JPS63138661A - Laminated cell - Google Patents

Laminated cell

Info

Publication number
JPS63138661A
JPS63138661A JP61284920A JP28492086A JPS63138661A JP S63138661 A JPS63138661 A JP S63138661A JP 61284920 A JP61284920 A JP 61284920A JP 28492086 A JP28492086 A JP 28492086A JP S63138661 A JPS63138661 A JP S63138661A
Authority
JP
Japan
Prior art keywords
battery
metal adhesive
laminated
film
adhesive film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61284920A
Other languages
Japanese (ja)
Inventor
Katsuaki Shimizu
克昭 清水
Takeo Ohira
猛雄 大平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP61284920A priority Critical patent/JPS63138661A/en
Publication of JPS63138661A publication Critical patent/JPS63138661A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/42Grouping of primary cells into batteries
    • H01M6/46Grouping of primary cells into batteries of flat cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/528Fixed electrical connections, i.e. not intended for disconnection

Abstract

PURPOSE:To feed the stable voltage and current for a long time by laminating two or more unit cells via a metal adhesive film having the volume specific resistance of a specified value or less. CONSTITUTION:A thin alkaline manganese cell, a graphite fluoride lithium cell, a manganese dioxide lithium cell, etc., are laminated in series via a film having the volume specific resistance of 10<4>OMEGA-cm or less and the metal adhesive property. That is, unit cells A, B are laminated by heat adhesion using a metal adhesive film E. Accordingly, a laminated cell having no voltage change against the shock or the like from the outside can be obtained, and the invariably stable voltage can be extracted.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、ICカード、RAMカード、精密機器、カメ
ラ等に内蔵する電池に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to batteries built into IC cards, RAM cards, precision instruments, cameras, and the like.

〔従来技術及びその問題点〕[Prior art and its problems]

従来、積層化電池といわれるものは、大別して次の2種
類のものがある。1つのタイプは、特公昭61.−45
354号公報に見られるように正極集電板と負極集電板
間の電池内部で、正極活物質、負極活物質等の電池要素
をそれぞれ積層し、#を層化電池とするものである。ま
た、他のタイプは、単体電池をそれぞれ積層させ、積層
化電池としたものである。
Conventionally, there are two types of what are called stacked batteries: One type is the Tokuko Showa 61. -45
As seen in Publication No. 354, battery elements such as a positive electrode active material and a negative electrode active material are laminated inside the battery between a positive electrode current collector plate and a negative electrode current collector plate, and # is used as a layered battery. Another type is a stacked battery in which individual batteries are stacked one on top of the other.

本発明は、後者の単体電池をvi層化するタイプに属す
るものであり、次に、このタイプについて述べる。この
タイプは、第2図及び第3図に示めすように積層化され
るものであり、第2図の場合は、1つの単体電池Aの正
掻集電板の周囲を長くし電池を作成し、もう一方の単体
電池Bは、逆に負極集電板を長くし電池を作成する。そ
の後、2つの電池を積層し正極集電板と負極集電板の長
い部分に、金属接着性樹脂を介して熱接着するものであ
る。また、図2に示めす電池は、単体電池の−trハレ
ーターDの部分を長くしておき、セパレーターDどうし
を接着させ積層化電池とするものであり、 (1)単体電池自体の形状が変形タイプとなるため、製
造が難しい。
The present invention belongs to the latter type in which a single battery is formed into a VI layer, and this type will be described next. This type is laminated as shown in Figures 2 and 3, and in the case of Figure 2, the circumference of the positive current collector plate of one single battery A is lengthened to create a battery. However, the other single battery B is created by making the negative electrode current collector plate longer. Thereafter, the two batteries are stacked and thermally bonded to the long portions of the positive current collector plate and the negative current collector plate via a metal adhesive resin. In addition, in the battery shown in Figure 2, the -tr halator D portion of the unit cell is made long, and the separators D are bonded together to form a stacked battery. (1) The shape of the unit battery itself is deformed. Because it is a type, it is difficult to manufacture.

