JP6907999B2 - All solid state battery - Google Patents

All solid state battery Download PDF

Info

Publication number
JP6907999B2
JP6907999B2 JP2018094604A JP2018094604A JP6907999B2 JP 6907999 B2 JP6907999 B2 JP 6907999B2 JP 2018094604 A JP2018094604 A JP 2018094604A JP 2018094604 A JP2018094604 A JP 2018094604A JP 6907999 B2 JP6907999 B2 JP 6907999B2
Authority
JP
Japan
Prior art keywords
foil
positive electrode
solid
layer
state battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018094604A
Other languages
Japanese (ja)
Other versions
JP2019200911A (en
Inventor
佑介 奥畑
佑介 奥畑
元 長谷川
元 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2018094604A priority Critical patent/JP6907999B2/en
Publication of JP2019200911A publication Critical patent/JP2019200911A/en
Application granted granted Critical
Publication of JP6907999B2 publication Critical patent/JP6907999B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Description

本願は全固体電池に関する。 The present application relates to an all-solid-state battery.

電池は釘刺し等の外部衝撃による短絡等で急激に発熱する場合がある。この場合、電池の一部に吸熱材を用いることで、熱を適切に吸収して、温度上昇を抑制することが可能になる。 The battery may generate heat rapidly due to a short circuit caused by an external impact such as nail sticking. In this case, by using a heat absorbing material for a part of the battery, it is possible to appropriately absorb heat and suppress the temperature rise.

特許文献1には全固体電池において、正極集電箔と正極合材との間にPPTC(Porimer Positive Temperature Coefficient)層を形成することで、短絡等の発熱による電池の温度の上昇を抑制しやすくなることが開示されている。また、特許文献1には正極集電箔としてFe箔が記載されている。特許文献2には、正極集電箔上に銅箔を配置し、さらに正極集電箔に貫通孔を設け、該貫通孔に所定の樹脂を充填させた硫化物全固体電池が開示されている。これよれば、短絡等による電池の発熱時に、正極集電箔の貫通孔に充填された樹脂が溶融し、生成した孔を介して銅箔と硫化物固体電解質とが反応して電子伝導性の大きいCuSが生成される。そして、当該CuSにより固体電解質層と正極集電体箔との間に電子伝導パスが形成され、発熱防止乃至抑制が可能となる。 Patent Document 1 describes that in an all-solid-state battery, by forming a PPTC (Polymer Positive Temperature Coafficient) layer between a positive electrode current collecting foil and a positive electrode mixture, it is easy to suppress an increase in battery temperature due to heat generation such as a short circuit. It is disclosed that it will be. Further, Patent Document 1 describes an Fe foil as a positive electrode current collector foil. Patent Document 2 discloses a sulfide all-solid-state battery in which a copper foil is arranged on a positive electrode current collector foil, a through hole is provided in the positive electrode current collector foil, and the through hole is filled with a predetermined resin. .. According to this, when the battery generates heat due to a short circuit or the like, the resin filled in the through hole of the positive electrode current collecting foil melts, and the copper foil reacts with the sulfide solid electrolyte through the generated hole to have electron conductivity. Large CuS is produced. Then, the CuS forms an electron conduction path between the solid electrolyte layer and the positive electrode current collector foil, and heat generation can be prevented or suppressed.

特開2018−10848号公報JP-A-2018-10848 特開2017−4914号公報JP-A-2017-4914

特許文献1において正極集電箔としてFeを選択する場合、短絡時等の電池の温度上昇抑制に改善の余地があった。 When Fe is selected as the positive electrode current collector foil in Patent Document 1, there is room for improvement in suppressing the temperature rise of the battery at the time of a short circuit or the like.

そこで、本願では短絡時等の電池発熱時における電池の温度上昇を抑制することが可能な全固体電池を提供することを課題とする。 Therefore, it is an object of the present application to provide an all-solid-state battery capable of suppressing a temperature rise of a battery when the battery generates heat such as a short circuit.

