JPH0416914A - Method for controlling orientation of liquid crystalline high polymer - Google Patents

Method for controlling orientation of liquid crystalline high polymer

Info

Publication number
JPH0416914A
JPH0416914A JP12228090A JP12228090A JPH0416914A JP H0416914 A JPH0416914 A JP H0416914A JP 12228090 A JP12228090 A JP 12228090A JP 12228090 A JP12228090 A JP 12228090A JP H0416914 A JPH0416914 A JP H0416914A
Authority
JP
Japan
Prior art keywords
liquid crystalline
orientation
liquid crystal
substrates
crystalline polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12228090A
Other languages
Japanese (ja)
Inventor
Akihiko Kanemoto
金本 明彦
Yasuyuki Takiguchi
康之 滝口
Haruo Iimura
治雄 飯村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP12228090A priority Critical patent/JPH0416914A/en
Publication of JPH0416914A publication Critical patent/JPH0416914A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To orient liquid crystalline high polymers uniformly over a wide area at a high degree by superposing two sheets of substrates on each other on such a manner that liquid crystalline high polymer films come into tight contact with each other. CONSTITUTION:The liquid crystalline high polymer films 3, 3' are respectively formed on two sheets of the substrates 1, 1' subjected to the orientation treat ment to allow the orientation of the liquid crystalline high polymers are ori ented; thereafter, two sheets of the substrates 1, 1' are superposed on each other on such a manner that the liquid crystalline high polymer films come into tight contact with each other. The liquid crystalline high polymer films separately oriented on two sheets of the substrates in such a manner are super posed on each other in such a manner that the film surfaces of the liquid crystal line high polymers come into tight contact with each other, by which the un equal characteristics by the unequal orientation on the surfaces not in contact with the orientation treated layers generated at the time of the execution of the separate orientation are partially canceled and the uniform orientation is obtd.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は液晶表示素子用補償板、光メモリー媒体等にお
ける液晶性高分子の配向制御方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for controlling the alignment of liquid crystal polymers in compensating plates for liquid crystal display elements, optical memory media, and the like.

〔従来の技術及び発明が解決しようとする課題〕液晶は
、電場や磁場、せん断力などの外場によって配向状態が
変化し、これに伴う光学的性質の変化を利用することに
より各種光エレクトロニクスの分野で利用されている。
[Prior art and problems to be solved by the invention] The alignment state of liquid crystals changes depending on external fields such as electric fields, magnetic fields, and shear forces, and by utilizing the accompanying changes in optical properties, various optoelectronic devices can be used. used in the field.

このうち液晶性高分子は低分子液晶に較べて液晶状態で
高粘性であるため、液晶状態で配向させたのち、ガラス
転移点以下に冷却することによって液晶の配向状態を固
定化することができるという低分子液晶に見られない特
徴を有している。これを利用して、熱書き込みの光メモ
リーや光学フィルターなどの光エレクトロニクス分野で
の応用が試みられている。これらを実現するためには所
望の分子配′向を高度に制御する必要がある。たとえば
一種の光学位相子であるスーパーツ不ステッドネマティ
ック(STN)型液晶表示素子用の色補償板は、STN
型液晶表示素子の液晶セルと偏光板の間に挿入され、液
晶セルによって楕円偏光となった光を直線偏光に戻すよ
うに機能する必要があるが、この様な機能は液晶性高分
子を水平に、かつ、一定の方向に高い秩序度と均一性を
持って配向させることによって初めて発現させることが
できる。
Among these, liquid crystal polymers have higher viscosity in the liquid crystal state than low-molecular liquid crystals, so after being oriented in the liquid crystal state, the liquid crystal orientation state can be fixed by cooling to below the glass transition point. It has characteristics not found in low-molecular liquid crystals. Utilizing this, attempts are being made to apply it to optical electronics fields such as thermal writing optical memory and optical filters. In order to realize these, it is necessary to highly control the desired molecular orientation. For example, a color compensation plate for a supertsunstead nematic (STN) type liquid crystal display element, which is a type of optical retarder, is a type of optical retarder.
It is inserted between the liquid crystal cell and the polarizing plate of a type liquid crystal display element, and it must function to return the light that has become elliptically polarized by the liquid crystal cell to linearly polarized light. Moreover, it can only be realized by orienting it in a certain direction with a high degree of order and uniformity.