(2)単体電池を81層させ、周囲のみを熱接着させる
ため、積層させた電池が剥離する場合があり、不良率の
発生が多い。
(2) Since there are 81 layers of single cells and only the periphery is thermally bonded, the stacked cells may peel off, resulting in a high rate of failure.

(3)単体電池の周囲のみが熱接着されており、正極、
負極の集電板は接しているのみのため、簡単な衝撃によ
り導通不良が起こりやすい。
(3) Only the area around the single battery is thermally bonded, and the positive electrode and
Since the current collector plate of the negative electrode is only in contact with the current collector plate, a simple impact can easily cause a conduction failure.

という欠点があった。この中でも、(3)の欠点は電池
の信顧性に関するものであり、最も大きな問題点である
There was a drawback. Among these, the drawback (3) concerns the reliability of the battery and is the biggest problem.

C発明の目的〕 本発明は、上記問題点を改良するものであり、製造が簡
便で長期に亘り安定した電圧、電流供給のできる積層化
電池を提供することを目的とする。
C. OBJECTS OF THE INVENTION The present invention is intended to improve the above-mentioned problems, and aims to provide a laminated battery that is easy to manufacture and can supply stable voltage and current over a long period of time.

〔発明の構成〕[Structure of the invention]

本発明は、体積固有抵抗が104 Ω−1以下である金
属接着性フィルムを介して2個以上の単体電池を積層化
したものである。本発明によれば、導電性かつ金属接着
性フィルムを介して熱接着により、単体電池の電極集電
板を接着させるため、電極集電板間の接触不良を起こす
ことなく、常に安定した電圧、電流の供給が可能である
In the present invention, two or more single cells are laminated via a metal adhesive film having a volume resistivity of 104 Ω-1 or less. According to the present invention, since the electrode current collector plates of a single battery are bonded by thermal adhesion via a conductive and metal adhesive film, a stable voltage can be maintained without causing poor contact between the electrode current collector plates. Current can be supplied.

以下本発明の構成を詳細に説明する。まず、金属接着性
を有する導電性フィルムについて説明する0本発明にお
いては金属接着性を有する樹脂に導電性フィラーを練り
込んだものであり、導電性フィラーとしては、銀粉、銅
粉、カーボン粉、グラファイト、カーボン繊維等であり
、練り込み率はそれぞれの導電性フィラー及び、必要な
体積固有抵抗値により変えることが可能である。例えば
、銀粉、銅粉の含有量と体積固有抵抗の関係を第4図に
示めした。このグラフによると、銀、銅含有量は70〜
90ffi!%(体積比20〜50%)が望ましく、7
0重量%以下では著るしく抵抗値が変化して不安定であ
り、また、90重量%以上になると再び抵抗値が上昇す
る。また、カーボン粉末やグラファイト、カーボン繊維
については、重量比で10〜40%程度が適当であり、
それ以上金属接着性を有する樹脂に含有させると、フィ
ルムとしての製膜が非常に難かしくなる。
The configuration of the present invention will be explained in detail below. First, we will explain the conductive film that has metal adhesive properties.In the present invention, a conductive filler is kneaded into a resin that has metal adhesive properties, and examples of the conductive filler include silver powder, copper powder, carbon powder, These materials include graphite, carbon fiber, etc., and the mixing ratio can be changed depending on the conductive filler and the required volume resistivity value. For example, the relationship between the content of silver powder and copper powder and the volume resistivity is shown in FIG. According to this graph, the silver and copper content is 70~
90ffi! % (volume ratio 20 to 50%) is desirable, and 7
If it is less than 0% by weight, the resistance value changes significantly and is unstable, and if it exceeds 90% by weight, the resistance value increases again. In addition, for carbon powder, graphite, and carbon fiber, a weight ratio of about 10 to 40% is appropriate.
If more than this is contained in a resin having metal adhesive properties, it becomes extremely difficult to form a film.

次に本発明において、金属接着性フィルムの体積固有抵
抗を104Ω−cm以下とした理由について説明する。
Next, in the present invention, the reason why the volume resistivity of the metal adhesive film is set to 10 4 Ω-cm or less will be explained.

