JPS6314125A - Orienting method for ferroelectric liquid crystal - Google Patents

Orienting method for ferroelectric liquid crystal

Info

Publication number
JPS6314125A
JPS6314125A JP15791786A JP15791786A JPS6314125A JP S6314125 A JPS6314125 A JP S6314125A JP 15791786 A JP15791786 A JP 15791786A JP 15791786 A JP15791786 A JP 15791786A JP S6314125 A JPS6314125 A JP S6314125A
Authority
JP
Japan
Prior art keywords
liquid crystal
ferroelectric liquid
substrate
drum
alignment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15791786A
Other languages
Japanese (ja)
Inventor
Hideyuki Kawagishi
秀行 河岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP15791786A priority Critical patent/JPS6314125A/en
Publication of JPS6314125A publication Critical patent/JPS6314125A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers

Abstract

PURPOSE:To enable uniform orientation with a large screen by applying ferroelectric liquid crystal over a substrate in a heating atmosphere by using a rotary drum. CONSTITUTION:The rotary drum 1 which has uniaxial orientation control force is coated in the heating atmosphere with the ferroelectric liquid crystal 2 in an isotropic state to proper thickness and the temperature is controlled to orient the liquid crystal on the drum 1 in smetic A(SmA) phase. Then, the ferroelectric liquid crystal 3 in uniaxial smetic A(SmA) phase which is oriented on the drum is transferred to the 1st substrate 4 to be oriented. Then, the 1st substrate 4 after the end of the transfer and the 2nd substrate whose temperature is controlled to the temperature of the SmA are stuck together opposite each other to constitute a cell, which is cooled gradually to orient the ferroelectric liquid crystal in the cell in chiral smetic C(SmC*) phase. Consequently, the uniform orientation is enabled with the large screen.

Description

【発明の詳細な説明】 [産業上の利用分野] 。[Detailed description of the invention] [Industrial application field].

本発明は、強誘電性液晶の配向方法に関するものである
The present invention relates to a method for aligning ferroelectric liquid crystals.

[従来の技術] 強誘電性液晶(F、L、C:)はネマティック液晶と異
なり層を形成するために、従来の配向膜による配向では
、配向膜自体の欠陥によって均一な配向とならなかった
[Prior art] Unlike nematic liquid crystals, ferroelectric liquid crystals (F, L, C:) form layers, so alignment using conventional alignment films does not result in uniform alignment due to defects in the alignment film itself. .

また、従来の配向膜による配向方法では、配向膜が液晶
分子に対してセル内側または外側にF、L、Cの自発分
極が向くように作用するために、配向状態が基板の下か
ら上までねじれたり(splay配向)、あるいは一つ
の状態だけが安定(単安定)となり、正常な双安定性を
得ることができないなどの問題があった。
In addition, in the conventional alignment method using an alignment film, the alignment film acts on the liquid crystal molecules so that the spontaneous polarization of F, L, and C is directed to the inside or outside of the cell. There are problems such as twisting (splay orientation) or stability in only one state (monostability), making it impossible to obtain normal bistability.

また、従来の配向法では、セル構成後に液晶を注入し配
向させるために、配向した液晶素子を得るのに工程数が
多く、また長時間を要した。
Further, in the conventional alignment method, since the liquid crystal is injected and aligned after the cell is constructed, it requires a large number of steps and a long time to obtain an aligned liquid crystal element.

さらに、F、L、C:ディスプレイではセル厚を薄く(
1〜51)、均一に制御することが大きな課題となって
いるが、実際にはセル厚の不均一が生じ、その原因とし
ては主に配向膜中のゴミまたは配向膜界面でのぬれのち
がいによって発生する凹凸(クレータ−現象と呼ばれる
ことがある)によって生ずるものと考えられている。し
たがって配向膜の作製方法を改善する必要性が求められ
ている現状である。
Furthermore, in F, L, and C: displays, the cell thickness is reduced (
1-51), controlling uniformity is a major issue, but in reality, non-uniform cell thickness occurs, and this is mainly caused by dust in the alignment film or differences in wetting at the interface of the alignment film. It is thought that this is caused by the unevenness (sometimes called a crater phenomenon) caused by this phenomenon. Therefore, there is currently a need to improve the method for producing alignment films.