低分子液晶の場合、配向制御方法はほぼ確立されている
が、液晶性高分子(高分子液晶)の場合、十分には確立
されていない。液晶性高分子の配向制御の例としては、
ずり応力のような外力を加える方法、磁場や電場のよう
な外場を与える方法等が知られているが、これらは大面
積の配向制御が不可能であったり、均一性の点で十分と
は言えない。配向処理を施した基板間の空隙に低分子液
晶を注入する方法をそのまま液晶性高分子に適用した場
合には、液晶性高分子の高粘性のため、注入時の流れに
沿って液晶性高分子が配向してしまい。
In the case of low-molecular liquid crystals, alignment control methods are almost established, but in the case of liquid crystalline polymers (polymer liquid crystals), they are not fully established. Examples of orientation control of liquid crystalline polymers include:
Methods of applying an external force such as shear stress, and methods of applying an external field such as a magnetic field or an electric field are known, but these methods either make it impossible to control the orientation over a large area, or are insufficient in terms of uniformity. I can't say that. If the method of injecting low-molecular-weight liquid crystal into the gap between substrates that has been subjected to alignment treatment is applied directly to liquid crystalline polymers, the liquid crystalline polymer will flow along the injection flow due to the high viscosity of liquid crystalline polymers. The molecules become oriented.

所望の配向が得られなかったり、大きな面積になると注
入すら困難となる。
If the desired orientation is not obtained or if the area becomes large, even implantation becomes difficult.

本発明者らは、配向処理した基板に液晶性高分子を塗布
し、片面が空気に接したままで液晶温度に加温すること
によって良好な配向を、大面積にわたって実現できるこ
とを見いだしたが、この方法では液晶性高分子にねじれ
構造がある場合には、厚さの不均一性がそのままねじれ
角の不均一となってしまう。また前述の液晶表示素子用
補償板などではねじれ角を制御するためにきわめて厳密
に液晶性高分子膜の厚さを制御する必要があった。
The present inventors have discovered that good alignment can be achieved over a large area by coating a liquid crystalline polymer on an alignment-treated substrate and heating it to the liquid crystal temperature with one side in contact with air. In this method, if the liquid crystalline polymer has a twisted structure, non-uniformity in thickness directly results in non-uniformity in twist angle. Furthermore, in the above-mentioned compensating plate for a liquid crystal display element, etc., it is necessary to control the thickness of the liquid crystal polymer film very strictly in order to control the twist angle.

本発明は以上のlうな従来技術の問題点に鑑みてなされ
たものであり、その目的は、液晶性高分子を大面積にわ
たって均一で、高度に配向させることのできる液晶性高
分子の配向制御方法を提供することにある。
The present invention has been made in view of the problems of the prior art as described above, and its purpose is to control the alignment of liquid crystalline polymers that can uniformly and highly align the liquid crystalline polymers over a large area. The purpose is to provide a method.

〔課題を解決するための手段及び作用〕上記目的を達成
するため1本発明によれば、液晶性高分子を配向させう
る配向処理の施された二枚の基板上にそれぞれ液晶性高
分子膜を形成し。
[Means and effects for solving the problems] In order to achieve the above object, according to the present invention, a liquid crystal polymer film is formed on each of two substrates which have been subjected to an alignment treatment capable of aligning liquid crystal polymers. form.

液晶性高分子を配向させた後、該二枚の基板を、該液晶
性高分子どうしが密着するように重ね合わせることを特
徴とする液晶性高分子の配向制御方法が提供される。
A method for controlling the alignment of a liquid crystalline polymer is provided, which comprises aligning the liquid crystalline polymer and then superimposing the two substrates so that the liquid crystalline polymers are in close contact with each other.

また、上述の方法で得た液晶性高分子膜を加熱によって
再配向させることによって、更に高度な配向制御を可能
とする方法が提供される。
Furthermore, a method is provided that enables even more sophisticated alignment control by reorienting the liquid crystalline polymer film obtained by the above method by heating.

次に本発明を図面を用いて詳細に説明する。Next, the present invention will be explained in detail using the drawings.

第1図及び第2図は本発明による液晶性高分子の配向制
御方法を説明するための模式的断面図である。
FIGS. 1 and 2 are schematic cross-sectional views for explaining the method for controlling the alignment of liquid crystalline polymers according to the present invention.

