス
太陽電池に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an amorphous solar cell, and particularly to an amorphous solar cell having a large open-circuit voltage and suitable for achieving high efficiency.

〔従来の技術〕[Conventional technology]

従来、p型a−8iC:H膜を用いたpin型セルにお
いて、ヘテロ接合部であるp/i界面にバッファ層を設
けることにより−p/i界面テ界面キノキャリア再結合
、および2層とi層のバンド幅が連続的につながって障
壁が緩和されることにより光電変換効率が向することが
知られている(第17回太陽エネルギー推進委員会第1
1回アモルファス連絡会予稿集、第194〜5頁参照)
Conventionally, in a pin cell using a p-type a-8iC:H film, by providing a buffer layer at the p/i interface, which is a heterojunction, the recombination of kinocarriers at the -p/i interface and the two-layer It is known that the photoelectric conversion efficiency increases as the i-layer band width is continuously connected and the barrier is relaxed (17th Solar Energy Promotion Committee Vol. 1).
(See Proceedings of the 1st Amorphous Liaison Conference, pages 194-5)
.

また、p型a−8iとi型p−SiGeによるヘテロ接
合を有する太陽電池に関しては、p/i界面にGe量を
厚さ方向に連続的変化させて光学ギャップ(禁制帯幅)
を9層側からi層側へ変化させるようにバッファ層を設
けてバンド幅を連続的につなぎ、障壁を緩和する方法が
ある(第46回応用物理学会学術講演会講演予稿集、2
P−ZA−5参照)、なおこの場合の光電変換効率は2
,3%、開放電圧は0.65V程度である。
In addition, for solar cells having a heterojunction of p-type a-8i and i-type p-SiGe, the amount of Ge at the p/i interface is continuously changed in the thickness direction to increase the optical gap (forbidden band width).
There is a method to alleviate the barrier by providing a buffer layer to change the bandwidth from the 9th layer side to the i layer side and connect the bandwidth continuously (Proceedings of the 46th Japan Society of Applied Physics Conference, 2)
P-ZA-5), and the photoelectric conversion efficiency in this case is 2
, 3%, and the open circuit voltage is about 0.65V.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

太陽電池の主光電変換部であるi型a−SiGe膜の光
学的バンドギャップは、1.4〜1.6eV程度である
。この値から、前記の太陽電池の開放電圧は充分に大き
いとは言えず、さらに増大できる可能性を含んでいると
考えられる。
The optical bandgap of the i-type a-SiGe film, which is the main photoelectric conversion part of the solar cell, is about 1.4 to 1.6 eV. From this value, it cannot be said that the open circuit voltage of the solar cell is sufficiently large, and it is considered that there is a possibility that it can be further increased.

本発明の目的は、開放電圧が大きく、光電変換効率の高
いアモルファス太陽電池を提供することにある。
An object of the present invention is to provide an amorphous solar cell with a high open-circuit voltage and high photoelectric conversion efficiency.

〔問題点を解決するための手段〕[Means for solving problems]

上記の目的は、P型a−8iC/i型a−8iGe/n
型μC(マイクロクリスタル) −S J系アモルファ
ス太陽電池のへテロ接合を形成するp / i界面のバ
ッファ層としてpm及びi層に共通した1つの主要元素
であるSiからなるi型a −S j薄膜または、2層
及びi層を摺成する3つの主要元素であるSi、C5及
びGeからなるi型a−8iCGe薄膜を少なくとも1
層用いることにより達成される。
The above purpose is to
Type μC (microcrystal) -S J As a buffer layer at the p/i interface that forms the heterojunction of a J-based amorphous solar cell, an i-type a-S j consisting of Si, which is one main element common to the PM and i layers. At least one i-type a-8iCGe thin film consisting of Si, C5 and Ge, which are the three main elements forming the two-layer and i-layer, is
This is achieved by using layers.