[発明が解決しようとする問題点] 本発明者はこの様な従来技術に鑑みて研究を行った結果
、従来の配向膜による配向法により強誘電性液晶が均一
な配向をすることができないのは、配向膜が層を形成し
自ら均一な配向をしようとする強誘電性液晶の働きを妨
害することに想到し、強誘電性液晶はある程度の軸性を
与えてやれば、その後は自らの層を形成する力で、均一
な配向をしうろことを発見した。
[Problems to be Solved by the Invention] As a result of research conducted in view of such prior art, the present inventor found that ferroelectric liquid crystals cannot be uniformly aligned using conventional alignment methods using alignment films. They came up with the idea that the alignment film forms a layer and interferes with the ferroelectric liquid crystal's attempt to align itself uniformly. They discovered that the force that forms the layers allows the scales to be oriented uniformly.

この様な観点から本発明の目的は強誘電性液晶を回転ド
ラムを用いて基板に塗布して配向せしめる全く新規な配
向プロセスにより、まず、強誘電性液晶に軸性を与え、
徐冷することにより自らの力で均一な配向を大画面で実
現させる配向方法を提供するものである。
From this point of view, the purpose of the present invention is to first impart axiality to ferroelectric liquid crystal using a completely new alignment process in which ferroelectric liquid crystal is applied to a substrate using a rotating drum and then aligned;
The present invention provides an alignment method that achieves uniform alignment on a large screen using its own power by slow cooling.

[問題点を解決するための手段] 即ち、本発明は基板上に、加熱雰囲気下で強誘電性液晶
を回転ドラムを用いて塗布して配向させることを特徴と
する0強誘電性液晶の配向方法である。
[Means for Solving the Problems] That is, the present invention provides a method for aligning 0 ferroelectric liquid crystal, which is characterized in that ferroelectric liquid crystal is coated on a substrate using a rotating drum in a heated atmosphere and oriented. It's a method.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

第1図は本発明の強誘電性液晶の配向方法の一実施態様
を示す説明図である。同第1図において、本発明は加熱
雰囲気下において、一軸性の配向規制力を持つ回転ドラ
ムl(以下ドラムと記す)にアイソトロピック状態の強
誘電性液晶2を適当な厚みに塗布し、温度を制御してド
ラム1上でスメクチックA (SmA)相の配向をさせ
て、つづいて配向をさせようとする第一の基板4上に上
記ドラムトに配向させた一軸性のスメクチックA(Sm
A)相の状態にある強誘電性液晶3を転写し、次いで転
写の終了した第一の基板4と、基板温度をSmAの温度
に制御した第二の基板を対向させて貼若してセルを構成
し、しかる後にセルを徐冷してセル内の強誘電性液晶を
カイラルスメクチックC(SmC’)相に配向させるこ
とを特徴とする強誘電性液晶の配向方法である。
FIG. 1 is an explanatory diagram showing one embodiment of the method for aligning ferroelectric liquid crystal according to the present invention. In FIG. 1, the present invention applies a ferroelectric liquid crystal 2 in an isotropic state to an appropriate thickness on a rotating drum l (hereinafter referred to as drum) having a uniaxial alignment regulating force in a heated atmosphere, and then The smectic A (SmA) phase is oriented on the drum 1 by controlling the uniaxial smectic A (SmA) phase.
A) The ferroelectric liquid crystal 3 in phase state is transferred, and then the first substrate 4 on which the transfer has been completed and the second substrate whose substrate temperature is controlled to SmA are placed facing each other to form a cell. This is a method for aligning a ferroelectric liquid crystal, which is characterized in that the cell is slowly cooled to align the ferroelectric liquid crystal within the cell to a chiral smectic C (SmC') phase.

本発明において、配向方法は次の5つのプロセスからな
る。
In the present invention, the orientation method consists of the following five processes.