まず、ガラス、プラスチック等の基板lに配向処理層2
を形成する。配向処理の方法としてはポリイミド、ポリ
エーテルイミド、ポリアミドイミド、ポリエステルイミ
ド、ポリアミド、ポリエステル、ポリビニルアルコール
、ポリアクリロニトリル等の高分子被膜を形成後、ラビ
ング処理をする方法、アルコキシシラン、有機チタネー
トなどの有機金属化合物などの塗膜またはその熱処理膜
をラビング処理する方法、酸化珪素などの斜め蒸着法な
どを例示することができる。またプラスチック基板を直
接ラビング処理することによって配向処理することも可
能で、この場合、配向処理層2は不要となる。
First, an alignment treatment layer 2 is placed on a substrate l made of glass, plastic, etc.
form. Orientation treatment methods include forming a polymer film of polyimide, polyetherimide, polyamideimide, polyesterimide, polyamide, polyester, polyvinyl alcohol, polyacrylonitrile, etc., and then rubbing it; organic film such as alkoxysilane, organic titanate, etc. Examples include a method of rubbing a coating film of a metal compound or the like or a heat-treated film thereof, and an oblique vapor deposition method of silicon oxide or the like. It is also possible to carry out the alignment treatment by directly rubbing the plastic substrate; in this case, the alignment treatment layer 2 becomes unnecessary.

ついで、配向処理面に液晶性高分子を塗布し液晶性高分
子層3を形成する。
Next, a liquid crystal polymer layer 3 is formed by applying a liquid crystal polymer to the alignment-treated surface.

用いることのできる液晶性高分子はサーモトロピックな
液晶性高分子であり、構造は特に限定されないが、例え
ばポリエステル、ポリエステルアミド、ポリカーボネー
ト、ポリエーテル等で主鎖に液晶性残基を有する下記構
造の主鎖型液晶性高分子ニ 一0f1−X’)−+A1−X2h x1.x2: −coo−、−CONH−、−0CO−
、−0−等−N=!It−であり、本は不斉炭素原子、
nは0−18の↓ 整数を表わす。) あるいはビニル系高分子、ポリシロキサンなどで側鎖に
液晶性残基を有する下記構造の側鎖型液晶性高分子: M2: −Ph−Ph−R’ 、−0−Ph−Ph−R
3,−Ph−Coo−Ph−R’ 、−0−Ph−CO
[)−Ph−R’(但し、R3はアルキル基、アルコキ
シ基、ハロゲン原子、ニトロ基又はシアノ基であり、n
は0−18の整数を表わす。) などを例示することができる。液晶性高分子は単独でま
たは混合して用いられる。液晶性高分子中に光学活性基
を導入したり、光学活性な化合物を添加することもでき
る。
The liquid crystalline polymer that can be used is a thermotropic liquid crystalline polymer, and the structure thereof is not particularly limited. Main chain liquid crystalline polymer 20f1-X')-+A1-X2h x1. x2: -coo-, -CONH-, -0CO-
, -0-etc.-N=! It-, and the book is an asymmetric carbon atom,
n represents an integer from 0 to 18. ) Or a side chain type liquid crystalline polymer such as a vinyl polymer or polysiloxane having a liquid crystalline residue in the side chain and having the following structure: M2: -Ph-Ph-R', -0-Ph-Ph-R
3,-Ph-Coo-Ph-R', -0-Ph-CO
[)-Ph-R' (where R3 is an alkyl group, an alkoxy group, a halogen atom, a nitro group or a cyano group, and n
represents an integer from 0 to 18. ) can be exemplified. Liquid crystalline polymers may be used alone or in combination. It is also possible to introduce an optically active group into the liquid crystalline polymer or add an optically active compound.

塗布法としては液晶性高分子が流動性を有するガラス転
移点以上の温度で直接塗布する方性、または液晶性高分
子を溶媒に溶解させ、溶液として塗布または印刷する方
法を用いることができる。
As a coating method, there can be used a method in which the liquid crystalline polymer is directly coated at a temperature equal to or higher than the glass transition point at which it has fluidity, or a method in which the liquid crystalline polymer is dissolved in a solvent and coated or printed as a solution.

膜厚の均一性と制御のしやすさの点で後者を特に好まし
く用いる。液晶性高分子の溶媒としては、用いる液晶性
高分子の種類、重合度等によって異なるが1通常下記の
物より選ばれる。
The latter is particularly preferably used in terms of uniformity of film thickness and ease of control. The solvent for the liquid crystalline polymer varies depending on the type of liquid crystalline polymer used, degree of polymerization, etc., but is usually selected from the following.

クロロホルム、ジクロロエタン、テトラクロロエタン、
トリクロロエチレン、テトラクロロエチレン、オルソジ
クロロベンゼンなどのハロゲン系炭化水素、フェノール
、0−クロロフェノール、クレゾールなどのフェノール
系溶媒、ジメチルホルムアミド、ジメチルアセトアミド
、ジメチルスルホキシドなどの非プロトン性極性溶媒、
テトラヒドロフラン、ジオキサン等のエーテル系溶媒お
よびこれらの混合溶媒。
Chloroform, dichloroethane, tetrachloroethane,
Halogenated hydrocarbons such as trichlorethylene, tetrachlorethylene, and orthodichlorobenzene; phenolic solvents such as phenol, 0-chlorophenol, and cresol; aprotic polar solvents such as dimethylformamide, dimethylacetamide, and dimethylsulfoxide;
Ether solvents such as tetrahydrofuran and dioxane, and mixed solvents thereof.