本発明者らが鋭意検討した結果、正極箔としてアモルファスFe箔を用いることにより、Fe箔を用いるときに比べて、短絡時等の電池発熱時における電池の温度上昇を抑制することができることを知見した。 As a result of diligent studies by the present inventors, it has been found that by using an amorphous Fe foil as the positive electrode foil, it is possible to suppress a temperature rise of the battery when the battery generates heat such as a short circuit, as compared with the case where the Fe foil is used. did.

よって、本願は上記知見に基づいて上記課題を解決するための1つの態様として、正極箔、正極合材層、固体電解質層、負極合材層、及び負極箔をこの順で積層し、正極箔はアモルファスFe箔であり、正極箔と前記正極合材層との間にはPPTC層が形成されている、全固体電池を開示する。 Therefore, in the present application, as one aspect for solving the above problems based on the above findings, the positive electrode foil, the positive electrode mixture layer, the solid electrolyte layer, the negative electrode mixture layer, and the negative electrode foil are laminated in this order, and the positive electrode foil is used. Discloses an all-solid-state battery in which is an amorphous Fe foil and a PPTC layer is formed between the positive electrode foil and the positive electrode mixture layer.

本願が開示する全固体電池によれば、短絡時等の電池発熱時における電池の温度上昇を抑制することができる。 According to the all-solid-state battery disclosed in the present application, it is possible to suppress an increase in the temperature of the battery when the battery generates heat such as when a short circuit occurs.

全固体電池10を説明する図である。It is a figure explaining the all-solid-state battery 10. 釘刺し試験の方法を説明する図である。It is a figure explaining the method of a nail piercing test. 釘刺し試験における実施例1の結果である。This is the result of Example 1 in the nail piercing test. 釘刺し試験における比較例1の結果である。This is the result of Comparative Example 1 in the nail piercing test. 釘刺し試験における比較例2の結果である。It is the result of Comparative Example 2 in the nail piercing test. 釘刺し試験における比較例3の結果である。It is the result of Comparative Example 3 in the nail piercing test. 釘刺し試験における比較例4の結果である。It is the result of Comparative Example 4 in the nail piercing test. 電池性能評価試験の結果である。(a)は電池の出力の結果である。(b)は電池の充放電容量の結果である。This is the result of the battery performance evaluation test. (A) is the result of the output of the battery. (B) is the result of the charge / discharge capacity of the battery.

本願が開示する全固体電池は正極箔にアモルファスFe箔を用いたことに1つの特徴を有する。以下に、本願が開示する全固体電池の1つの形態である全固体電池10について説明する。 The all-solid-state battery disclosed in the present application has one feature in that an amorphous Fe foil is used as the positive electrode foil. Hereinafter, the all-solid-state battery 10, which is one form of the all-solid-state battery disclosed in the present application, will be described.

1.全固体電池10
全固体電池10は正極箔1、正極合材層2、固体電解質層3、負極合材層4、及び負極箔5をこの順で積層する。また、正極箔1と正極合材層2との間にはPPTC層6が形成されている。ここで「この順で積層する」とは、各層が順番に積層された形態であり、各層間に他の層が積層される形態を妨げない。言い換えると、各層が直接的にこの順で積層された形態のほか、各層間に他の層が積層され、間接的にこの順で積層された形態を含む概念である。
図1に全固体電池10の概要を説明する断面図を示した。
1. 1. All-solid-state battery 10
In the all-solid-state battery 10, the positive electrode foil 1, the positive electrode mixture layer 2, the solid electrolyte layer 3, the negative electrode mixture layer 4, and the negative electrode foil 5 are laminated in this order. Further, a PPTC layer 6 is formed between the positive electrode foil 1 and the positive electrode mixture layer 2. Here, "stacking in this order" is a form in which each layer is laminated in order, and does not interfere with a form in which other layers are laminated between each layer. In other words, the concept includes a form in which each layer is directly laminated in this order, and a form in which other layers are laminated in each layer and indirectly laminated in this order.
FIG. 1 shows a cross-sectional view illustrating an outline of the all-solid-state battery 10.