現在ICカードやRAMカード等に使用する高性能なう
す型電池としては、フッ化黒鉛リチウム電池、二酸化マ
ンガンリチウム電池等があり、公称電圧3V、電気容量
20taAhが最大のものである。その他に、アルカリ
マンガン電池等があるが、名刺型サイズのもので、公称
電圧1.5V電気容!130mAhである。また、実際
にICカードやRAMカード等で使用される電流値は、
lμ八へ度であり、最大限100μAを保証すれば使用
上全く問題はない。即ち、上述の電池を2個以上直列に
金属接着性フィルムで積層化した場合、金属接着性フィ
ルムの体積固有抵抗が104Ω−1以下であれば100
μへの電流逸流す事が可能である。
Currently, high-performance thin batteries used in IC cards, RAM cards, etc. include fluorinated graphite lithium batteries, manganese dioxide lithium batteries, etc., and the largest ones have a nominal voltage of 3V and an electric capacity of 20taAh. There are also alkaline manganese batteries, which are business card-sized and have a nominal voltage of 1.5V! It is 130mAh. In addition, the current value actually used in IC cards, RAM cards, etc.
It is 1μ8 degrees, and there is no problem in use as long as a maximum of 100μA is guaranteed. That is, when two or more of the above-mentioned batteries are laminated in series with a metal adhesive film, if the volume resistivity of the metal adhesive film is 104Ω-1 or less, the resistance is 100Ω.
It is possible to divert current to μ.

この時の電池の内部抵抗は1Ω程度とした。以上の理由
により、金属接着性樹脂に導電性フィラーを混練して得
た金属接着性フィルムの体積固有抵抗をio’Ω−cm
以下とした。
The internal resistance of the battery at this time was approximately 1Ω. For the above reasons, the volume resistivity of a metal adhesive film obtained by kneading a conductive filler into a metal adhesive resin is io'Ω-cm.
The following was made.

次に、金属接着性樹脂について説明する。電池の電極板
としては主に、ステンレス、ニンケル、アルミニウム等
の金属板が使用される。これらの金属を熱接着可能な樹
脂としては、アイオノマー、エチレン−アクリル酸共重
合体、エチレン〜メククリル酸共重合体、有機酸グラフ
ト重合ポリエチレン、有機酸グラフト重合ポリプロピレ
ン等があげられる。
Next, the metal adhesive resin will be explained. Metal plates such as stainless steel, nickel, and aluminum are mainly used as electrode plates for batteries. Examples of resins capable of thermally bonding these metals include ionomers, ethylene-acrylic acid copolymers, ethylene-meccrylic acid copolymers, organic acid graft polymerized polyethylene, and organic acid graft polymerized polypropylene.

以上のように金属接着性樹脂に、上述の導電性フィラー
を混練し押出機により押出してフィルムにした。次に電
池の積層化について説明する。
As described above, the above-mentioned conductive filler was kneaded into the metal adhesive resin and extruded using an extruder to form a film. Next, the stacking of batteries will be explained.

本発明では、ICカードやRAMカード等で使用できる
ように、うす型のアルカリマンガン電池やフン化黒鉛リ
チウム電池、二酸化マンガンリチウム電池等を体積固有
抵抗104Ω−cm以下で全1接着性を存するフィルム
を介して直列に積層させた。熱接着条件は、温度7fi
囲150′c〜220°cで、加熱時間は数秒から数十
秒の箱面で設定すれば良い。なお、熱接着に多量の熱量
を要し、長時間を必要とし電池の劣化が考えられる場合
は、電池及びフィルムをあらかじめ加熱しておき、本加
熱接着すれば電池に対する劣化が少ない。以下に実施例
を上げて説明する。
In the present invention, thin alkaline manganese batteries, graphite fluoride lithium batteries, lithium manganese dioxide batteries, etc. can be used in IC cards, RAM cards, etc. with a film that has a volume resistivity of 104 Ω-cm or less and has a total adhesive property. were stacked in series through the Thermal bonding conditions are temperature 7fi.
The heating time may be set at a temperature of 150'C to 220C and a heating time of several seconds to several tens of seconds. Note that if thermal bonding requires a large amount of heat and takes a long time, and there is a possibility of deterioration of the battery, if the battery and film are heated in advance and the main thermal bonding is performed, the deterioration of the battery will be reduced. Examples will be described below.