溶液濃度は塗布法、高分子の粘性、目的とする膜厚等に
より異なるが、液晶表示素子用の補償板を例にすると、
要求される膜厚は2〜10声程度であるので、通常は2
〜50wt%の範囲で使用され、好ましくは5−30w
t%の範囲で使用される。塗布法としてはスピンコード
法、ロールコート法、グラビアコート法、ディッピング
法、スクリーン印刷法などを採用できる。液晶性高分子
を塗布後、溶媒を乾燥して除去し、液晶性高分子が液晶
性を示す温度で熱処理して液晶性高分子を配向させる。
The solution concentration varies depending on the coating method, the viscosity of the polymer, the desired film thickness, etc., but taking a compensation plate for a liquid crystal display element as an example,
The required film thickness is about 2 to 10 tones, so usually 2 to 10 tones are required.
Used in the range of ~50wt%, preferably 5-30w
It is used in the range of t%. As a coating method, a spin code method, a roll coating method, a gravure coating method, a dipping method, a screen printing method, etc. can be adopted. After coating the liquid crystalline polymer, the solvent is removed by drying, and the liquid crystalline polymer is aligned by heat treatment at a temperature at which the liquid crystalline polymer exhibits liquid crystallinity.

液晶性高分子を配向させるときの温度は、液晶性高分子
のガラス転移点以上で、かつ、液晶性高分子の等方性液
体への転移温度より低いことが必要である。配向膜の界
面効果による配向を助ける意味でポリマーの粘性は低い
方がよく、シたがって温度は高い方がよいが、あまり高
いとコストの増大と作業性の悪化を招き好ましくない。
The temperature when orienting the liquid crystalline polymer needs to be higher than the glass transition point of the liquid crystalline polymer and lower than the transition temperature of the liquid crystalline polymer to an isotropic liquid. The lower the viscosity of the polymer, the better, in order to assist the alignment due to the interfacial effect of the alignment film, and therefore the higher the temperature, but if it is too high, it is not preferable as it increases cost and deteriorates workability.

一般的には50°C〜300℃の範囲が好ましい。Generally, a range of 50°C to 300°C is preferred.

以上のようにして得られた液晶性高分子膜はモノドメイ
ン配向した優れた配向性を有しているが、塗布法である
ため厚さ分布は避けられず、所望の厚みに対して0.5
%以下の面精度を得ることは困難である。この値は用途
によっては十分な値であるが、液晶表示素子用補償板の
ように液晶性高分子がねしれ構造を持ち、ねじれ角をも
制御する必要がある場合には、膜厚の分布がねしれ角の
分布にもなってしまい好ましくない。本発明の液晶性高
分子にねしれ構造を導入するには、液晶性高分子として
コレステリック液晶相を呈するものを用いればよい。コ
レステリック液晶相を呈する液晶性高分子は前述のよう
にネマティック相を呈する液晶性高分子中に光学活性基
を導入するか、光学活性な物質を添加すればよい。この
場合、液晶性高分子は配向処理膜面では配向処理の方向
に配列し、厚み方向に自然ピッチに相当するねじれ角、
すなわち自然ピンチをPO1膜厚をd、ねじれ角をωと
したときにω=360Xd/Po(°)なるねじれ角を
形成する。
The liquid crystalline polymer film obtained as described above has excellent monodomain orientation, but since it is a coating method, thickness distribution is unavoidable, and the desired thickness is 0.5%. 5
It is difficult to obtain a surface accuracy of less than %. This value is sufficient for some applications, but if the liquid crystal polymer has a twisted structure, such as a compensation plate for liquid crystal display elements, and the twist angle also needs to be controlled, the thickness distribution This also results in a distribution of torsion angles, which is undesirable. In order to introduce a twisted structure into the liquid crystalline polymer of the present invention, a liquid crystalline polymer exhibiting a cholesteric liquid crystal phase may be used. A liquid crystalline polymer exhibiting a cholesteric liquid crystal phase may be obtained by introducing an optically active group into a liquid crystalline polymer exhibiting a nematic phase as described above, or by adding an optically active substance to the liquid crystalline polymer exhibiting a nematic phase. In this case, the liquid crystalline polymer is aligned in the direction of the alignment treatment on the alignment treatment film surface, and has a twist angle corresponding to the natural pitch in the thickness direction.
That is, when the natural pinch is defined as PO1 film thickness d and twist angle as ω, a twist angle of ω=360Xd/Po (°) is formed.