1.1.正極箔1
正極箔1としてはアモルファスFe箔を用いる。アモルファスFe箔とは少なくともFeを含有し、かつ、アモルファス構造を有する金属箔である。Fe以外の元素としてはB、Si、Cr、Co、Ni、Mo等がアモルファスFe箔中に含まれていてもよい。例えば、日立金属株式会社刊行のカタログ「アモルファス合金薄帯 AMORPHOUS ALLOY RIBBON Metglas(登録商標)、Catalog No.HJ−B10−B、2014.5」に記載されているアモルファスFe箔の材料を用いることができる。アモルファスFe箔を用いることにより、正極箔の電気抵抗値を上昇させ、短絡時に流れる電流値を抑えることができる。
なお、アモルファスFe箔中のFeの含有量は45質量%以上97質量%以下であることが好ましく、75質量%以上85質量%以下であることがより好ましい。
1.1. Positive electrode foil 1
Amorphous Fe foil is used as the positive electrode foil 1. The amorphous Fe foil is a metal foil containing at least Fe and having an amorphous structure. As elements other than Fe, B, Si, Cr, Co, Ni, Mo and the like may be contained in the amorphous Fe foil. For example, the material of the amorphous Fe foil described in the catalog "Amorphous Alloy Thin Belt AMORPHOUS ALLOY RIBBON Meglas (Registered Trademark), Catalog No. HJ-B10-B, 2014.5" published by Hitachi Metals, Ltd. can be used. can. By using the amorphous Fe foil, the electric resistance value of the positive electrode foil can be increased and the current value flowing at the time of a short circuit can be suppressed.
The Fe content in the amorphous Fe foil is preferably 45% by mass or more and 97% by mass or less, and more preferably 75% by mass or more and 85% by mass or less.

ここで、結晶性のFe箔に比べてアモルファスFe箔を用いることにより、抵抗値が上昇する理由について説明する。結晶性のFe箔は規則的な原子配列をしている。それに対して、非結晶性のアモルファスFe箔はランダムな原子配列をしているため、規則的な原子配列を有する結晶性のFe箔に比べて電気抵抗が大きい。よって、結晶性のFe箔に比べ、非結晶性のアモルファスFe箔の電気抵抗は大きくなる。 Here, the reason why the resistance value is increased by using the amorphous Fe foil as compared with the crystalline Fe foil will be described. The crystalline Fe foil has a regular atomic arrangement. On the other hand, since the non-crystalline amorphous Fe foil has a random atomic arrangement, the electric resistance is larger than that of the crystalline Fe foil having a regular atomic arrangement. Therefore, the electrical resistance of the non-crystalline amorphous Fe foil is higher than that of the crystalline Fe foil.

1.2.正極合材層2、負極合材層4
正極合材層2、負極合材層4は、少なくとも活物質を含み、かつ、さらに任意の固体電解質、バインダー及び導電助材を含むものであれば特に限定されず、公知の正極合材層、負極合材層を用いることができる。詳しい構成は特許文献1に記載されているため、ここでは省略する。
1.2. Positive electrode mixture layer 2, negative electrode mixture layer 4
The positive electrode mixture layer 2 and the negative electrode mixture layer 4 are not particularly limited as long as they contain at least an active material and further contain an arbitrary solid electrolyte, a binder and a conductive auxiliary material, and are known as positive electrode mixture layers. A negative electrode mixture layer can be used. Since the detailed configuration is described in Patent Document 1, it is omitted here.

1.3.固体電解質層3
固体電解質層3は、固体電解質と任意にバインダーを含むものであれば特に限定されず、公知の固体電解質層を用いることができる。詳しい構成は特許文献1に記載されているため、ここでは省略する。
1.3. Solid electrolyte layer 3
The solid electrolyte layer 3 is not particularly limited as long as it contains a solid electrolyte and optionally a binder, and a known solid electrolyte layer can be used. Since the detailed configuration is described in Patent Document 1, it is omitted here.