〔実  施  例  1 〕 本発明は、第1図に示すように2個の単体電池A、Bを
金属接着性フィルムDを介して積層した積層化電池であ
る。
[Example 1] The present invention is a laminated battery in which two single cells A and B are laminated with a metal adhesive film D in between, as shown in FIG.

単体電池A、Bは、フシ化黒鉛リチウム電池(公称電圧
3v、電気容量20−^h)を用い、導電性かつ金属接
着性フィルムとしては、カーボン粉を金属接着性樹脂に
対して、20重量%混練し、体積固有抵抗1.5X10
”Ω−01mを有するフィルム(50μ厚)を用いた。
Single batteries A and B are graphite lithium fusilide batteries (nominal voltage 3V, electric capacity 20-^h), and as a conductive and metal-adhesive film, carbon powder is mixed with 20% by weight of metal-adhesive resin. % kneaded, volume resistivity 1.5X10
A film (50 μm thick) having Ω-01 m was used.

なお、このフィルムのベースになる金属接着性樹脂は、
無水マレイン酸グラフト重合ポリエチレンである0以上
の様な電池及びフィルムを用い、フィルムを介して単体
電池を直列に重ね、180’C−10秒の熱量を加え、
2個の単体電池をm層させた。この積層化電池の性能試
験を次の様に実施した。電池に負荷をかけ、電流が流れ
ている状態において電圧測定を行なった。この時、積層
化電池に外部より軽い衝撃を与え、電圧の変化を記録し
た(第5図)0次に、従来法による積層化電池の性能評
価について説明する。従来法では実施例1で説明した電
池を第2図の様に積層させ、同様の方法にて電圧測定を
行なった。その結果を第6図に示めす、第5図及び第6
図を比較すれば、一目瞭然の様に本発明においては電池
の電極板の接触不良による電圧の振れは見られなかった
The metal adhesive resin that forms the base of this film is
Using a battery such as 0 or more which is maleic anhydride graft polymerized polyethylene and a film, unitary batteries were stacked in series with the film interposed, and heat was applied at 180'C for 10 seconds.
Two single cells were arranged in m layers. A performance test of this stacked battery was conducted as follows. The voltage was measured while a load was applied to the battery and current was flowing. At this time, a light impact was applied to the stacked battery from the outside, and the change in voltage was recorded (FIG. 5).Next, performance evaluation of the stacked battery using the conventional method will be described. In the conventional method, the batteries described in Example 1 were stacked as shown in FIG. 2, and the voltage was measured in the same manner. The results are shown in Figure 6, Figures 5 and 6.
Comparing the figures, it is clear that in the present invention, no voltage fluctuation was observed due to poor contact between the electrode plates of the battery.

〔実  施  例  2 ] 単体電池としては、アルカリマンガン電池(うす型タイ
プ、公称電圧1.5y、を気容fi30 m A h 
)を用い、導電性かつ金属接着性フィルムとしては、銀
粉を金属接着性樹脂に75重量%混練し、体積固有抵抗
3X10−”Ω−1を有するフィルム(100μ厚)を
用いた。なお、このフィルムのベースになる金属接着性
樹脂は、エチレン−メタクリル酸共重合体を用いた0以
上の様な電池及びフィルムを用い、フィルムを介して単
体電池を直列に重ね、170℃−20秒の熱量を加え、
2個の単体電池を積層させた。
[Example 2] As a single battery, an alkaline manganese battery (thin type, nominal voltage 1.5y, air capacity fi 30 mA h) was used.
), and as a conductive and metal-adhesive film, a film (100μ thick) prepared by kneading 75% by weight of silver powder into a metal-adhesive resin and having a volume resistivity of 3 x 10-''Ω-1 was used. The metal-adhesive resin that is the base of the film uses 0 or more batteries and a film that uses an ethylene-methacrylic acid copolymer. Single batteries are stacked in series with the film interposed, and the heat is heated at 170°C for 20 seconds. Add
Two single batteries were stacked.