(1)強誘電性液晶のドラム上への塗布過程(2)ドラ
ム上での強誘電性液晶の配向(SmA )過程 (3)基板上への液晶の転写過程 (4)セル化過程 (5)徐冷によるSmC“への配向過程第1図に示した
実施態様において、過程(1)は、5のF、L、C留め
に、ヒーター旧でアイソ皺ロピック状態にした強誘電性
液晶分子2を保持し、6のグレードを介してドラムl上
に強誘電性液晶をIH〜5#Lm程度の適当な厚みに塗
布する。強誘電性液晶は、常温では粘性が高く、従来は
ドラム上に均一に塗布するのは困難であったが、本発明
においては、ヒーター旧により強誘電性液晶を適当な粘
性になる温度範囲に制御することにより均一にドラム上
に塗布することができる。
(1) Coating process of ferroelectric liquid crystal on the drum (2) Orientation process (SmA) of ferroelectric liquid crystal on the drum (3) Transfer process of liquid crystal onto the substrate (4) Cell formation process (5) ) Orientation process to SmC" by slow cooling In the embodiment shown in FIG. 2 and apply the ferroelectric liquid crystal onto the drum l through the grade 6 to an appropriate thickness of about IH~5#Lm. Ferroelectric liquid crystal has high viscosity at room temperature, and conventionally, the ferroelectric liquid crystal is However, in the present invention, it is possible to uniformly coat the ferroelectric liquid crystal on the drum by controlling the temperature range using a heater so that the ferroelectric liquid crystal has an appropriate viscosity.

次に、過程(2)は、ヒーターH2,H3,H4で、ド
ラムlの外周面の左半分の領域を回転方向へ上部から下
部にかけて加熱し、なだらかな温度傾配になるように調
節する。これによって、ドラムl上てスメクチックA相
の均一な配向をドラム下部に達するまでの間に達成する
ことかてきる。ここて、ヒーター旧〜■4は、特に、そ
の個数を4個と限定するものてはなく任意の数のものを
使用できる。また、ヒーターは、必ずしも、ニクロム線
を使用した電気加熱に限定することはなく、温風でトラ
ム上の強誘電性液晶を適当な温度に制御してもよい。温
風を使用すると、液晶上にゴミがつかないようにする効
果がある。
Next, in step (2), the left half region of the outer circumferential surface of the drum 1 is heated from the top to the bottom in the rotational direction using the heaters H2, H3, and H4, and the temperature is adjusted to have a gentle temperature gradient. This makes it possible to achieve a uniform orientation of the smectic A phase on the drum until it reaches the bottom of the drum. Here, the number of heaters old to (4) is not particularly limited to four, and any number can be used. Further, the heater is not necessarily limited to electric heating using a nichrome wire, and the ferroelectric liquid crystal on the tram may be controlled to an appropriate temperature using warm air. Using hot air has the effect of preventing dust from sticking to the LCD screen.

また、過程(3)は、ドラムl上の接線方向速度V、と
第1の基板の移動速度v2が等しく、転写中はドラム面
と第1の基板の相対速度がゼロであることを要する。こ
れによって、ドラムl上のスメクチックA相の配向を必
要以上にみだすことなく、第一の基板上に転写すること
がてきる。尚、第1図において第一の基板4はガラス基
板15上にTTOの透明電極16を設け、さらにその上
にS ’r O□層17を設けてなるものを使用した。
Further, step (3) requires that the tangential velocity V on the drum l and the moving velocity v2 of the first substrate be equal, and that the relative velocity between the drum surface and the first substrate be zero during transfer. This makes it possible to transfer the orientation of the smectic A phase on the drum 1 onto the first substrate without unnecessarily protruding the orientation. In FIG. 1, the first substrate 4 used was one in which a TTO transparent electrode 16 was provided on a glass substrate 15, and an S'rO□ layer 17 was further provided thereon.

また、転写中はドラム上の温度が第一の基板よりわずか
に高いSmA相の温度領域となるように、ヒーターH6
とH7で温度制御し、ドラムの最下部からやや回転方向
に進んだ液晶分子がドラム上を離脱する領域では、ドラ
ム上の温度がSmAの温度のほぼ上限となるように温度
制御する0強誘電性液晶は温度が低い程、粘性が低いた
め、上述の過程により、ドラム上の液晶は必要以上に配
向をみだすことなく、基板上に転写することができる。
Also, during the transfer, the heater H6
and H7, and in the area where the liquid crystal molecules that have advanced slightly in the rotational direction from the bottom of the drum leave the drum, the temperature is controlled so that the temperature on the drum is almost at the upper limit of the SmA temperature. The lower the temperature, the lower the viscosity of the liquid crystal, so through the above process, the liquid crystal on the drum can be transferred onto the substrate without undue alignment.