本発明では、以上のようにして配向させた液晶性高分子
膜を二層、第2図に示したように重ねあわせる。二層の
液晶性高分子層3,3′を一つの層とみなすと、この層
に入射する光は、入射時と出射時の両方において、配向
処理層2,2′と液晶性高分子層3,3′の界面を通過
する。この界面での液晶性高分子の配向方向は配向処理
層2,2′によって各々の面内で均一になっている。従
って、二枚の基板1.1′上で液晶性高分子を配向させ
たときに、配向処理層2,2′に接していない面上での
配向方向にムラがあったとしても、このムラは部分的に
キャンセルすることができる。また、請求項2に示した
方法では、加熱する前の液晶性高分子層3,3′の界面
近傍での該液晶性高分子層3,3′の各々の配向方向が
ほぼ平行となるように重ねた場合、二枚の基板1,1′
上で液晶性高分子を別々に配向させたときに、配向処理
層2,2′に接していない面上に生じてしまった配向ム
ラが加熱−再配向させる際に解消され、高度に配向制御
された液晶性高分子層を得ることができる。
In the present invention, two layers of liquid crystalline polymer films oriented as described above are superimposed as shown in FIG. When the two liquid crystal polymer layers 3 and 3' are considered as one layer, the light incident on this layer is transmitted to the alignment treatment layers 2 and 2' and the liquid crystal polymer layer both at the time of incidence and at the time of output. It passes through the interface of 3 and 3'. The alignment direction of the liquid crystalline polymer at this interface is made uniform within each plane by the alignment treatment layers 2 and 2'. Therefore, when the liquid crystal polymer is aligned on the two substrates 1.1', even if there is unevenness in the alignment direction on the surfaces that are not in contact with the alignment treatment layers 2, 2', this unevenness can be partially canceled. Further, in the method according to claim 2, the orientation directions of each of the liquid crystalline polymer layers 3 and 3' in the vicinity of the interface of the liquid crystalline polymer layers 3 and 3' before heating are approximately parallel to each other. When stacked on top of each other, two substrates 1, 1'
When the liquid crystalline polymers are oriented separately above, the alignment unevenness that occurs on the surfaces that are not in contact with the alignment treatment layers 2 and 2' is eliminated during heating and reorientation, and the alignment can be highly controlled. A liquid crystalline polymer layer can be obtained.

液晶性高分子層3,3′の構成材料は、同一のものであ
る必要はなく、ねじれ構造をとらせた場合も、ねじれの
向きやピッチを異らせることができる。
The constituent materials of the liquid crystalline polymer layers 3 and 3' do not need to be the same, and even if they have a twisted structure, the direction and pitch of the twist can be different.

また、配向処理層2,2′も水平配向、傾斜配向、垂直
配向の任意の組み合わせが可能である。例として層2に
水平配向性を持たせるとともに層を2′に垂直配向性を
持たせ、請求項2の配向方法を用いると、いわゆるHA
・N(hybrid aligned nematic
)型液晶表示素子と同様の構造を作ることができる。
Furthermore, the alignment treatment layers 2 and 2' can also have any combination of horizontal alignment, oblique alignment, and vertical alignment. For example, if layer 2 is made to have horizontal orientation and layer 2' is made to have vertical orientation and the alignment method of claim 2 is used, the so-called HA
・N (hybrid aligned nematic
) type liquid crystal display element can be created.

また、液晶性高分子層3,3′に屈折率異方性へ〇の異
った材料を用い、それぞれに光学活性物質を添加するこ
とによって異ったねじれピッチを持たせ、STN型液晶
表示素子に対する、高性能な色補償板、視角補償板が作
製可能となる。
In addition, materials with different refractive index anisotropy are used for the liquid crystal polymer layers 3 and 3', and optically active substances are added to each material to give them different twist pitches. It becomes possible to produce high-performance color compensation plates and viewing angle compensation plates for elements.

液晶性高分子層3,3′の構成材料として、異った波長
域の光を吸収するような材料を用いるか、または異なっ
た波長域の光を吸収するような色素を液晶性高分子層3
,3′のそれぞれに添加することにより、記録容量が倍
増した、光記録媒体用の液晶性高分子層が得られる。
As the constituent material of the liquid crystal polymer layers 3 and 3', materials that absorb light in different wavelength ranges are used, or dyes that absorb light in different wavelength ranges are used in the liquid crystal polymer layers. 3
, 3', a liquid crystalline polymer layer for optical recording media with double the recording capacity can be obtained.