1.4.負極箔5
負極箔5は特に限定されず、公知の負極箔を用いることができる。例えば、Cu、Ni、Al、Ti、Fe等の金属を含む負極箔を挙げることができる。好ましくは、アモルファスFe箔である。
1.4. Negative electrode foil 5
The negative electrode foil 5 is not particularly limited, and a known negative electrode foil can be used. For example, a negative electrode foil containing a metal such as Cu, Ni, Al, Ti, Fe can be mentioned. Amorphous Fe foil is preferable.

1.5.PPTC層6
PPTC層6は導電材と樹脂を含有し、100℃以上の所定の温度で高抵抗化する特徴を有する。よって、短絡等で電池が発熱した場合、PPTC層6が高抵抗化することにより、電池反応が抑制され、電池の更なる発熱を防止することができる。PPTC層6の詳しい構成は特許文献1に記載されているため、ここでは省略する。なお、図1ではPPTC層6は正極箔1と正極合材層2との間に形成されているが、負極箔5と負極合材層5との間に形成されていても良い。
1.5. PPTC layer 6
The PPTC layer 6 contains a conductive material and a resin, and has a feature of increasing resistance at a predetermined temperature of 100 ° C. or higher. Therefore, when the battery generates heat due to a short circuit or the like, the PPTC layer 6 has a high resistance, so that the battery reaction is suppressed and further heat generation of the battery can be prevented. Since the detailed configuration of the PPTC layer 6 is described in Patent Document 1, it is omitted here. Although the PPTC layer 6 is formed between the positive electrode foil 1 and the positive electrode mixture layer 2 in FIG. 1, it may be formed between the negative electrode foil 5 and the negative electrode mixture layer 5.

2.全固体電池10の製造方法
全固体電池10は公知の方法で製造することができる。例えば、特許文献1に記載されている方法を用いることができる。
2. Method for manufacturing the all-solid-state battery 10 The all-solid-state battery 10 can be manufactured by a known method. For example, the method described in Patent Document 1 can be used.

以下において、本願の全固体電池について実施例及び比較例を用いて詳しく説明する。 Hereinafter, the all-solid-state battery of the present application will be described in detail with reference to Examples and Comparative Examples.

1.全固体電池の製造
1.1.固体電解質の合成
特開2012−48973号公報に記載された方法にて、硫化物固体電解質である10LiI−90(0.75LiS−0.25P)を合成した。合成した硫化物固体電解質を特開2014−102987号公報に記載の方法にて結晶化及び微粒子化した。
1. 1. Manufacture of all-solid-state batteries 1.1. Synthesis of solid electrolyte 10LiI-90 (0.75Li 2 S-0.25P 2 S 5 ), which is a sulfide solid electrolyte, was synthesized by the method described in Japanese Patent Application Laid-Open No. 2012-48973. The synthesized sulfide solid electrolyte was crystallized and made into fine particles by the method described in JP-A-2014-102987.

1.2.正極合材スラリーの作製
LiNi1/3Co1/3Mn1/3(日亜化学工業社製、平均粒径(D50)=5μm)にLiNbOをコートして得られる正極活物質52gと、気相法炭素繊維(VGCF:Vapor Grown Carbon Fiber)(昭和電工社製)1gと、上記硫化物固体電解質17gと、脱水ヘプタン(関東化学社製)15gとを混合することにより、正極合材スラリーを得た。LiNi1/3Co1/3Mn1/3へのLiNbOのコートについては、特開2010−73539号公報に記載の方法にしたがった。
1.2. Preparation of positive electrode mixture slurry LiNi 1/3 Co 1/3 Mn 1/3 O 2 (manufactured by Nichia Chemical Co., Ltd., average particle size (D 50 ) = 5 μm) coated with LiNbO 3 is a positive electrode active material. A positive electrode obtained by mixing 52 g, 1 g of vapor-phase carbon fiber (VGCF: Vapor Green Carbon Fiber) (manufactured by Showa Denko Co., Ltd.), 17 g of the above-mentioned sulfide solid electrolyte, and 15 g of dehydrated heptane (manufactured by Kanto Chemical Co., Inc.). A mixture slurry was obtained. Regarding the coating of LiNbO 3 on LiNi 1/3 Co 1/3 Mn 1/3 O 2 , the method described in JP-A-2010-73539 was followed.