過程(4)は、第2図に示す様にSmA層の温度に制御
された空間7内で、転写の終了した第一の基板4と、基
板温度をヒーターH8でSmA相の温度に制御した第二
の基板8を対向させて貼り合わせてセルを構成する。こ
れによって、SmA相の配向を必要以上にみだすことな
くセル化を行なうことができる。
In step (4), as shown in FIG. 2, the first substrate 4, which has been transferred, is placed in a space 7 whose temperature is controlled to the temperature of the SmA layer, and the substrate temperature is controlled to the temperature of the SmA phase using a heater H8. The second substrates 8 are bonded together to form a cell. This makes it possible to form cells without unnecessarily extending the orientation of the SmA phase.

また、ここでは特に第二の基板8には、液晶封止用の接
着剤9が印刷されていることが好ましい。これによって
、セル構成後に、他の接着手段によりセルを封止する必
要がなくなり、効率が向上する。また、配向後に、余分
なプロセスを行うことにより配向をみだすことがなくな
る。
Moreover, it is particularly preferable that an adhesive 9 for liquid crystal sealing is printed on the second substrate 8 here. This eliminates the need to seal the cell with other adhesive means after cell construction, improving efficiency. In addition, the alignment will not be distorted by performing extra processes after alignment.

また、過程(5)はセルを徐冷してセル内の強誘電性液
晶を徐冷によって均一なカイラルスメクチックC(S+
sCつ相に配向することができる。
In addition, in step (5), the cell is slowly cooled to form a uniform chiral smectic C (S+) ferroelectric liquid crystal within the cell.
It can be oriented in two phases.

本発明において、一軸性の配向規制力を持つドラムとし
て、一軸性のラビングを施したポリイミド(PI) 、
ポリビニルアルコール(PVA)などの配向膜を塗布し
たドラムを使用することが好ましい。
In the present invention, as a drum having a uniaxial alignment regulating force, polyimide (PI) subjected to uniaxial rubbing,
It is preferable to use a drum coated with an alignment film such as polyvinyl alcohol (PVA).

ポリイミドやポリビニルアルコールは強誘電性液晶を配
向させる力が強く、前記過程(2)で均一なSmA相の
配向を行なうことができる。また、PIやPVAを塗布
したドラムは簡単に作製できる利点がある・ 次に、第3図は本発明の強誘電性液晶の配向方法の他の
実施態様を示す説明図である。同第3図においては、一
軸性の配向規制力を持つドラムlとして、格子間隔が約
11−1Opの回折格子(グレーティング)状の周期的
な凹凸10を互いに平行に有するドラムを使用する配向
方法を示すものである。
Polyimide and polyvinyl alcohol have a strong ability to orient the ferroelectric liquid crystal, and can uniformly orient the SmA phase in step (2). Moreover, the drum coated with PI or PVA has the advantage of being easy to produce. Next, FIG. 3 is an explanatory diagram showing another embodiment of the method for aligning ferroelectric liquid crystal of the present invention. In FIG. 3, an alignment method using a drum having periodic irregularities 10 in the shape of a diffraction grating with a grating interval of about 11-1 Op in parallel to each other as the drum l having a uniaxial alignment regulating force. This shows that.

回折格子状の凹凸10を使用することによって過程(2
)において、欠陥のないSmA相配向を実現することが
できる。
By using the diffraction grating-like unevenness 10, the process (2
), a defect-free SmA phase alignment can be achieved.

また、特に、ドラム材質として、アルミニウムのような
硬質の材料を使うことにより、耐久性のすぐれた一軸性
の配向規制力を持つドラムを実現できる。
Furthermore, by using a hard material such as aluminum as the material of the drum, a drum having excellent durability and uniaxial orientation regulating force can be realized.

さらに、第4図は本発明の他の実施態様を示す説明図で
ある。同第4図は、強誘電性液晶を加熱ローラーを使用
して塗布する方法を示すものである。
Furthermore, FIG. 4 is an explanatory diagram showing another embodiment of the present invention. FIG. 4 shows a method of applying ferroelectric liquid crystal using a heated roller.