請求項1の方法で得られる液晶性高分子層3,3′では
密着した面における各々の液晶性高分子層3゜3′の配
向方向の成す角度を自由に調節することができる。従っ
て、液晶性高分子層3,3′のそれぞれに液晶性高分子
とともに配向するような電子供与性物質と受容物質やエ
ネルギー供与性物質と受容物質などを添加し、最も効率
良く電子移動反応やエネルギー移動反応が起こるような
、界面における配向方向の相対角度をさがすことができ
る。
In the liquid crystalline polymer layers 3, 3' obtained by the method of claim 1, the angle formed by the alignment direction of each liquid crystalline polymer layer 3°3' on the closely contacted surfaces can be freely adjusted. Therefore, an electron donating substance and an acceptor substance, an energy donating substance and an acceptor substance, etc. that are aligned together with the liquid crystal polymer are added to each of the liquid crystal polymer layers 3 and 3' to achieve the most efficient electron transfer reaction. It is possible to search for the relative angle of orientation at the interface at which an energy transfer reaction occurs.

〔実施例〕〔Example〕

次に本発明を実施例により更に詳細に説明するが、本発
明はこれら実施例に限定されるものではない。
EXAMPLES Next, the present invention will be explained in more detail with reference to Examples, but the present invention is not limited to these Examples.

(実施例1) ガラス基板上にポリイミド系樹脂を主成分とするサンエ
バー150(日産化学社製)を専用シンナーで2wt%
まで希釈した溶液を塗布した。100°Cのオーブンで
30分間乾燥後、250℃に昇温し1時間焼成した。放
冷後、ナイロン植毛布でラビングを行い、その上に下記
の繰返し単位を持つ液晶性高分子の溶液をスピンナー塗
布した。
(Example 1) 2wt% of Sunever 150 (manufactured by Nissan Chemical Co., Ltd.) whose main component is polyimide resin was applied on a glass substrate using a special thinner.
A diluted solution was applied. After drying in an oven at 100°C for 30 minutes, the temperature was raised to 250°C and baked for 1 hour. After cooling, rubbing was performed with a nylon flocked cloth, and a solution of a liquid crystalline polymer having the following repeating units was applied thereon using a spinner.

ついで、これを90°Cのオーブンで1時間乾燥し、そ
の後オーブンの温度を上げて110℃に5分間保ち、基
板をオーブンから取り出し、放冷することにより、液晶
性高分子膜付き基板を得た。これをクロスニコルにした
偏光板ではさんで複屈折色を観察したところ、はぼ−様
な色が見られたが、所々に厚みムラによる色ムラが認め
られた。触針式の膜厚計で測定したところ、液晶性高分
子膜の厚さは約3戸で、最大で0.5μm程度の厚みム
ラがあった。
Next, this was dried in an oven at 90°C for 1 hour, and then the temperature of the oven was raised to 110°C for 5 minutes, and the substrate was taken out of the oven and allowed to cool, thereby obtaining a substrate with a liquid crystal polymer film. Ta. When the birefringent color was observed by sandwiching this between crossed nicol polarizing plates, a hazy color was observed, but color unevenness due to thickness unevenness was observed in some places. When measured with a stylus-type film thickness meter, the thickness of the liquid crystalline polymer film was approximately 3 mm, and there was a maximum thickness unevenness of approximately 0.5 μm.

液晶性高分子には光学活性物質を添加しており、偏光解
析の結果、液晶性高分子の配向方向は、厚み方向で約1
20°ねしれていることがわかった。このようにして作
成した液晶性高分子膜付きの基板2枚を、界面での分子
配向がほぼ平行となるよう密着させ、補償板とした。該
補償板を二枚の偏光板の間にはさんで複屈折色をm察し
たところ、わずかに色ムラが誌められた。ついで該補償
板をII0℃のオーブンに入れ、10分間後に取り出し
、放冷した。この処理の後では、二枚の偏光板の間には
さんで観察しても色ムラは認められなかった。
An optically active substance is added to the liquid crystal polymer, and as a result of polarization analysis, the orientation direction of the liquid crystal polymer is approximately 1 in the thickness direction.
It was found that it was bent by 20 degrees. Two substrates with liquid crystalline polymer films prepared in this manner were brought into close contact with each other so that the molecular orientations at the interface were substantially parallel, thereby forming a compensating plate. When the compensating plate was sandwiched between two polarizing plates and the birefringence color was observed, slight color unevenness was observed. The compensator plate was then placed in an oven at II0°C, taken out after 10 minutes, and allowed to cool. After this treatment, no color unevenness was observed even when observed between two polarizing plates.