〔作用〕[Effect]

これらのバッファ層が、P型a−8iC/i型a−8i
Ge接合のバンドの連続性を改善することにより、特に
伝導帯側を連続的につなぐことによりp/i界而の面壁
を緩和することができ、かつ界面再結合速度を減少させ
、開放電圧の拡大をもたらす、バッファ層としてi型a
−5iil膜を用いた場合は、バッファ層の光学的バン
ドギャップをp型a −S i C膜のバンドギャップ
より大きくすることは困難であるが、バッファ層にi型
a−8iCGe薄膜を用いた場合は、その組成を調整す
ることによりp型a−5iC膜より大きいバンドギャッ
プを有するa−SiCGe薄膜の作成は容易であり、さ
らにp型a−SiC膜のバンドギャップよりも小さくす
ることも可能である。さらにa−8iCGe膜において
は、a−8iCGe膜の組成を適切に選択することによ
り、組成が違っても同じ光学的バンドギャップを有する
膜の作成が可能であり、このため同じバンドギャップを
有する膜であっても電子親和力の異なる膜が形成される
ので開放電圧を大きくし得る。
These buffer layers are P type a-8iC/i type a-8i
By improving the band continuity of the Ge junction, especially by continuously connecting the conduction band side, it is possible to relax the plane wall of the p/i interface, reduce the interfacial recombination rate, and increase the open circuit voltage. I-type a as a buffer layer that causes expansion
When using a -5iI film, it is difficult to make the optical bandgap of the buffer layer larger than that of a p-type a-SiC film, but it is difficult to make the optical bandgap of the buffer layer larger than that of a p-type a-SiC film. In this case, it is easy to create an a-SiCGe thin film with a band gap larger than that of the p-type a-5iC film by adjusting its composition, and it is also possible to make the band gap smaller than that of the p-type a-SiC film. It is. Furthermore, in the a-8iCGe film, by appropriately selecting the composition of the a-8iCGe film, it is possible to create a film with the same optical bandgap even if the composition is different; therefore, a film with the same bandgap can be created. However, since films with different electron affinities are formed, the open circuit voltage can be increased.

バッファ層はa−5i薄膜またはa−SiCQe薄膜の
一層だけでなく、同種類の膜で順次2層側からiyB側
へバンドギャップが漸減するよう組成を調整した膜を連
続的にあるいは積層することにより開放電圧の拡大が図
られる。この場合、バッファ層ではバンドギャップの傾
斜により拡散電位が生じ、p/i界面でのキャリアの再
結合を減少させる様な作用が働いている。また、バッフ
ァ層にa−SiCG膜を用いたアモルファス太陽電池で
は、同一のバンドギャップを有し、かつ組成が異なる薄
膜を積層しても拡散電位は得られる。この場合は電子親
和力の差に起因した拡散電位が生じ、同様に開放電圧の
拡大が図られた。
The buffer layer is not only a single layer of a-5i thin film or a-SiCQe thin film, but also a continuous or stacked film of the same type whose composition is adjusted so that the band gap gradually decreases from the second layer side to the iyB side. As a result, the open circuit voltage can be expanded. In this case, a diffusion potential is generated in the buffer layer due to the inclination of the band gap, which acts to reduce carrier recombination at the p/i interface. Furthermore, in an amorphous solar cell using an a-SiCG film as a buffer layer, a diffusion potential can be obtained even if thin films having the same bandgap and different compositions are stacked. In this case, a diffusion potential was generated due to the difference in electron affinity, and the open-circuit voltage was similarly expanded.

〔実施例〕〔Example〕

以下、本発明の詳細な説明する。 The present invention will be explained in detail below.

実施例1゜ 第1図を用いて説明する。まずガラス基板11上に透明
導電[12を周知の方法で形成した。この上に、S i
H4* CH4v H2ベース82H1!の混合ガスの
高周波プラズマ分解法を用いて膜厚80人のp型a−8
iC膜13を形成する。その上にバッファ層として膜1
3よりも光学的バンドギャップの小さい膜厚80人のi
型a−8i膜14を形成した。該バッファ層は、SiH
4およびH2の混合ガスから成膜した。さらに、この上
に膜厚5,000人のi型a −SiGe[III 1
5 、膜厚200人のn型微結晶5ilil16を順次
形成し、最後にAg電極17を蒸着して太陽電池を作成
した。この太陽電池の開放電圧は0.71Vと高い値を
示し、光電変換効率6.2%であった。
Example 1 This will be explained using FIG. First, a transparent conductive film [12] was formed on a glass substrate 11 by a well-known method. On top of this, S i
H4* CH4v H2 base 82H1! p-type A-8 with a film thickness of 80 mm using high-frequency plasma decomposition of a mixed gas of
An iC film 13 is formed. On top of that is a film 1 as a buffer layer.
Film thickness of 80 people with smaller optical bandgap than 3
A type a-8i film 14 was formed. The buffer layer is made of SiH
The film was formed using a mixed gas of 4 and H2. Furthermore, on top of this, a film of i-type a-SiGe [III 1
5. N-type microcrystals 5ilil16 with a film thickness of 200 nm were sequentially formed, and finally an Ag electrode 17 was deposited to create a solar cell. The open circuit voltage of this solar cell was as high as 0.71 V, and the photoelectric conversion efficiency was 6.2%.