ここでは特に、内部ヒーター11.または、外部ヒータ
ー12、或いはその両方を使用して加熱された加熱ロー
ラー14を使って、配向膜13の塗られた基板4上に強
誘電性液晶を塗布して、配向させる方法である。
Here, in particular, the internal heater 11. Alternatively, the ferroelectric liquid crystal is applied onto the substrate 4 coated with the alignment film 13 using the heating roller 14 heated by the external heater 12 or both, and the ferroelectric liquid crystal is aligned.

従来、強誘電性液晶は粘性か高いために、ローラーて基
板上に均一に塗布することかてきなかったが、本発明の
方法では、加熱ローラーを使うことによって、強誘電性
液晶の粘性を下げ、均一に塗布することがてきるように
なり、強誘電性液晶ディスプレイの製造プロセスを簡略
化することができる。
Conventionally, due to the high viscosity of ferroelectric liquid crystal, it was impossible to uniformly coat it on a substrate using a roller, but in the method of the present invention, the viscosity of ferroelectric liquid crystal can be reduced by using a heated roller. , it becomes possible to apply it uniformly, and the manufacturing process of ferroelectric liquid crystal displays can be simplified.

[作 用] 強誘電性液晶は層を形成するために、従来の配向膜によ
る配向法では、自ら均一な配向をしようとする強誘電性
液晶を妨害するために均一な配向を得ることができなか
ったが、本発明の配向方法においては強誘電性液晶に軸
性を付与して、徐冷により自らの力により均一な配向を
実現することができる。
[Function] Because ferroelectric liquid crystal forms a layer, conventional alignment methods using alignment films cannot achieve uniform alignment because the ferroelectric liquid crystal attempts to achieve uniform alignment by itself. However, in the alignment method of the present invention, it is possible to impart axiality to the ferroelectric liquid crystal and realize uniform alignment by its own force through slow cooling.

また、本発明の配向方法においては、セル内に配向膜を
含まないセルを構成するために、基板界面の上から下ま
で全体に均一な(Unifor+s)配向を実現するこ
とができ、またセル厚コントロールに対してもっとも問
題となる配向膜がなくなったので、1〜5gmの均一な
セル厚を維持することができるものと推定される。
In addition, in the alignment method of the present invention, since a cell does not include an alignment film within the cell, it is possible to achieve uniform (Unifor+s) alignment throughout the entire substrate interface from top to bottom, and the cell thickness can be reduced. Since the alignment film, which is the most problematic for control, is eliminated, it is estimated that a uniform cell thickness of 1 to 5 gm can be maintained.

[実施例] 以下、実施例を示し本発明をさらに具体的に説明する。[Example] Hereinafter, the present invention will be explained in more detail with reference to Examples.

実施例1 第1図に示す方法により強誘電性液晶を配向した液晶素
子を得た。
Example 1 A liquid crystal element in which ferroelectric liquid crystal was aligned was obtained by the method shown in FIG.

ドラムは表面に一軸性の配向処理を施した膜厚1000
AのPlの配向膜を設けた回転ドラムを使用した。
The drum has a film thickness of 1000mm with uniaxial orientation treatment on the surface.
A rotating drum provided with an orientation film of Pl as shown in A was used.

強誘電性液晶としてチッ素■製、C3−1011を用い
、FLC留めに収容してヒーターで約100℃に加熱し
150相にした後、グレードを調整して開き、3gmの
厚さになる様にl r、p、m、て回転しているドラム
の表面に塗布した。
C3-1011 made of nitrogen was used as the ferroelectric liquid crystal. It was housed in an FLC clamp and heated to about 100°C with a heater to make it 150 phases. After adjusting the grade and opening it, it became 3 gm thick. It was applied to the surface of a rotating drum at l r, p, m.

ドラムの回転に従い、ドラムの表面の強誘電性液晶分子
層は外部に設けられたヒーターにより約60℃に加熱さ
れS+sA相に転移し、ドラムの下部において、ドラム
の周速と同じ628c+a/分で移動している基板に転
写した。
As the drum rotates, the ferroelectric liquid crystal molecular layer on the surface of the drum is heated to about 60°C by an external heater and transforms to the S+sA phase, and at the bottom of the drum, the layer of ferroelectric liquid crystal molecules on the surface of the drum is heated at 628c+a/min, which is the same as the circumferential speed of the drum. Transferred to a moving substrate.