1.3.負極合材スラリーの作製
グラファイト(三菱化学社製)36gと上記硫化物固体電解質25gと脱水ヘプタン(関東化学社製)32gとを混合して負極合材スラリーを得た。
1.3. Preparation of Negative Electrode Mixture Slurry A negative electrode mixture slurry was obtained by mixing 36 g of graphite (manufactured by Mitsubishi Chemical Co., Ltd.), 25 g of the above sulfide solid electrolyte, and 32 g of dehydrated heptane (manufactured by Kanto Chemical Co., Inc.).

1.4.PPTCスラリーの作成
導電材である平均一次粒子径66nmのファーネスブラック粉末(東海カーボン株式会社製)と、PVDF(クレハKFポリマーL#9130、株式会社クレハ製)とを、体積比で、導電材:PVDF=20:80となるように秤量した。そして、これらをNMP(日本リファイン株式会社製)と混合することにより、PPTCスラリーを作製した。
1.4. Preparation of PPTC slurry Furness black powder (manufactured by Tokai Carbon Co., Ltd.) having an average primary particle diameter of 66 nm, which is a conductive material, and PVDF (Kureha KF polymer L # 9130, manufactured by Kureha Corporation) are mixed in volume ratio with a conductive material: Weighed so that PVDF = 20: 80. Then, these were mixed with NMP (manufactured by Nippon Refine Co., Ltd.) to prepare a PPTC slurry.

1.5.実施例1に係る全固体電池の製造
正極箔である厚さ15μmのアモルファスFe箔(日立金属株式会社製、鋼種:2605SA1)の表面に、乾燥後の厚さが10μmとなるように、上記PPTCスラリーを塗工した。その後、100℃の定置乾燥炉内で1時間に亘って乾燥することにより、表面にPPTC層を有するアモルファスFe箔(正極箔)を作製した。負極箔としてはCu箔を用意した。
次に、正極箔、負極箔それぞれに上述の正極合材スラリー、負極合材スラリーを塗工・乾燥し、正極箔の表面に正極活合材層を有する正極と、負極箔の表面に負極合材層を有する負極を得た。
そして、負極合材層に硫化物固体電解質(固体電解質層)をプレスで転写し、更に、正極合材層をプレスで転写することで一体化して、実施例1に係る全固体電池を得た。
1.5. Manufacture of an all-solid-state battery according to Example 1 The PPTC on the surface of an amorphous Fe foil (manufactured by Hitachi Metals, Ltd., steel grade: 2605SA1) having a thickness of 15 μm, which is a positive electrode foil, has a thickness of 10 μm after drying. The slurry was applied. Then, it was dried in a stationary drying oven at 100 ° C. for 1 hour to prepare an amorphous Fe foil (positive electrode foil) having a PPTC layer on the surface. A Cu foil was prepared as the negative electrode foil.
Next, the above-mentioned positive electrode mixture slurry and negative electrode mixture slurry are applied to and dried on the positive electrode foil and the negative electrode foil, respectively, and the positive electrode having the positive electrode active mixture layer on the surface of the positive electrode foil and the negative electrode combination on the surface of the negative electrode foil. A negative electrode having a material layer was obtained.
Then, the sulfide solid electrolyte (solid electrolyte layer) was transferred to the negative electrode mixture layer by a press, and further, the positive electrode mixture layer was transferred by a press to integrate them to obtain an all-solid-state battery according to Example 1. ..