なお、従来法との性能試験による比較は、実施例1と同
様に行なった。この場合においても、測定電圧の振れは
なく、常に安定した電圧が取り出せた。
The performance test comparison with the conventional method was conducted in the same manner as in Example 1. Even in this case, there was no fluctuation in the measured voltage, and a stable voltage could always be obtained.

〔発明の効果〕〔Effect of the invention〕

以上述べた様に、体積固有抵抗IQ’Ω−cm以下の導
電性かつ金属接着性フィルムを用いて、熱接着により単
体電池を積層させることにより、外部からの衝撃等に対
しても電圧変化のない積層化電池を得た。この電池をI
Cカード、RAMカード、精密機器、カメラ等に使用し
、従来にない高性能な積層化電池を提供するものである
As mentioned above, by using conductive and metal adhesive films with a volume resistivity of IQ'Ω-cm or less and stacking single batteries by thermal bonding, voltage changes can be prevented even when subjected to external shocks. No laminated battery was obtained. This battery
The product is used in C cards, RAM cards, precision instruments, cameras, etc., and provides an unprecedented high-performance laminated battery.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の積層化電池の断面図、第2図、第3図
は従来の積層電池の断面図、第4図は金属接着性フィル
ムの銀粉、銅粉の含有量と体積固有抵抗との関係を示す
グラフ、第5図は本発明の積層化電池に外部から軽い衝
撃を与えた時の電圧の変化を示すグラフ、第6図は従来
の積層電池に外部から軽い衝撃を与えた時の電圧の変化
を示すグラフである。 A、B・・・単体電池 C・・・単体電池の熱接着部分 D・・・セパレータ
Figure 1 is a cross-sectional view of the laminated battery of the present invention, Figures 2 and 3 are cross-sectional views of a conventional laminated battery, and Figure 4 is the content and volume resistivity of silver powder and copper powder in the metal adhesive film. Figure 5 is a graph showing the change in voltage when a light shock is applied to the laminated battery of the present invention from the outside, and Figure 6 is a graph showing the change in voltage when a light shock is applied to the conventional laminated battery from the outside. 3 is a graph showing changes in voltage over time. A, B...unit battery C...thermal bonding part of unit battery D...separator

Claims (3)

【特許請求の範囲】[Claims] (1)体積固有抵抗が10^4Ω−cm以下である、金
属接着性フィルムを介して2個以上の素電池を積層化し
た事を特徴とする積層化電池。
(1) A laminated battery having a volume resistivity of 10^4 Ω-cm or less, characterized in that two or more unit cells are laminated via a metal adhesive film.
(2)金属接着性フィルムが、銀粉、銅粉、カーボン粉
、グラファイト、カーボン繊維を練り込んだ事を特徴と
する特許請求の範囲第一項記載の積層化電池。
(2) The laminated battery according to claim 1, wherein the metal adhesive film contains silver powder, copper powder, carbon powder, graphite, and carbon fiber.
(3)金属接着性フィルムが、有機酸をグラフト重合さ
せたポリオレフィン系樹脂、エチレン−アクリル酸共重
合体、エチレン−メタクリル酸共重合体、アイオノマー
樹脂から成る事を特徴とする特許請求の範囲第一項に記
載の積層化電池。
(3) The metal adhesive film is made of a polyolefin resin graft-polymerized with an organic acid, an ethylene-acrylic acid copolymer, an ethylene-methacrylic acid copolymer, or an ionomer resin. The laminated battery according to item 1.
JP61284920A 1986-11-29 1986-11-29 Laminated cell Pending JPS63138661A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61284920A JPS63138661A (en) 1986-11-29 1986-11-29 Laminated cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61284920A JPS63138661A (en) 1986-11-29 1986-11-29 Laminated cell