基板は厚さ1.1mmのガラス基板上にITOの透明電
極を設け、さらにその上に0.1gmの5i02層を設
けたものを使用した。
The substrate used was a glass substrate with a thickness of 1.1 mm, on which a transparent electrode of ITO was provided, and a 5i02 layer of 0.1 gm was further provided thereon.

次いで、転写した基板を60°Cに保持された容器内に
収容し、同様に60℃に制御され周囲に接着剤を塗布し
た前記基板と同一の構成の基板を対向させて貼り合わせ
てセルを得た。然る後1℃/分の割合で徐冷してカイラ
ルスメクチックC相に配向した液晶素子を得た。
Next, the transferred substrate was placed in a container maintained at 60°C, and a substrate with the same structure as the previous substrate, which was also controlled at 60°C and had an adhesive applied around it, was bonded to face each other to form a cell. Obtained. Thereafter, it was slowly cooled at a rate of 1° C./min to obtain a liquid crystal element oriented in a chiral smectic C phase.

得られた液晶素子の強誘電性液晶層の厚さはIgmで、
電界による反転の試験をしたところ、光学応答にオーバ
ーシュートのない応答をし、ユニホーム(Unifor
m)配向であるという結果が得られた。
The thickness of the ferroelectric liquid crystal layer of the obtained liquid crystal element is Igm,
When we conducted an electric field reversal test, we found that the optical response had no overshoot, and the uniform
m) orientation was obtained.

[発明の効果] 以下に本発明の効果を列挙する。[Effect of the invention] The effects of the present invention are listed below.

(1)配向膜の欠陥が影響しなくなったので、均一な配
向を大画面で実現することができる。
(1) Uniform alignment can be achieved on a large screen because defects in the alignment film no longer have an effect.

(2)セル内に配向膜を含まないセルを構成することか
可催となり、ユニホームな配向を実現できる。
(2) It is possible to configure a cell that does not include an alignment film within the cell, and uniform alignment can be achieved.

(3)工程数か減って、安価に強誘電性液晶を配向させ
たセルを供給することができる。
(3) The number of process steps is reduced, and cells in which ferroelectric liquid crystals are aligned can be provided at low cost.

(4)また、セルのセル厚コントロールか容易である。(4) Also, it is easy to control the cell thickness.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の強誘電性液晶の配向方法の一実施態様
を示す説明図、第2図は第一の基板と第二の基板の貼着
方法を示す説明図、第3図および第4図は各々本発明の
他の実施態様を示す説明図である。 l・・・回転ドラム
FIG. 1 is an explanatory diagram showing an embodiment of the method for aligning ferroelectric liquid crystal of the present invention, FIG. 2 is an explanatory diagram showing a method for attaching a first substrate and a second substrate, FIG. 4 is an explanatory diagram showing other embodiments of the present invention. l...Rotating drum

Claims (7)