1.6.比較例1に係る全固体電池の製造
PPTC層を有するアモルファスFe箔に代えて、正極箔にPPTC層を有さない通常のアモルファスFe箔を用いた以外は、実施例1に係る全固体電池の製造方法と同様の方法により比較例1に係る全固体電池を得た。
1.6. Production of All-Solid-State Battery According to Comparative Example 1 The all-solid-state battery according to Example 1 except that a normal amorphous Fe foil having no PPTC layer was used for the positive electrode foil instead of the amorphous Fe foil having the PPTC layer. The all-solid-state battery according to Comparative Example 1 was obtained by the same method as the manufacturing method.

1.7.比較例2に係る全固体電池の製造
PPTC層を有するアモルファスFe箔に代えて、正極箔にPPTC層を有するAl箔を用いた以外は、実施例1に係る全固体電池の製造方法と同様の方法により比較例2に係る全固体電池を得た。
1.7. Production of All-Solid State Battery According to Comparative Example 2 The method for producing an all-solid-state battery according to Example 1 is the same as that of Example 1 except that an Al foil having a PPTC layer is used as the positive electrode foil instead of the amorphous Fe foil having the PPTC layer. An all-solid-state battery according to Comparative Example 2 was obtained by the method.

1.8.比較例3に係る全固体電池の製造
PPTC層を有するアモルファスFe箔に代えて、正極箔にPPTC層を有さない通常のFe箔を用いた以外は、実施例1に係る全固体電池の製造方法と同様の方法により比較例3に係る全固体電池を得た。
1.8. Manufacture of an all-solid-state battery according to Comparative Example 3 Manufacture of an all-solid-state battery according to Example 1 except that a normal Fe foil having no PPTC layer was used for the positive electrode foil instead of the amorphous Fe foil having a PPTC layer. An all-solid-state battery according to Comparative Example 3 was obtained by the same method as the method.

1.9.比較例4に係る全固体電池の製造
PPTC層を有するアモルファスFe箔に代えて、正極箔にPPTC層を有する通常のFe箔を用いた以外は、実施例1に係る全固体電池の製造方法と同様の方法により比較例4に係る全固体電池を得た。
1.9. Production of All-Solid State Battery According to Comparative Example 4 The method for producing an all-solid-state battery according to Example 1 except that a normal Fe foil having a PPTC layer was used for the positive electrode foil instead of the amorphous Fe foil having the PPTC layer. An all-solid-state battery according to Comparative Example 4 was obtained by the same method.

2.釘刺し試験
上記により得られた全固体電池をそれぞれ2つ積層して実施例1及び比較例1〜4に係る試験用セルを作製した。次に、図2に示したように、電池供給用セルである36積層電池に並列に接続し、電池間に電流計を配置した。そして、試験用セルのSOC(充電率)が100%の状態になったとき、25℃の温度環境下で直径8mm、先端角60°の釘を、速度0.5mm/sで積層方向(図2の紙面奥手前方向)上側から試験用2積層電池の中央部に刺し、電池温度と電圧との変化を測定した。なお、釘刺しにより形成した穴の大きさは22mmであり、電池温度は熱電対を電池表面の該穴の周囲に配置して測定した。図3〜7にその結果を示した。
2. Nail piercing test Two all-solid-state batteries obtained as described above were laminated to prepare test cells according to Example 1 and Comparative Examples 1 to 4. Next, as shown in FIG. 2, the cells were connected in parallel to 36 laminated batteries, which are batteries for supplying batteries, and ammeters were arranged between the batteries. Then, when the SOC (charge rate) of the test cell reaches 100%, a nail having a diameter of 8 mm and a tip angle of 60 ° is laminated in a laminating direction at a speed of 0.5 mm / s under a temperature environment of 25 ° C. The change between the battery temperature and the voltage was measured by piercing the center of the test two-layer battery from the upper side (toward the back of the paper surface of No. 2). The size of the hole formed by nailing was 22 mm, and the battery temperature was measured by arranging a thermocouple around the hole on the surface of the battery. The results are shown in FIGS. 3 to 7.