また、液晶性高分子を再配向させた補償板をSTN型液
晶表示素子と偏光板の間にはさむと、STN型液晶表示
素子に特有の複屈折色はほぼ消え、白黒表示に近い画質
が得られた。
Furthermore, when a compensating plate with re-oriented liquid crystal polymers was sandwiched between an STN liquid crystal display element and a polarizing plate, the birefringent color characteristic of STN liquid crystal display elements almost disappeared, resulting in an image quality close to that of black and white display. .

(実施例2) 液晶性高分子として下記の繰返し単位を持つものを用い
、 光学活性体の8体と8体を添加した2種類の溶液を別々
の基板に塗布し、110℃のオーブンで1時間乾燥した
。次に、オーブンの温度を130°Cに上げ、10分間
保った後でオーブンから取り出し、放冷した。光学活性
体の濃度は、液晶性高分子の配向ねじれ角が180°に
なるように調整した。8体と8体のねしれの向きは逆に
なっていた。ねじれの向きが逆となっている一対の基板
を、膜面が密着するように重ね、補償板とした。該補償
板をDAP型液晶表示素子と偏光板の間にはさんだとこ
ろ、視角補償効果が得られ、表示の視認角度が広くなっ
た。
(Example 2) Using a liquid crystalline polymer having the following repeating unit, two types of solutions containing optically active substances 8 and 8 were applied to separate substrates, and the mixture was heated in an oven at 110°C for 1 hour. Dry for an hour. Next, the temperature of the oven was increased to 130° C., kept at that temperature for 10 minutes, and then removed from the oven and allowed to cool. The concentration of the optically active substance was adjusted so that the orientation twist angle of the liquid crystalline polymer was 180°. The directions of the twists of the 8th and 8th bodies were opposite. A pair of substrates with opposite twist directions were stacked so that the film surfaces were in close contact with each other to form a compensation plate. When the compensation plate was sandwiched between the DAP type liquid crystal display element and the polarizing plate, a viewing angle compensation effect was obtained, and the viewing angle of the display was widened.

〔発明の効果〕 請求項1の方法によれば、二枚の基板上で別々に配向さ
せた液晶性高分子膜を膜面が密着するように重ねあわせ
るので、別々に配向させたときに生じた、配向処理層に
接していない面での配向ムラによる特性ムラが部分的に
キャンセルされる。
[Effects of the Invention] According to the method of claim 1, liquid crystalline polymer films that have been separately oriented on two substrates are overlapped so that the film surfaces are in close contact with each other, so that the liquid crystalline polymer films that are oriented separately on two substrates are overlapped so that the film surfaces are in close contact with each other. In addition, characteristic unevenness due to alignment unevenness on the surface not in contact with the alignment treatment layer is partially canceled.

また、各々の基板に塗布する液晶性高分子材料に異った
光学活性体や異った波長帯の光を吸収する色素、または
電子供与物質と電子受容体、あるいはエネルギー供与体
とエネルギー受容体を別々に添加することにより、多様
な光学補償板、光記録媒体などの高機能性素材を提供で
きる。
In addition, different optically active substances, dyes that absorb light in different wavelength bands, electron donor substances and electron acceptors, or energy donors and energy acceptors are added to the liquid crystalline polymer material applied to each substrate. By adding these separately, highly functional materials such as various optical compensators and optical recording media can be provided.