【特許請求の範囲】[Claims] (1)基板上に、加熱雰囲気下で強誘電性液晶を回転ド
ラムを用いて塗布して配向させることを特徴とする強誘
電性液晶の配向方法。
(1) A method for aligning ferroelectric liquid crystal, which comprises applying and aligning ferroelectric liquid crystal onto a substrate using a rotating drum in a heated atmosphere.
(2)加熱雰囲気下において、一軸性の配向規制力を有
する回転ドラムに強誘電性液晶を塗布し、温度を制御し
て回転ドラム上でスメクチックA相に配向させて第一の
基板に転写し、次いで該第一の基板と基板温度をスメク
チックA相の温度に制御した第二の基板とを対向させて
貼着してセルを構成した後、冷却してセル内の強誘電性
液晶をカイラルスメクチックC相に配向させる特許請求
の範囲第1項記載の配向方法。
(2) In a heated atmosphere, ferroelectric liquid crystal is coated on a rotating drum with a uniaxial alignment regulating force, and the temperature is controlled to align it in the smectic A phase on the rotating drum and transfer it to the first substrate. Next, the first substrate and a second substrate whose substrate temperature is controlled to the temperature of the smectic A phase are bonded to face each other to form a cell, and then cooled to transform the ferroelectric liquid crystal in the cell into a chiral one. The orientation method according to claim 1, which orients the smectic C phase.
(3)液晶封止用の接着剤が印刷されている第二の基板
を貼着する特許請求の範囲第2項記載の配向方法。
(3) The alignment method according to claim 2, wherein a second substrate on which a liquid crystal sealing adhesive is printed is attached.
(4)一軸性の配向規制力を有する回転ドラムとして、
一軸性のラビングを施したポリイミドまたはポリビニル
アルコール等の配向膜を塗布したドラムを使用する特許
請求の範囲第2項記載の配向方法。
(4) As a rotating drum with uniaxial orientation regulating force,
3. The alignment method according to claim 2, which uses a drum coated with an alignment film made of polyimide or polyvinyl alcohol that has been subjected to uniaxial rubbing.
(5)一軸性の配向規制力を有する回転ドラムとして、
平行な回折格子状の周期的な凹凸を有するドラムを使用
する特許請求の範囲第2項記載の配向方法。
(5) As a rotating drum with uniaxial orientation regulating force,
3. The orientation method according to claim 2, which uses a drum having periodic irregularities in the form of parallel diffraction gratings.
(6)加熱雰囲気を熱風を用いて形成する特許請求の範
囲第2項記載の配向方法。
(6) The orientation method according to claim 2, wherein the heating atmosphere is formed using hot air.
(7)回転ドラムが加熱ローラーである特許請求の範囲
第1項又は第2項記載の配向方法。
(7) The orientation method according to claim 1 or 2, wherein the rotating drum is a heated roller.
JP15791786A 1986-07-07 1986-07-07 Orienting method for ferroelectric liquid crystal Pending JPS6314125A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15791786A JPS6314125A (en) 1986-07-07 1986-07-07 Orienting method for ferroelectric liquid crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15791786A JPS6314125A (en) 1986-07-07 1986-07-07 Orienting method for ferroelectric liquid crystal

Publications (1)

Publication Number Publication Date
JPS6314125A true JPS6314125A (en) 1988-01-21

Family

ID=15660281

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15791786A Pending JPS6314125A (en) 1986-07-07 1986-07-07 Orienting method for ferroelectric liquid crystal

Country Status (1)

Country Link
JP (1) JPS6314125A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009175247A (en) * 2008-01-22 2009-08-06 Nagaoka Univ Of Technology Method of manufacturing liquid crystal element
US7877895B2 (en) * 2006-06-26 2011-02-01 Tokyo Electron Limited Substrate processing apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7877895B2 (en) * 2006-06-26 2011-02-01 Tokyo Electron Limited Substrate processing apparatus
JP2009175247A (en) * 2008-01-22 2009-08-06 Nagaoka Univ Of Technology Method of manufacturing liquid crystal element

Similar Documents

Publication Publication Date Title
JPH02157822A (en) Orientation control film and orientation control method and liquid crystal display element
JPS6314125A (en) Orienting method for ferroelectric liquid crystal
JPH0754381B2 (en) Liquid crystal display manufacturing method
JPH0643457A (en) Formation of liquid crystal orienting film
JPH02208633A (en) Liquid crystal display device
JPH0194318A (en) Liquid crystal display element
JPS6147930A (en) Liquid crystal electrooptic device
JPS62299815A (en) Production of ferroelectric liquid crystal display element
JP7058534B2 (en) LCD panel
JPH08179328A (en) Production of liquid crystal oriented film and production of liquid crystal element formed by using the same
JP2819822B2 (en) Ferroelectric liquid crystal panel
JPS63159825A (en) Manufacture of liquid crystal electrooptical element
JPS6280625A (en) Production of liquid crystal display element
JPH09138413A (en) Controlling method of orientation of molecule and liquid crystal display element
JP2914889B2 (en) Liquid crystal display device and manufacturing method
KR19980026044A (en) Method of orienting liquid crystal
JPH11231323A (en) Antiferroelectric liquid crystal display element
JPH0416914A (en) Method for controlling orientation of liquid crystalline high polymer
JPH06289396A (en) Liquid crystal display element and formation of its oriented film
JPH05249465A (en) Production of liquid crystal electrooptical device
JPS63296018A (en) Orientation of liquid crystal element
JPH0627471A (en) Production of liquid crystal panel
JP2824504B2 (en) Liquid crystal substrate alignment processing method and liquid crystal cell manufacturing method
JPH05181141A (en) Method for controlling orientation of liquid crystal
JPH05150242A (en) Liquid crystal element