図3に示したように、実施例1は釘刺し後においても電池温度がほとんど変化せず、温度上昇が大きく抑えられた。一方、図4、6に示したように比較例1、3は、釘刺し後に電池温度が大きく上昇した。また、図5に示したように、比較例2は約86℃まで電池温度が上昇した。図7に示したように、比較例4は約50℃まで電池温度が上昇した。 As shown in FIG. 3, in Example 1, the battery temperature hardly changed even after the nail was pierced, and the temperature rise was greatly suppressed. On the other hand, as shown in FIGS. 4 and 6, in Comparative Examples 1 and 3, the battery temperature rose significantly after the nail was pierced. Further, as shown in FIG. 5, in Comparative Example 2, the battery temperature rose to about 86 ° C. As shown in FIG. 7, in Comparative Example 4, the battery temperature rose to about 50 ° C.

3.電池性能評価試験
次にアモルファスFe箔を正極箔に用いた場合と、その他の金属箔(Al箔、Fe箔、Ni含有アモルファス合金箔(日立金属株式会社製、鋼種:2826MB、Ni−Fe−Mo−B)、Fe箔+PPTC層)を正極箔に用いた場合とで電池性能に違いが現れるかを、電池の出力及び充放電容量から評価した。使用した全固体電池は実施例1に係る全固体電池において、正極箔として用いた金属箔を上記した金属箔に変更したものである。結果を図8(a)、(b)に示した。なお、図8(b)のそれぞれの結果において、左が充電容量であり、右が放電容量である。
3. 3. Battery performance evaluation test Next, when amorphous Fe foil is used as the positive electrode foil, and other metal foils (Al foil, Fe foil, Ni-containing amorphous alloy foil (manufactured by Hitachi Metals Co., Ltd., steel type: 2826MB, Ni-Fe-Mo) -B), Fe foil + PPTC layer) was evaluated from the output and charge / discharge capacity of the battery to see if there was a difference in battery performance between the case where it was used as the positive electrode foil. The all-solid-state battery used is the all-solid-state battery according to Example 1, in which the metal foil used as the positive electrode foil is changed to the above-mentioned metal foil. The results are shown in FIGS. 8 (a) and 8 (b). In each result of FIG. 8B, the left is the charge capacity and the right is the discharge capacity.

図8(a)、(b)から明らかなように、アモルファスFe箔を正極箔に用いた場合と、その他の金属箔を正極箔に用いた場合とで、電池性能に違いは現れなかった。よって、アモルファスFe箔を正極箔に用いたとしても、電池性能は従来品と遜色がないことが分かった。 As is clear from FIGS. 8A and 8B, there was no difference in battery performance between the case where the amorphous Fe foil was used for the positive electrode foil and the case where the other metal foil was used for the positive electrode foil. Therefore, it was found that even if the amorphous Fe foil is used as the positive electrode foil, the battery performance is not inferior to that of the conventional product.

1 正極箔
2 正極合材層
3 固体電解質層
4 負極合材層
5 負極箔
6 PPTC層
10 全固体電池
1 Positive electrode foil 2 Positive electrode mixture layer 3 Solid electrolyte layer 4 Negative electrode mixture layer 5 Negative electrode foil 6 PPTC layer 10 All-solid-state battery

Claims (1)

正極箔、正極合材層、固体電解質層、負極合材層、及び負極箔をこの順で積層し、
前記正極箔はアモルファスFe箔であり、
前記正極箔と前記正極合材層との間にはPPTC層が形成されている、
全固体電池。
The positive electrode foil, the positive electrode mixture layer, the solid electrolyte layer, the negative electrode mixture layer, and the negative electrode foil are laminated in this order.
The positive electrode foil is an amorphous Fe foil.
A PPTC layer is formed between the positive electrode foil and the positive electrode mixture layer.
All solid state battery.
JP2018094604A 2018-05-16 2018-05-16 All solid state battery Active JP6907999B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018094604A JP6907999B2 (en) 2018-05-16 2018-05-16 All solid state battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018094604A JP6907999B2 (en) 2018-05-16 2018-05-16 All solid state battery