実施例2゜ 第2図を用いて説明する。Example 2゜ This will be explained using FIG.

第2図の例はバッファ層24の材料が第1の実施例と異
なるのみで、他はこれと同様である。バッファ層24と
して、膜厚100人のi型a−8i CG e膜を、S
IH4e CH4g GaH4及びH2の混合ガスの高
周波プラズマ分解法により形成した。バッファ1124
の光学的バンドギャップはp型a −S i Cl!!
Il 3のバンドギャップより小さく、i型a−3iG
e膜15のバンドギャップより大きい6本太陽電池の開
放電圧は0.7vと高い値を示し、光電変換効率は6.
0%であった。
The example shown in FIG. 2 is the same as the first example except for the material of the buffer layer 24. As the buffer layer 24, an i type a-8i CG e film with a thickness of 100 mm is
IH4e CH4g Formed by high frequency plasma decomposition of a mixed gas of GaH4 and H2. buffer 1124
The optical bandgap of p-type a-S i Cl! !
smaller than the bandgap of Il 3, i-type a-3iG
The open circuit voltage of the six solar cells, which is larger than the band gap of the e-film 15, is as high as 0.7V, and the photoelectric conversion efficiency is 6.
It was 0%.

実施例3゜ 第3図を用いて説明する。Example 3゜ This will be explained using FIG.

上記実施例2においては、バッファ層24は。In the second embodiment, the buffer layer 24 is as follows.

p層よりバンドギャップが小さいi型層 −SiCGe
膜としたが、本実施例では、バッファ層34であるi型
層−8iCGe膜のバンドギャップはp層のバンドギャ
ップよりも大きくした。バッフyFa34以外は全て実
施例2と同じ構造である。
I-type layer with a smaller band gap than the p-layer -SiCGe
However, in this example, the bandgap of the i-type layer-8iCGe film, which is the buffer layer 34, was made larger than the bandgap of the p-layer. Everything except the buffer yFa34 has the same structure as the second embodiment.

この太陽電池の開放電圧は0.75Vと高い値を示し、
光電変換効率は6.1%であった。
The open circuit voltage of this solar cell is as high as 0.75V,
Photoelectric conversion efficiency was 6.1%.

実施例4゜ 第4図を用いて説明する。Example 4゜ This will be explained using FIG.

本実施例では、バッファ層が2層(第1層目44および
第2層目54)で構成されており、バッファ層以外は全
て実施例3と同じ構造である。
In this example, the buffer layer is composed of two layers (first layer 44 and second layer 54), and everything except the buffer layer has the same structure as Example 3.

バッファ層の第1層目44(膜厚50λ)と第2層目5
4 (膜厚50λ)は同じ光学的バンドギャップを有す
るi型層−SiCGe膜とし、  a −SiCGe膜
の組成を調整して、膜の電子親和力に差を設けて第1層
目44よりも第2層目54の方が大きい電子親和力を有
するようにした。バッファ層44及び54のバンドギャ
ップはp型層 −8iC膜のバンドギャップよりも小さ
い。本太陽電池の開放電圧は0.73Vと高い値を示し
、光電変換効率は6.0%であった。
The first layer 44 (film thickness 50λ) and the second layer 5 of the buffer layer
4 (film thickness 50λ) is an i-type layer-SiCGe film having the same optical band gap, and the composition of the a-SiCGe film is adjusted to create a difference in the electron affinity of the film so that the The second layer 54 was made to have a larger electron affinity. The band gaps of the buffer layers 44 and 54 are smaller than the band gap of the p-type layer -8iC film. The open circuit voltage of this solar cell was as high as 0.73 V, and the photoelectric conversion efficiency was 6.0%.