Publications (1)

Publication Number Publication Date
JPS63138661A true JPS63138661A (en) 1988-06-10

Family

ID=17684768

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61284920A Pending JPS63138661A (en) 1986-11-29 1986-11-29 Laminated cell

Country Status (1)

Country Link
JP (1) JPS63138661A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0359949A (en) * 1989-07-27 1991-03-14 Yuasa Battery Co Ltd Battery
US5028500A (en) * 1989-05-11 1991-07-02 Moli Energy Limited Carbonaceous electrodes for lithium cells
WO1999021238A1 (en) * 1997-10-20 1999-04-29 Micron Communications, Inc. Thin-profile or button-type battery circuits and constructions, methods of forming
JP2008207404A (en) * 2007-02-23 2008-09-11 Mitsubishi Plastics Ind Ltd Conducting film and composite film having conducting film

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5028500A (en) * 1989-05-11 1991-07-02 Moli Energy Limited Carbonaceous electrodes for lithium cells
JPH0359949A (en) * 1989-07-27 1991-03-14 Yuasa Battery Co Ltd Battery
WO1999021238A1 (en) * 1997-10-20 1999-04-29 Micron Communications, Inc. Thin-profile or button-type battery circuits and constructions, methods of forming
US6068947A (en) * 1997-10-20 2000-05-30 Micron Technology, Inc. Thin-profile battery circuits and constructions and button-type battery circuits and constructions
US6114060A (en) * 1997-10-20 2000-09-05 Micron Technology, Inc. Thin-profile battery circuits and constructions, button-type battery circuits and constructions, methods of forming thin-profile battery circuits and constructions, and methods of forming button-type battery circuits and constructions
US6240625B1 (en) 1997-10-20 2001-06-05 Micron Technology, Inc. Methods of forming thin-profile battery circuits and constructions, and methods of forming button-type battery circuits and constructions
US6268078B1 (en) 1997-10-20 2001-07-31 Micron Technology, Inc. Thin-profile battery circuits and constructions, button-type battery circuits and constructions, methods of forming thin-profile battery circuits and constructions, and methods of forming button-type battery circuits and constructions
US6548207B1 (en) 1997-10-20 2003-04-15 Micron Technology, Inc. Thin-profile battery circuits and constructions, button-type battery circuits and constructions
JP2008207404A (en) * 2007-02-23 2008-09-11 Mitsubishi Plastics Ind Ltd Conducting film and composite film having conducting film

Similar Documents

Publication Publication Date Title
WO2018133288A1 (en) Lithium battery current collector having protection function
CN107565137B (en) Current collector, pole piece containing current collector and solid-state battery
US8487586B2 (en) Battery pack
US5705259A (en) Method of using a bipolar electrochemical storage device
WO2021195855A1 (en) Composite current collector, electrode plate, electrochemical device, and electronic device
JP6939685B2 (en) Laminated battery
JPH11506264A (en) Electrical connection to polymer stack battery structure
WO1999067835A1 (en) Electrode, method of producing electrode, and cell comprising the electrode
JP2020167175A (en) Positive electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
US2894053A (en) Solid electrolyte battery system
US6150051A (en) Thermal switch for use in plastic batteries
CN113972422A (en) Electrochemical device and electronic device
US11316236B2 (en) Method for producing electrode for solid-state batteries
JP2001015152A (en) Fully solid layer built cell
KR20200105749A (en) Solid-state battery and method for manufacturing the same
JP2002151024A (en) Flat type battery
JP2000195495A (en) Sheet battery
JPS63138661A (en) Laminated cell
JPH10188942A (en) Battery
JP2001297748A (en) Nonaqueous electrolyte secondary battery
JPS60189867A (en) Solid electrolyte secondary battery
WO2021184782A1 (en) All-solid-state laminated battery
JP3240650B2 (en) Manufacturing method of solid state secondary battery
US20220416305A1 (en) Battery Pack and Battery Cell
JP6907999B2 (en) All solid state battery