Publications (2)

Publication Number Publication Date
JP2019200911A JP2019200911A (en) 2019-11-21
JP6907999B2 true JP6907999B2 (en) 2021-07-21

Family

ID=68613217

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018094604A Active JP6907999B2 (en) 2018-05-16 2018-05-16 All solid state battery

Country Status (1)

Country Link
JP (1) JP6907999B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2023013231A1 (en) * 2021-08-05 2023-02-09

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60101870A (en) * 1983-11-08 1985-06-05 Toppan Printing Co Ltd Thin battery
JPH01221860A (en) * 1988-02-29 1989-09-05 Elna Co Ltd Secondary battery
JPH09293516A (en) * 1996-04-25 1997-11-11 Matsushita Electric Ind Co Ltd All solid lithium battery
JP4480404B2 (en) * 2004-01-21 2010-06-16 三洋電機株式会社 Non-aqueous electrolyte battery
EP2608296A1 (en) * 2011-12-21 2013-06-26 The Swatch Group Research and Development Ltd. Amorphous-metal current collector
JP5742858B2 (en) * 2013-01-15 2015-07-01 トヨタ自動車株式会社 All-solid battery and method for manufacturing the same
JP2017130283A (en) * 2016-01-18 2017-07-27 トヨタ自動車株式会社 All-solid battery
JP6465043B2 (en) * 2016-01-18 2019-02-06 トヨタ自動車株式会社 Current collector manufacturing method and solid battery manufacturing method
JP6460063B2 (en) * 2016-06-30 2019-01-30 トヨタ自動車株式会社 battery

Also Published As

Publication number Publication date
JP2019200911A (en) 2019-11-21

Similar Documents

Publication Publication Date Title
US9985314B2 (en) All-solid battery and method for manufacturing the same
US20180026301A1 (en) All solid state battery
JP6729481B2 (en) Laminated battery
JP5858325B2 (en) battery
CN108933262B (en) Electrode collector and all-solid-state battery
US20150147659A1 (en) All-solid-state battery and method for manufacturing the same
US10079383B2 (en) All-solid battery and method for manufacturing the same
DE112012004170T5 (en) Hermetically sealed lithium secondary battery
JP2018125077A (en) Negative electrode for lithium ion secondary battery
JP2014137892A (en) Electrode, all-solid-state battery, and method for manufacturing them
JP6137637B2 (en) battery
US10249880B2 (en) Method for manufacturing current collector and method for manufacturing solid battery
WO2020137388A1 (en) All-solid-state battery, and method for manufacturing all-solid-state battery
JP2016207614A (en) Solid-state battery
US20170301921A1 (en) Current collector, battery and methods for producing the same
JP7206978B2 (en) All-solid-state battery and manufacturing method thereof
CN118431457A (en) All-solid battery and manufacturing method thereof
JP2019153557A (en) Lithium ion secondary battery electrode, manufacturing method thereof, and lithium ion secondary battery
JP6907999B2 (en) All solid state battery
JP5908714B2 (en) Negative electrode for secondary battery, method for producing the same, and secondary battery
JP6988738B2 (en) Negative electrode for sulfide all-solid-state battery and sulfide all-solid-state battery
US12046757B2 (en) Electrode
JP2019220356A (en) Positive electrode material for lithium ion secondary battery, method for manufacturing the same and positive electrode active substance layer containing the same, and lithium ion secondary battery arranged by use thereof
JP2020161286A (en) All-solid battery
JP2019216080A (en) Negative electrode for lithium ion secondary battery and lithium ion secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200821

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210519

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210601

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210614

R151 Written notification of patent or utility model registration

Ref document number: 6907999

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151