なお1本発明において、n型層はなるべく抵抗の低い周
知の半導体層でよく、その膜厚は200〜500人であ
る。i型層の組成は、そのバンドギャップが1.3〜1
.7eVになるように選択され、膜厚は3,000〜7
,000λである。p型層の組成は、そのバンドギャッ
プが1.8〜2.5    eVになるように選択され
る。バッファ層とp型層の膜厚は、その和が50〜20
0人になるように選択される。これが厚過ぎるとこの層
による光ンドを連続して接続するように選定されること
は言うまでもない。
In the present invention, the n-type layer may be a well-known semiconductor layer with as low resistance as possible, and its film thickness is 200 to 500 layers. The composition of the i-type layer has a band gap of 1.3 to 1.
.. 7 eV, and the film thickness is 3,000 to 7 eV.
,000λ. The composition of the p-type layer is selected such that its bandgap is between 1.8 and 2.5 eV. The sum of the film thicknesses of the buffer layer and p-type layer is 50 to 20
Selected to be 0 people. It goes without saying that if this is too thick, this layer should be chosen to connect the optical nodes in succession.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、P型層−8iCとi型層−3iGeの
へテロ接合にバッファ層を設けることにより、p/i界
面特性の秀れた、したがって開放電圧が大きく、かつ光
電変換特性の秀れたアモルファス太陽電池を簡便に作製
できる効果がある。
According to the present invention, by providing a buffer layer at the heterojunction between the P-type layer 8iC and the i-type layer 3iGe, excellent p/i interface characteristics, a large open circuit voltage, and excellent photoelectric conversion characteristics can be obtained. This has the effect of easily producing excellent amorphous solar cells.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、実施例1を説明するための断面図、第2図は
、実施例2を説明するための断面図、第3図は、実施例
3を説明するための断面図、第4図は、実施例4を説明
するための断面図である。 11・・・ガラス基板、12・・・透明導電膜。 13 ・・p型層−8iC膜、14−バッファ層、i型
層 −S i膜、15− i型層−8iGe膜、16・
・・n型微結晶Si膜、17・・・Ag電極。 24 : 34 : 44 : 54・・・バッファ層
i型a−5icGe膜。 第7目      第2図 第30       $4図
1 is a cross-sectional view for explaining Example 1, FIG. 2 is a cross-sectional view for explaining Example 2, FIG. 3 is a cross-sectional view for explaining Example 3, and FIG. The figure is a sectional view for explaining Example 4. 11...Glass substrate, 12...Transparent conductive film. 13... p-type layer - 8iC film, 14- buffer layer, i-type layer - Si film, 15- i-type layer - 8iGe film, 16.
...N-type microcrystalline Si film, 17...Ag electrode. 24: 34: 44: 54... Buffer layer i-type a-5icGe film. 7th Figure 2 Figure 30 $4 Figure

Claims (1)

【特許請求の範囲】[Claims] 1、p型層がp型a−SiC膜であり、i型層がi型a
−SiGe膜である少なくとも1つのpin接合構造を
有するアモルファス太陽電池において、該p型層と該i
型層との間に該p型層よりも光学的バンドギャップが小
さく、かつ該i型層よりも光学的バンドギャップが大き
いバッファ層薄膜を設け、該バッファ層薄膜はi型a−
Si膜およびi型A−SiCGe膜のいずれかまたは両
者からなることを特徴とするアモルファス太陽電池。
1. The p-type layer is a p-type a-SiC film, and the i-type layer is an i-type a-SiC film.
- In an amorphous solar cell having at least one pin junction structure which is a SiGe film, the p-type layer and the i
A buffer layer thin film having an optical band gap smaller than the p-type layer and larger than the i-type layer is provided between the buffer layer thin film and the i-type a-type layer.
An amorphous solar cell comprising either or both of a Si film and an i-type A-SiCGe film.
JP61290416A 1986-12-08 1986-12-08 Amorphous solar cell Expired - Fee Related JPH0620151B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61290416A JPH0620151B2 (en) 1986-12-08 1986-12-08 Amorphous solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61290416A JPH0620151B2 (en) 1986-12-08 1986-12-08 Amorphous solar cell

Publications (2)

Publication Number Publication Date
JPS63143877A true JPS63143877A (en) 1988-06-16
JPH0620151B2 JPH0620151B2 (en) 1994-03-16

Family

ID=17755742

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61290416A Expired - Fee Related JPH0620151B2 (en) 1986-12-08 1986-12-08 Amorphous solar cell

Country Status (1)