請求項2の方法では、二枚の基板上で別々に配向させた
液晶性高分子膜を膜面が密着するように重ねあわせた後
、加熱することにより液晶性高分子を再配向させるので
、非常に均一な配向が得られ、光学特性の優れた液晶性
高分子膜を提供できる。
In the method of claim 2, the liquid crystal polymer films that have been separately oriented on two substrates are superimposed so that the film surfaces are in close contact with each other, and then the liquid crystal polymers are reorientated by heating. Very uniform alignment can be obtained and a liquid crystalline polymer film with excellent optical properties can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は本発明の詳細な説明するための液晶
性高分子膜付き基板の断面図である。 l、1′・・・基板 2.2′・・配向処理層 3.3′・・・液晶性高分子層 第1図 特許出願人 株式会社 リ  コ
1 and 2 are cross-sectional views of a substrate with a liquid crystalline polymer film for explaining the present invention in detail. l, 1'...Substrate 2.2'...Alignment treatment layer 3.3'...Liquid crystal polymer layer Figure 1 Patent applicant Rico Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] (1)液晶性高分子を配向させうる配向処理の施された
二枚の基板上にそれぞれ液晶性高分子膜を形成し、該液
晶性高分子を配向させた後、該二枚の基板を、該液晶性
高分子膜どうしが密着するように重ねあわせることを特
徴とする液晶性高分子の配向制御方法。
(1) A liquid crystal polymer film is formed on each of two substrates that have been subjected to an alignment treatment that can orient the liquid crystal polymer, and after aligning the liquid crystal polymer, the two substrates are . A method for controlling the alignment of a liquid crystalline polymer, characterized in that the liquid crystalline polymer films are superimposed so as to be in close contact with each other.
(2)請求項1に記載の方法によって得られた該液晶性
高分子膜を該二枚の基板間にはさんだままで加熱するこ
とにより、該液晶性高分子を再配向させることを特徴と
する液晶性高分子の配向制御方法。
(2) The liquid crystalline polymer film obtained by the method according to claim 1 is heated while being sandwiched between the two substrates to reorient the liquid crystalline polymer. A method for controlling the orientation of liquid crystalline polymers.
JP12228090A 1990-05-11 1990-05-11 Method for controlling orientation of liquid crystalline high polymer Pending JPH0416914A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12228090A JPH0416914A (en) 1990-05-11 1990-05-11 Method for controlling orientation of liquid crystalline high polymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12228090A JPH0416914A (en) 1990-05-11 1990-05-11 Method for controlling orientation of liquid crystalline high polymer

Publications (1)

Publication Number Publication Date
JPH0416914A true JPH0416914A (en) 1992-01-21

Family

ID=14832054

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12228090A Pending JPH0416914A (en) 1990-05-11 1990-05-11 Method for controlling orientation of liquid crystalline high polymer

Country Status (1)

Country Link
JP (1) JPH0416914A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09211459A (en) * 1996-02-05 1997-08-15 Susumu Sato Orientation treatment of liquid crystal substrate and production of liquid crystal cell
JP2003509725A (en) * 1999-09-16 2003-03-11 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフトング Optical compensator and liquid crystal display I
JP2011128417A (en) * 2009-12-18 2011-06-30 Dainippon Printing Co Ltd Method for producing electromagnetic wave reflection member and method for recovering reflectance of electromagnetic wave reflection member

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09211459A (en) * 1996-02-05 1997-08-15 Susumu Sato Orientation treatment of liquid crystal substrate and production of liquid crystal cell
JP2003509725A (en) * 1999-09-16 2003-03-11 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフトング Optical compensator and liquid crystal display I
JP2011128417A (en) * 2009-12-18 2011-06-30 Dainippon Printing Co Ltd Method for producing electromagnetic wave reflection member and method for recovering reflectance of electromagnetic wave reflection member

Similar Documents

Publication Publication Date Title
US6027772A (en) Optical alignment composition, alignment layer formed using the same and LCD having the alignment layer
US5568294A (en) Liquid crystal display device having a polymer functioning as an orientation layer and a retarder
KR19980020832A (en) Manufacturing method of liquid crystal aligning film by magnetic field treatment
JPH085837A (en) Optical compensation sheet, its production and liquid crystal display device using the same
US20060139535A1 (en) Method of manufacturing a liquid-crystal display device
US5147682A (en) Method for orienting a liquid crystal polymer
EP0539992A1 (en) Liquid crystal device
JPS61249019A (en) Liquid crystal element
JPH0412322A (en) Optical phase plate and production thereof and liquid crystal display element using this optical phase plate
JPS6325628A (en) Liquid crystal device and manufacture thereof
US5866034A (en) Heat resistant polymer composition, alignment layer formed using the same and liquid cyrstal display having the alignment layer
JP3330742B2 (en) Optical compensation sheet and liquid crystal display device using the same
JPH0416914A (en) Method for controlling orientation of liquid crystalline high polymer
US5587211A (en) Liquid crystal device and liquid crystal apparatus including same
JPH0416919A (en) Optical phase plate
JP2959635B2 (en) Compensator for liquid crystal display element and method of manufacturing the same
EP0952469A1 (en) Optical anisotropic device
JPH11271760A (en) Liquid crystal display device
JP2897139B2 (en) Liquid crystal polymer alignment control method
JP2869453B2 (en) Liquid crystal display device
JPH0412324A (en) Color liquid crystal display element
JP2585835B2 (en) Liquid crystal display device
JP2869450B2 (en) Liquid crystal display device
JP2913110B2 (en) Liquid crystal polymer alignment control method
JP2646281B2 (en) Substrate with liquid crystalline polymer thin film