Country Link
JP (1) JPH0620151B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0273673A (en) * 1988-09-08 1990-03-13 Fuji Electric Corp Res & Dev Ltd Film solar battery
EP0749162A2 (en) * 1995-06-16 1996-12-18 Interuniversitair Micro-Elektronica Centrum Vzw Vertical MISFET devices, CMOS process integration, RAM applications
CN102136517A (en) * 2011-02-21 2011-07-27 芜湖明远新能源科技有限公司 Crystalline silicon heterojunction lamination solar cell and manufacture method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57160175A (en) * 1981-03-28 1982-10-02 Semiconductor Energy Lab Co Ltd Photoelectric converter
JPS5810871A (en) * 1981-07-13 1983-01-21 Agency Of Ind Science & Technol Amorphous solar battery
JPS5910880A (en) * 1982-07-09 1984-01-20 株式会社日立製作所 Fuel spacer
JPS59205770A (en) * 1983-04-15 1984-11-21 エナージー・コンバーション・デバイセス・インコーポレーテッド Photovoltaic device
JPS6030181A (en) * 1983-07-28 1985-02-15 Matsushita Electric Ind Co Ltd Amorphous thin film photovoltaic element
JPS62165374A (en) * 1986-01-16 1987-07-21 Sumitomo Electric Ind Ltd Amorphous photovoltaic element

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57160175A (en) * 1981-03-28 1982-10-02 Semiconductor Energy Lab Co Ltd Photoelectric converter
JPS5810871A (en) * 1981-07-13 1983-01-21 Agency Of Ind Science & Technol Amorphous solar battery
JPS5910880A (en) * 1982-07-09 1984-01-20 株式会社日立製作所 Fuel spacer
JPS59205770A (en) * 1983-04-15 1984-11-21 エナージー・コンバーション・デバイセス・インコーポレーテッド Photovoltaic device
JPS6030181A (en) * 1983-07-28 1985-02-15 Matsushita Electric Ind Co Ltd Amorphous thin film photovoltaic element
JPS62165374A (en) * 1986-01-16 1987-07-21 Sumitomo Electric Ind Ltd Amorphous photovoltaic element

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0273673A (en) * 1988-09-08 1990-03-13 Fuji Electric Corp Res & Dev Ltd Film solar battery
EP0749162A2 (en) * 1995-06-16 1996-12-18 Interuniversitair Micro-Elektronica Centrum Vzw Vertical MISFET devices, CMOS process integration, RAM applications
EP0749162A3 (en) * 1995-06-16 1998-08-26 Interuniversitair Micro-Elektronica Centrum Vzw Vertical MISFET devices, CMOS process integration, RAM applications
CN102136517A (en) * 2011-02-21 2011-07-27 芜湖明远新能源科技有限公司 Crystalline silicon heterojunction lamination solar cell and manufacture method thereof

Also Published As

Publication number Publication date
JPH0620151B2 (en) 1994-03-16

Similar Documents

Publication Publication Date Title
US7030413B2 (en) Photovoltaic device with intrinsic amorphous film at junction, having varied optical band gap through thickness thereof
US4377723A (en) High efficiency thin-film multiple-gap photovoltaic device
JP2589462B2 (en) Photoelectric device
JPS6249672A (en) Amorphous photovoltaic element
JPH07131041A (en) Photovoltaic element
JPS61104678A (en) Amorphous solar cell
JPH0693519B2 (en) Amorphous photoelectric conversion device
JPS63143877A (en) Amorphous solar cell
JPH05275725A (en) Photovoltaic device and its manufacture
JPS63304673A (en) Photovoltaic device
JPS6074685A (en) Photovoltaic device
JP2632740B2 (en) Amorphous semiconductor solar cell
JPS62209871A (en) Manufacture of photovoltaic device
JP2936269B2 (en) Amorphous solar cell
JPH073876B2 (en) Photovoltaic device
JPS6313380A (en) Amorphous silicon solar cell
JPH01194370A (en) Optical power generation device
JP2713799B2 (en) Thin film solar cell
JPS62165374A (en) Amorphous photovoltaic element
Iwata et al. Numerical simulation of silicon-on-insulator thin-film solar cells
JP2001189472A (en) Photosensor
JPS61242085A (en) Amorphous silicon photoelectric conversion element
JPS6135569A (en) Photovoltaic device
Goldbach et al. Two‐dimensional simulation of thin‐film silicon solar cells with innovative device structures
JPS6347987A (en) Photovoltaic device

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees