JPS63137308A - Fine positioning device - Google Patents

Fine positioning device

Info

Publication number
JPS63137308A
JPS63137308A JP61283063A JP28306386A JPS63137308A JP S63137308 A JPS63137308 A JP S63137308A JP 61283063 A JP61283063 A JP 61283063A JP 28306386 A JP28306386 A JP 28306386A JP S63137308 A JPS63137308 A JP S63137308A
Authority
JP
Japan
Prior art keywords
parallel
displacement
rigid body
beam displacement
positioning device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61283063A
Other languages
Japanese (ja)
Other versions
JPH071450B2 (en
Inventor
Kiyoshi Nagasawa
潔 長澤
Kozo Ono
耕三 小野
Kojiro Ogata
緒方 浩二郎
Takeshi Murayama
健 村山
Yoshihiro Hoshino
星野 ▲吉▼弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Construction Machinery Co Ltd
Original Assignee
Hitachi Construction Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Construction Machinery Co Ltd filed Critical Hitachi Construction Machinery Co Ltd
Priority to JP61283063A priority Critical patent/JPH071450B2/en
Priority to DE3788773T priority patent/DE3788773T2/en
Priority to EP87201701A priority patent/EP0264147B1/en
Publication of JPS63137308A publication Critical patent/JPS63137308A/en
Priority to US07/244,101 priority patent/US4991309A/en
Priority to US07/244,169 priority patent/US4920660A/en
Priority to US07/244,168 priority patent/US4888878A/en
Priority to US07/244,102 priority patent/US5005298A/en
Publication of JPH071450B2 publication Critical patent/JPH071450B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y15/00Nanotechnology for interacting, sensing or actuating, e.g. quantum dots as markers in protein assays or molecular motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q1/00Members which are comprised in the general build-up of a form of machine, particularly relatively large fixed members
    • B23Q1/25Movable or adjustable work or tool supports
    • B23Q1/26Movable or adjustable work or tool supports characterised by constructional features relating to the co-operation of relatively movable members; Means for preventing relative movement of such members
    • B23Q1/34Relative movement obtained by use of deformable elements, e.g. piezoelectric, magnetostrictive, elastic or thermally-dilatable elements
    • B23Q1/36Springs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q15/00Automatic control or regulation of feed movement, cutting velocity or position of tool or work
    • B23Q15/20Automatic control or regulation of feed movement, cutting velocity or position of tool or work before or after the tool acts upon the workpiece
    • B23Q15/22Control or regulation of position of tool or workpiece
    • B23Q15/24Control or regulation of position of tool or workpiece of linear position
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/19Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path
    • G05B19/21Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path using an incremental digital measuring device
    • G05B19/23Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path using an incremental digital measuring device for point-to-point control
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/41Servomotor, servo controller till figures
    • G05B2219/41133Compensation non linear transfer function
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/41Servomotor, servo controller till figures
    • G05B2219/41352Alternative clamping dilation of piezo, caterpillar motion, inchworm

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Nanotechnology (AREA)
  • Human Computer Interaction (AREA)
  • Molecular Biology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Control Of Position Or Direction (AREA)

Abstract

PURPOSE:To prevent the generation of horizontal displacement by constituting parallel flexible beam displacing mechanisms whose parallel driving directions are respectively crossed at right angles on projecting parts rectangular to each other. CONSTITUTION:The titled device is constituted of a central rigid part 15, projecting parts 16a, 16b, 17a, 17b, fixing parts 18a, 18b, fine table coupling parts 19a, 19b, a fine movement table 20, and parallel flexible beam displacing mechanisms 16F(16Fxa, 16Fxb), 17F(17Fya, 17xb) generating parallel displacement in the x and y axes directions. The parallel flexible beam displacing mechanisms 16F, 17F are respectively fixed on the projecting parts 16a, 16b, 17a, 17b and the table 20 is fixed on the projecting parts 17a, 17b. Consequently, the generation of horizontal displacement can be prevented and the parallel displacement of two axes can be obtained with a simple and small constitution.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、半導体製造装置、電子顕微鏡等のサブμmオ
ーダの調節を必要とする装置に使用される微細位置決め
装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a fine positioning device used in devices that require adjustment on the sub-μm order, such as semiconductor manufacturing equipment and electron microscopes.

〔従来の技術〕[Conventional technology]

近年、各種技術分野においては、サブμmのオーダーの
微細な変位調節が可能である装置が要望されている。そ
の典型的な例がLSI(大規模集積回路)、超LSIの
製造工程において使用されるマスクアライナ、電子線描
画装置等の半導体製造装置である。これらの装置におい
ては、サブμmオーダーの微細な位置決めが必要であり
、位置決めの精度が向上するにしたがってその集積度も
増大し、高性能の製品を製造することができる。
In recent years, in various technical fields, there has been a demand for devices capable of fine displacement adjustment on the order of sub-μm. Typical examples are semiconductor manufacturing equipment such as mask aligners and electron beam lithography equipment used in the manufacturing process of LSIs (Large Scale Integrated Circuits) and VLSIs. These devices require fine positioning on the order of sub-μm, and as the positioning accuracy improves, the degree of integration also increases, making it possible to manufacture high-performance products.

このような微細な位置決めは上記半導体装置に限らず、
電子顕微鏡をはじめとする各種の高倍率光学装置等にお
いても必要であり、その精度向上により、バイオテクノ
ロジ、宇宙開発等の先端技術においてもそれらの発展に
大きく寄与するものである。
Such fine positioning is not limited to the above semiconductor devices,
It is also necessary for various high-magnification optical devices such as electron microscopes, and its improved accuracy will greatly contribute to the development of advanced technologies such as biotechnology and space exploration.

従来、このような微細位置決め装置は、例えば「機械設
計」誌、第27巻第1号(1983年1月号)の第32
頁乃至第36頁に示されるような種々の型のものが提藁
されている。これらのうち、特に面倒な変位縮小機構が
不要であり、かつ、構成が簡単である点で、平行ばねと
微動アクチュエータを用いた型の微細位置決め装置が優
れていると考えられるので、以下、これを第4図に基づ
い説明する。
Conventionally, such a fine positioning device has been described, for example, in "Mechanical Design" magazine, Vol. 27, No. 1 (January 1983 issue), No. 32.
Various types have been proposed, as shown on pages 36 to 36. Among these, a type of fine positioning device using a parallel spring and a fine movement actuator is considered to be superior in that it does not require a particularly troublesome displacement reduction mechanism and has a simple configuration. will be explained based on FIG.

第6図は従来の微細位置決め装置の側面図である0図で
、1は支持台、2a、2bは支持台1上に互いに平行に
固定された板状の平行ばね、3は平行ばね2a、  2
b上に固定された剛性の高い微動テーブルである。4は
支持台1と微動テーブル3との間に装架された微動アク
チュエータである。
FIG. 6 is a side view of a conventional fine positioning device, in which 1 is a support base, 2a and 2b are plate-shaped parallel springs fixed parallel to each other on the support base 1, 3 is a parallel spring 2a, 2
This is a highly rigid fine movement table fixed on the top. Reference numeral 4 denotes a fine movement actuator mounted between the support base 1 and the fine movement table 3.

この微動アクチュエータ4には、圧電素子、電磁ソレノ
イド等が用いられ、これを励起することにより、微動テ
ーブル3に図中に示す座標軸のX軸方向の力が加えられ
る。
This fine movement actuator 4 uses a piezoelectric element, an electromagnetic solenoid, etc., and by exciting it, a force is applied to the fine movement table 3 in the X-axis direction of the coordinate axis shown in the figure.

ここで、平行ばね2a、2bはその構造上、X軸方向の
剛性は低く、これに対してz軸方向、y軸方向(紙面に
垂直な方向)の剛性が高いので、微動アクチュエータが
励起されると、微動テーブル3はほぼX軸方向にのみ変
位し、他方向の変位はほとんど発生しない。
Here, due to their structure, the parallel springs 2a and 2b have low rigidity in the X-axis direction, but have high rigidity in the z-axis and y-axis directions (directions perpendicular to the paper), so the fine movement actuator is excited. Then, the fine movement table 3 is displaced almost only in the X-axis direction, and almost no displacement occurs in other directions.

第7図は前述の参考文献に開示された例から容易に考え
られる従来の他の微細位置決め装置の斜視図である。図
で、6は支持台、7a、7bは支持台6上に互いに固定
された板状の平行ばね、8は平行ばね7a、7bに固定
された剛性の高い中間テーブル、9a、9bは平行ばね
7a、7bと直交する方向において互いに平行に中間テ
ーブル8に固定された板状の平行ばね、10は平行ばね
9a、9b上に固定された剛性の高い微動テーブルであ
る。座標軸を図中に示すように定めると、平行ばね7a
、7bはX軸方向に沿って配置され、平行ばね9a、9
bはy軸方向に沿って配置されている。この構造は、基
本的には第6図に示す1軸(X軸方向の変位を生じる)
の場合の構造を2段に積層した構造である。矢印F8は
微動テーブル10に加えられるX軸方向の力、矢印Fy
は中間テーブル8に加えられるy軸方向の力を示し、力
Fx、F、を加えることができる図示されていない微動
アクチュエータが支持台6と微動テーブル101支持台
6と中間テーブル8との間にそれぞれ設けられる。
FIG. 7 is a perspective view of another conventional fine positioning device that can be easily considered from the example disclosed in the above-mentioned reference document. In the figure, 6 is a support base, 7a and 7b are plate-shaped parallel springs fixed to each other on the support base 6, 8 is a highly rigid intermediate table fixed to the parallel springs 7a and 7b, and 9a and 9b are parallel springs. A plate-shaped parallel spring is fixed to the intermediate table 8 in parallel with each other in a direction perpendicular to 7a and 7b, and 10 is a highly rigid fine movement table fixed on the parallel springs 9a and 9b. If the coordinate axes are set as shown in the figure, the parallel spring 7a
, 7b are arranged along the X-axis direction, and parallel springs 9a, 9
b is arranged along the y-axis direction. This structure basically consists of one axis (displacement in the X-axis direction) as shown in Figure 6.
This is a structure in which the structure in the case of 2 is stacked in two layers. Arrow F8 is a force applied to the fine movement table 10 in the X-axis direction, arrow Fy
indicates a force in the y-axis direction applied to the intermediate table 8, and a fine movement actuator (not shown) capable of applying forces Fx, F is provided between the support stand 6 and the fine movement table 101 and the support stand 6 and the intermediate table 8. Each is provided.

微動テーブル10に力F、が加えられると、平行ばね9
a、9bが変形し、一方、平行ばね7 a +7bはX
軸方向の力F、に対しては高い剛性有するので、微動テ
ーブル10はほぼX軸方向のみ変位する。また、中間テ
ーブル8に力F、が加えられると、平行ばね7a、7b
が変形し、微動テーブル10は平行ばね9a、9bを介
してほぼy軸方向にのみ変位する。さらに、両方の力F
、、F。
When a force F is applied to the fine movement table 10, the parallel spring 9
a, 9b are deformed, while parallel spring 7a + 7b is
Since it has high rigidity against the axial force F, the fine movement table 10 is displaced approximately only in the X-axis direction. Furthermore, when a force F is applied to the intermediate table 8, the parallel springs 7a and 7b
is deformed, and the fine movement table 10 is displaced approximately only in the y-axis direction via the parallel springs 9a and 9b. Furthermore, both forces F
,,F.

が同時に加えられると、各平行ばね7a、7b。are applied simultaneously, each parallel spring 7a, 7b.

9a、9bは同時に変形し、微動テーブルlOはこれに
応じて2次元的に変位する。
9a and 9b are deformed simultaneously, and the fine movement table IO is two-dimensionally displaced accordingly.

このように、第7図に示す装置は、第6図に示す装置が
1軸方向のみの位置決め装置であるのに対して2軸方向
の位置決めを行うことができる。
In this way, the device shown in FIG. 7 can perform positioning in two axial directions, whereas the device shown in FIG. 6 is a positioning device in only one axial direction.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところで、第6図および第7図に示す微細位置決め装置
は、1次元および2次元の位置決めができるが、例えば
、第6図に示す微細位置決め装置において、平行ばね2
a、2bがX軸方向に押されて変形したとき、微動テー
ブル3はX軸方向に変位するとともに、極く僅かではあ
るがZ軸方向下向きにも変位を生じる。このような横変
位が発生することはその構造上明らかである。又、第7
図に示す微細位置決め装置においても、同様に2軸方向
下向きの横変位が発生するのは明らかである。そして、
サブμmオーダの微細位置決めを行う場合、このような
掻く僅かな横変位も無視できなくなる。
By the way, the fine positioning device shown in FIGS. 6 and 7 is capable of one-dimensional and two-dimensional positioning. For example, in the fine positioning device shown in FIG.
When a and 2b are pushed and deformed in the X-axis direction, the fine movement table 3 is displaced in the X-axis direction, and is also slightly displaced downward in the Z-axis direction. It is obvious from the structure that such lateral displacement occurs. Also, the seventh
It is clear that downward lateral displacement in the two axial directions similarly occurs in the fine positioning device shown in the figure. and,
When performing fine positioning on the order of sub-μm, such slight lateral displacement cannot be ignored.

さらに、X軸方向およびy軸方向の2軸の変位を実施し
ようとする場合、第7図に示す装置ではy軸方向の寸法
が大きくなり、さらにy軸方向の変位や、X軸、y軸、
2軸まわりの変位を発生する装置を付加しようとする場
合、微細位置決め装置全体が大形となるのを避けること
はできない。
Furthermore, when attempting to perform displacement in two axes, the X-axis direction and the y-axis direction, the device shown in FIG. ,
When attempting to add a device that generates displacement around two axes, it is unavoidable that the entire fine positioning device becomes large.

本発明の目的は、上記従来技術の問題点を解決し、横変
位の発生を防止することができ、かつ、構造簡単で小型
に構成することができる微細位置決め装置を提供するに
ある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a fine positioning device which can solve the problems of the prior art described above, can prevent the occurrence of lateral displacement, and can be constructed with a simple and compact structure.

〔問題点を解決するための手段〕[Means for solving problems]

上記の目的を達成するため、本発明は、中心剛体部から
、直交する2つの軸のうちの第1の軸方向に沿って張出
した1対の第1の張出し部と、第2の軸方向に沿って張
出した他の1対の第2の張出し部とを備え、第1の張出
し部の一方側の張り出し部および他方側の張出し部のそ
れぞれに平行たわみ梁変位機構を設け、両側の平行たわ
み梁変位機構が互いに中心剛体部を中心に対称に配置さ
れており、かつ、平行たわみ梁変位機構は第2の軸方向
の並進変位を発生させ、又、第2の張出し部の一方側の
張出し部および他方側の張出し部のそれぞれに平行たわ
み梁変位機構を中心剛体部を中心に互いに対称になるよ
うに配置し、それら各平行たわみ梁変位機構は第1の軸
方向の並進変位を発生させるようにしたことを特徴とす
る。
In order to achieve the above object, the present invention provides a pair of first overhanging parts that overhang from a central rigid body part along the first axial direction of two orthogonal axes, and and another pair of second overhangs extending along the first overhang, and a parallel deflection beam displacement mechanism is provided on each of the overhang on one side and the overhang on the other side of the first overhang. The flexible beam displacement mechanisms are arranged symmetrically to each other about the central rigid body part, and the parallel flexible beam displacement mechanism generates a translational displacement in the second axial direction, and the parallel flexible beam displacement mechanism generates a translational displacement in the second axial direction. Parallel flexible beam displacement mechanisms are arranged in each of the overhanging part and the other side overhang part so as to be symmetrical with respect to the central rigid body part, and each of the parallel flexible beam displacement mechanisms generates a translational displacement in the first axial direction. It is characterized by being made to do.

〔作用〕[Effect]

2つの平行たわみ梁変位機構によりX軸、y軸のうちの
任意の方向又はそれらの合成方向に並進変位を生じさせ
る。
Translational displacement is caused in any direction of the X-axis and y-axis, or in a composite direction thereof, by two parallel deflection beam displacement mechanisms.

〔実施例〕〔Example〕

以下、本発明を図示の実施例に基づいて説明する。 Hereinafter, the present invention will be explained based on illustrated embodiments.

第1図は本発明の第1の実施例に係る微細位置決め装置
の分解斜視図である。図で、x、y、zは互いに直交す
る座標軸を示す、15は剛性の高い部材より成る中心剛
体部、16aは中心剛体部15からy軸方向に張出した
張出し部、16bは中心剛体部15から張出し部16a
と反対向きに張出した張出し部、17aは中心剛体部1
5からX軸方向に張出した張出し部、17bは中心剛体
部15から張出し部17aと反対向きに張出した張出し
部である。18a、18bはそれぞれ張出し部16a、
16bの端部下端に設けられた固定部、19a、19b
はそれぞれ張出し部17a。
FIG. 1 is an exploded perspective view of a fine positioning device according to a first embodiment of the present invention. In the figure, x, y, and z indicate coordinate axes that are orthogonal to each other, 15 is a central rigid body part made of a highly rigid member, 16a is an overhanging part extending from the central rigid body part 15 in the y-axis direction, and 16b is a central rigid body part 15 From the overhanging part 16a
The overhanging part 17a that overhangs in the opposite direction is the central rigid body part 1.
An overhanging portion 17b overhanging from the central rigid body portion 15 in the X-axis direction is an overhanging portion extending from the central rigid body portion 15 in the opposite direction to the overhanging portion 17a. 18a and 18b are the overhanging portions 16a and 18b, respectively.
Fixing parts provided at the lower end of the end of 16b, 19a, 19b
are overhanging portions 17a, respectively.

17bの端部上端に設けられた微動テーブル連結部、2
0は微動テーブルである。
A fine movement table connecting portion provided at the upper end of 17b, 2
0 is a fine movement table.

張出し部16a、16b、17a、17b、固定部18
a、18b、および微動テーブル連結部19a、19b
はそれぞれ中心剛体部15と同じ部材で構成され、中心
剛体部15とともに1つのブロックから加工成形される
Overhanging parts 16a, 16b, 17a, 17b, fixed part 18
a, 18b, and fine movement table connection parts 19a, 19b
are each made of the same material as the central rigid body part 15, and are processed and formed together with the central rigid body part 15 from one block.

16 F、a、  16 F、hはそれぞれ張出し部1
6a。
16 F, a, 16 F, h are respectively overhang parts 1
6a.

16bに構成された平行たわみ梁変位機構であり、互い
に中心剛体部15に対して対称的に構成されている。平
行たわみ梁変位機構16F、□16F、bは共働してX
軸方向の並進変位を発生する。17Fy□17Fybは
それぞれ張出し部172.17bに構成された平行たわ
み梁変位機構であり、互いに中心剛体部15に対して対
称的に構成されている。平行たわみ梁変位機FIL 7
 F、−、17Fyhは共働してy軸方向の並進変位を
発生する。なお、平行たわみ梁変位機構の構造について
は後述する。
16b, and are configured symmetrically with respect to the central rigid body portion 15. The parallel deflection beam displacement mechanisms 16F, □16F, b work together to
Generates axial translational displacement. 17Fy□17Fyb are parallel deflection beam displacement mechanisms respectively constructed on the overhanging portions 172 and 17b, and are constructed symmetrically with respect to the central rigid body portion 15. Parallel deflection beam displacement machine FIL 7
F, -, 17Fyh work together to generate a translational displacement in the y-axis direction. The structure of the parallel deflection beam displacement mechanism will be described later.

上記平行たわみ梁変位機構16 FX−、16F−b。The above parallel deflection beam displacement mechanism 16 FX-, 16F-b.

17 F、、、  17 Fybは各張出し部16a、
16b。
17 F, 17 Fyb is each overhang portion 16a,
16b.

17a、17bの所定個所に所定の貫通孔を形成するこ
とにより構成される。なお、Sは各平行たわみ梁変位機
構に設けられたストレンゲージである。
It is constructed by forming predetermined through holes at predetermined locations of 17a and 17b. Note that S is a strain gauge provided in each parallel deflection beam displacement mechanism.

次に、上記平行たわみ梁変位機構の構成を図により説明
する。第2図(a)、(b)は対称形の平行たわみ梁変
位機構の側面図である。図で、31a、31b、31c
は剛体部、34a+、34azは剛体部31c、31a
間に互いに平行に連結された平行たわみ梁である。平行
たわみ梁34a、。
Next, the configuration of the parallel deflection beam displacement mechanism will be explained with reference to the drawings. FIGS. 2(a) and 2(b) are side views of a symmetrical parallel beam displacement mechanism. In the figure, 31a, 31b, 31c
is a rigid body part, 34a+, 34az are rigid body parts 31c, 31a
These are parallel flexible beams connected parallel to each other in between. Parallel flexible beam 34a.

34atは剛体部にあけた貫通孔32aにより形成され
る。34J、34t1gは剛体部31b。
34at is formed by a through hole 32a drilled in the rigid body part. 34J and 34t1g are rigid body parts 31b.

31c間に互いに平行に連結された平行たわみ梁であり
、剛体部にあけられた貫通孔32bにより形成される。
31c are parallel flexible beams connected in parallel to each other, and are formed by through holes 32b drilled in the rigid body part.

36a、36bは圧電アクチュエータであり、それぞれ
貫通孔32a、32b内に突出した剛体部からの突出部
間に装着されている。
Piezoelectric actuators 36a and 36b are mounted between protrusions from the rigid body parts protruding into the through holes 32a and 32b, respectively.

剛体部31cの中心から左方の構成により平行たわみ梁
変位機構39aが、又、右方の構成により平行たわみ梁
変位機構39bが構成される。Sは各平行たわみ梁の適
所に設けられたストレンゲージである。
The configuration to the left of the center of the rigid body portion 31c constitutes a parallel flexible beam displacement mechanism 39a, and the configuration to the right constitutes a parallel flexible beam displacement mechanism 39b. S is a strain gauge provided at a suitable position on each parallel flexible beam.

ここで、座標軸を図示のように定める(y軸は紙面に垂
直な方向)、今、圧電アクチュエータ36a、36bに
同時に電圧を印加して同一大きさのZ軸方向の力fを発
生させる。このとき、一方の平行たわみ梁変位機構、例
えば平行たわみ梁変位機構39aに生じる変位について
考える。圧電アクチュエータ36aに電圧が印加される
ことにより、剛体部31cは力fによりz軸方向に押圧
されることになる。このため、平行たわみ梁34aI、
34a*は第4図に示す平行ばね2a。
Here, the coordinate axes are determined as shown (the y-axis is perpendicular to the plane of the paper), and voltages are simultaneously applied to the piezoelectric actuators 36a and 36b to generate the same force f in the Z-axis direction. At this time, consider the displacement that occurs in one parallel flexible beam displacement mechanism, for example, the parallel flexible beam displacement mechanism 39a. By applying a voltage to the piezoelectric actuator 36a, the rigid body portion 31c is pressed in the z-axis direction by a force f. For this reason, the parallel deflection beam 34aI,
34a* is the parallel spring 2a shown in FIG.

2bと同じように曲げ変形を生じ、剛体部319は第2
図(b)に示すように2軸方向に変位する。
Similar to 2b, bending deformation occurs, and the rigid body part 319
As shown in Figure (b), it is displaced in two axial directions.

このとき、仮に他方の平行たわみ梁変位機構39bが存
在しないとすると剛体部31cには極めて微小ではある
が横変位(X軸方向の変位)をも同時に生じるはずであ
る。
At this time, if the other parallel deflection beam displacement mechanism 39b were not present, a very small lateral displacement (displacement in the X-axis direction) would also occur in the rigid body portion 31c at the same time.

又、平行たわみ梁変位機構39aが存在しない場合、他
方の平行たわみ梁変位機構39bに生じる変位について
考えると、平行たわみ梁変位機構39bは剛体部31c
の中心を通るy軸方向に沿う面(基準面)に対して平行
たわみ梁変位機構39aと面対称に構成されていること
から、基準面に関して面対称な力fを受けると上記と同
様に、剛体部31cにはz軸方向の変位と同時に上記横
変位が生じ、その大きさや方向は、平行たわみ梁変位機
構39aのそれと基準面に関して面対称となる。すなわ
ち、上記横変位についてみると、平行たわみ梁変位機構
39aに生じる横変位は、X軸方向の変位については図
で左向き、y軸まわりの回転変位については図で反時計
方向に生じ、一方、平行たわみ梁変位機構39bに生じ
る横変位は、X軸方向変位については図で右向き、y軸
まわりの回転変位については図で時計方向に生じる。
Moreover, when considering the displacement that occurs in the other parallel flexible beam displacement mechanism 39b when the parallel flexible beam displacement mechanism 39a does not exist, the parallel flexible beam displacement mechanism 39b is the rigid body part 31c.
Since it is constructed in plane symmetry with the parallel deflection beam displacement mechanism 39a with respect to the plane (reference plane) along the y-axis direction passing through the center of The above-mentioned lateral displacement occurs in the rigid portion 31c at the same time as the displacement in the z-axis direction, and its magnitude and direction are symmetrical with respect to the reference plane with respect to the parallel deflection beam displacement mechanism 39a. That is, regarding the above-mentioned lateral displacement, the lateral displacement that occurs in the parallel deflection beam displacement mechanism 39a occurs in the left direction in the figure for displacement in the X-axis direction, and counterclockwise in the figure for rotational displacement around the y-axis. The lateral displacement that occurs in the parallel deflection beam displacement mechanism 39b occurs in the right direction in the figure for displacement in the X-axis direction, and clockwise in the figure for rotational displacement around the y-axis.

そして、それら各X軸方向変位の大きさおよびy軸まわ
りの回転変位の大きさは等しい、したがって、両者に生
じる横変位は互いにキャンセルされる。この結果、力f
が加わったことにより、各平行たわみ梁34a+、34
a、、34b+、34bzにその長手方向の伸びによる
僅かな内部応力の増大が生じるだけで、剛体部31cは
z軸方向のみの変位(主変位)εを生じる。
The magnitude of each displacement in the X-axis direction and the magnitude of rotational displacement around the y-axis are equal, and therefore, the lateral displacements occurring in both cancel each other out. As a result, the force f
By adding , each parallel flexible beam 34a+, 34
A, , 34b+, 34bz generate only a slight increase in internal stress due to their longitudinal extension, and the rigid body portion 31c produces a displacement (principal displacement) ε only in the z-axis direction.

圧電アクチュエータ36a、36bに印加されている電
圧が除かれると、各平行たわみ梁34a+。
When the voltage applied to the piezoelectric actuators 36a, 36b is removed, each parallel flexible beam 34a+.

34at、34b、34btは変形前の状態に復帰し、
平行たわみ梁変位機構39a、39bは第3図(a)に
示す状態に戻り、変位εは0となる。
34at, 34b, and 34bt return to the state before deformation,
The parallel deflection beam displacement mechanisms 39a and 39b return to the state shown in FIG. 3(a), and the displacement ε becomes zero.

なお、上記の作動中、各ストレンゲージSを用いて実際
の変位量を検出し、これに基づいてフィードバック制御
を行うことにより正確な位置決めを実施することができ
る。
Note that during the above operation, accurate positioning can be performed by detecting the actual displacement amount using each strain gauge S and performing feedback control based on this.

次に、第1図に示す本実施例の動作を説明する。Next, the operation of this embodiment shown in FIG. 1 will be explained.

今、平行たわみ梁変位機構16 F−、16FXbの各
圧電アクチュエータに等しい電圧を印加すると、その平
行たわみa34a1.34at、34b1.34btが
印加電圧に応じて第1図のX軸方向に第2図(b)に示
ように変形し、並進変位する。
Now, when an equal voltage is applied to each piezoelectric actuator of the parallel deflection beam displacement mechanisms 16F- and 16FXb, the parallel deflections a34a1.34at and 34b1.34bt change in the X-axis direction of FIG. 1 according to the applied voltage as shown in FIG. It deforms and undergoes translational displacement as shown in (b).

これら平行たわみ梁変位機構16 F、、、 16 F
、。
These parallel deflection beam displacement mechanisms 16F,..., 16F
,.

は、中心剛体部15、平行たわみ梁変位機構17Fy、
、  17 F、、、および固定部19aに固定された
微動テーブル20と一体であるので、そのX軸方向の並
進変位はそのまま微動テーブル2oに伝達され、微動テ
ーブル2oは同量だけX軸方向に並進変位する。同様に
、平行たわみ梁変位機構17 Fyll 7 Fybの
圧電アクチュエータに同一電圧を印加した場合、微動テ
ーブル20はy軸方向に並進変位する。さらに、これら
各平行たわみ梁変位機構を同時に駆動すると、合成され
た並進変位を得ることができる。
are the central rigid body part 15, the parallel deflection beam displacement mechanism 17Fy,
, 17 F, , and are integrated with the fine movement table 20 fixed to the fixed part 19a, the translational displacement in the X-axis direction is directly transmitted to the fine movement table 2o, and the fine movement table 2o moves by the same amount in the X-axis direction. Translationally displaced. Similarly, when the same voltage is applied to the piezoelectric actuator of the parallel deflection beam displacement mechanism 17 Fyll 7 Fyb, the fine movement table 20 is translated in the y-axis direction. Furthermore, by simultaneously driving each of these parallel deflection beam displacement mechanisms, a combined translational displacement can be obtained.

このように、本実施例では、一方の張出し部にX軸方向
に並進変位する平行たわみ梁変位機構を設け、他方の張
出し部にy軸方向に並進変位する平行たわみ梁変位機構
を設け、一方の張出し部の端部を固定し、他方の張出し
部の端部に微動テーブルを固定したので、横変位を防止
することができるとともに、極めて簡単かつ小形の構成
で2軸の並進変位を得ることができる。
As described above, in this embodiment, one of the overhangs is provided with a parallel flexible beam displacement mechanism that translates in the X-axis direction, and the other overhang is provided with a parallel flexible beam displacement mechanism that translates in the Y-axis direction. Since the end of one overhang is fixed and the fine movement table is fixed to the end of the other overhang, lateral displacement can be prevented and two-axis translational displacement can be obtained with an extremely simple and compact configuration. I can do it.

第3図は本発明の第2の実施例に係る微細位置決め装置
の分解斜視図である0図で、第1図に示す部分と同一部
分には同一符号を付して説明を省略する。21は剛性の
高い部材より成る中心剛体部であり、微動テーブル20
が固定される。22aは中心剛体部21からX軸方向に
張出した張出し部、22bは中心剛体部21から張出し
部22aと反対向きに張出した張出し部である。23a
FIG. 3 is an exploded perspective view of a fine positioning device according to a second embodiment of the present invention, and the same parts as those shown in FIG. 1 are given the same reference numerals and their explanation will be omitted. Reference numeral 21 denotes a central rigid body portion made of a highly rigid member, and the fine movement table 20
is fixed. Reference numeral 22a denotes an overhanging portion extending from the central rigid body portion 21 in the X-axis direction, and 22b represents an overhanging portion extending from the central rigid body portion 21 in the opposite direction to the overhanging portion 22a. 23a
.

23bはそれぞれ張出し部22a、22bの端部下方か
ら突出した固定部であり、固定部19a。
Reference numeral 23b denotes a fixing portion protruding from below the ends of the overhanging portions 22a and 22b, respectively, and is the fixing portion 19a.

19′bと結合される。この結合の1個所が2点鎖線で
示されている。中心剛体部21、各張出し部22a、2
2b、および連結部23a、23bはそれぞれ1つの部
材から一体に加工成形される。
19'b. One location of this bond is indicated by a chain double-dashed line. Center rigid body part 21, each overhanging part 22a, 2
2b and the connecting portions 23a, 23b are each integrally formed from one member.

22 F−−、22F−bはそれぞれ張出し部22a。22F-- and 22F-b are respective overhanging portions 22a.

22bに構成された第2図(a)に示すものと同じ平行
たわみ梁変位機構であり、互いに中心剛体部21に対し
て対称的に配置されている。これら平行たわみ梁変位機
構22F1□ 22F−bは共働してy軸方向の並進変
位を発生する。平行たわみ梁変位機構22 F、、、 
 22 F−hは各張出し部22a、22bの所定個所
に所定の貫通孔を形成することにより構成される。
22b is the same parallel flexible beam displacement mechanism as shown in FIG. These parallel deflection beam displacement mechanisms 22F1□ 22F-b work together to generate translational displacement in the y-axis direction. Parallel deflection beam displacement mechanism 22 F...
22F-h is constructed by forming a predetermined through hole at a predetermined location of each of the overhanging portions 22a and 22b.

次に本実施例の動作を説明する。張出し部17a、17
bと張出し部22a、22bとは連結されており、かつ
、中心剛体部21と微動テーブル20も連結されている
ので、平行たわみ梁変位機構16F−=  16F*b
、17FF−9−17Fybにより発生した並進変位は
そのまま微動テーブル20を並進変位させる。端部22
a、22bは、端部17a、17b、平行たわみ梁変位
機構17 F、、。
Next, the operation of this embodiment will be explained. Overhanging parts 17a, 17
b and the overhanging parts 22a and 22b are connected, and the central rigid body part 21 and the fine movement table 20 are also connected, so the parallel deflection beam displacement mechanism 16F-= 16F*b
, 17FF-9-17Fyb directly translates the fine movement table 20. End portion 22
a, 22b are end portions 17a, 17b, parallel deflection beam displacement mechanism 17F, .

17F、い中心剛体部15、平行たわみ梁変位機構16
 F、、、  16 Fx&、および端部16a、16
bを介して固定部18a、18bに固定されている。し
たがって、平行たわみ梁変位機構22 F、、。
17F, central rigid body part 15, parallel deflection beam displacement mechanism 16
F,,, 16 Fx&, and end portions 16a, 16
It is fixed to fixed parts 18a and 18b via b. Therefore, the parallel deflection beam displacement mechanism 22F, .

22F−bの各圧電アクチュエータに同一電圧を印加す
ると、これら平行たわみ梁変位機構22F、、。
When the same voltage is applied to each piezoelectric actuator of 22F-b, these parallel deflection beam displacement mechanisms 22F, .

22F−bは第2図(b)に示すように変位し、微動テ
ーブル20も2軸方向に同一量変位する。
22F-b is displaced as shown in FIG. 2(b), and the fine movement table 20 is also displaced by the same amount in the two axial directions.

このように、本実施例では、さきの実施例に、さらにy
軸方向の並進変位を発生する平行たわみ梁変位機構を連
結したので、横変位を防止できるとともに、簡単かつ小
形の構成で3軸の並進変位を得ることができる。
In this way, in this example, in addition to the previous example, y
Since the parallel flexible beam displacement mechanism that generates translational displacement in the axial direction is connected, lateral displacement can be prevented, and translational displacement in three axes can be obtained with a simple and compact configuration.

第4図は本発明の第3の実施例に係る微細位置決め装置
の分解斜視図である0図で、第1図に示す部分と同一部
分には同一符号を付して説明を省略する。26は剛性の
高い部材より成る中心剛体部であり、微動テーブル20
が結合される。その結合の1個所が2点鎖線で示されて
いる。27aは中心剛体部26からX軸方向に張出した
張出し部、27bは中心剛体部26から張出した張出し
部である。張出し部27aと端部17a、および張出し
部27bと端部17bとはそれぞれ連結さ   ゛れて
いる。その結合の1個所が2点鎖線で示されている。
FIG. 4 is an exploded perspective view of a fine positioning device according to a third embodiment of the present invention, and the same parts as those shown in FIG. Reference numeral 26 denotes a central rigid body portion made of a highly rigid member, and the fine movement table 20
are combined. One location of the bond is indicated by a two-dot chain line. 27a is an overhanging portion extending from the central rigid body portion 26 in the X-axis direction, and 27b is an overhanging portion extending from the central rigid body portion 26. The overhanging portion 27a and the end portion 17a and the overhanging portion 27b and the end portion 17b are connected, respectively. One location of the bond is indicated by a two-dot chain line.

27 M、、、  27 M、bはそれぞれ張出し部2
7a。
27 M, , 27 M and b are respectively the overhanging parts 2
7a.

27bに構成された放射たわみ梁変位機構であり、互い
に中心剛体部26に対して対称的に配置されている。こ
れら平行たわみ梁変位機構27 M、、。
27b, which are arranged symmetrically with respect to the central rigid body part 26. These parallel deflection beam displacement mechanisms 27 M, .

21Mmbは共働して2軸まわりの回転変位を発生する
。これら放射たわみ梁変位機構27 M、、。
21Mmb work together to generate rotational displacement around two axes. These radial deflection beam displacement mechanisms 27 M, .

27M−bはそれぞれ所定個所に所定の貫通孔を形成す
ることにより構成される。なお、放射たわみ梁変位機構
の構造については後述する。各放射たわみ梁変位機構2
7M、□ 27M、い中心剛体部26、張出し部27a
、27bは一体に加工成形される。
27M-b is constructed by forming predetermined through holes at predetermined locations, respectively. The structure of the radial deflection beam displacement mechanism will be described later. Each radial deflection beam displacement mechanism 2
7M, □ 27M, center rigid body part 26, overhang part 27a
, 27b are integrally processed and molded.

次に、上記放射たわみ梁変位機構の構成を図によ゛り説
明する。第5図(a)、  (b)は対称形の放射たわ
み梁変位機構の側面図である。
Next, the configuration of the radial deflection beam displacement mechanism will be explained with reference to the drawings. FIGS. 5(a) and 5(b) are side views of a symmetrical radial beam displacement mechanism.

図で、41 a、41 t)+  41 cは剛体部、
44a1,44az 、441)+、44btは放射た
わみ梁である。各放射たわみ梁44a+’、44ag、
44b+、44btは剛体部41cの中心を通る紙面に
垂直な軸0に対して一点fltmt、+、t、*に沿っ
て放射状に延びており、それぞれ隣接する剛体部間を連
結している。放射たわみ梁44a+、44agは貫通孔
42aをあけることにより形成され、又、放射たわみ梁
44b+、44bzは貫通孔42bをあけることにより
形成される。46a、46bは圧電アクチュエータであ
り、それぞれ貫通孔42a、42bに剛体部から突出し
た突出部間に装着されている。軸Oの左側の構成により
放射たわみ梁変位機構498が、又、右側の構成により
放射たわみ梁変位機構49bが構成される。なお、Sは
放射たわみ梁の適所に設けられたストレンゲージである
In the figure, 41 a, 41 t) + 41 c are rigid parts,
44a1, 44az, 441)+, and 44bt are radial deflection beams. Each radial deflection beam 44a+', 44ag,
44b+ and 44bt extend radially along one point fltmt, +, t, * with respect to the axis 0 perpendicular to the paper plane passing through the center of the rigid body part 41c, and connect adjacent rigid body parts, respectively. The radial bending beams 44a+, 44ag are formed by drilling the through hole 42a, and the radial bending beams 44b+, 44bz are formed by drilling the through hole 42b. Piezoelectric actuators 46a and 46b are mounted between protrusions protruding from the rigid body in the through holes 42a and 42b, respectively. The configuration on the left side of the axis O constitutes the radial flexure beam displacement mechanism 498, and the configuration on the right side constitutes the radial flexure beam displacement mechanism 49b. Note that S is a strain gauge provided at a proper location on the radial deflection beam.

今、圧電アクチュエータ46a、46bに同時に所定の
電圧を印加して同一の大きさの、中心軸Oを中心とする
円に対する接線方向の力fを発生させる。そうすると、
剛体部41cの左方の突出部は圧電アクチュエータ46
aに発生した力により上記接線に沿って上向きに押され
、剛体部41Cの右方の突出部は圧電アクチュエータ4
6bに発生した力により上記接線に沿って下向きに押さ
れる。剛体部41cは両開体部41a、41bに放射た
わみ梁44a+、44az、44t)+、44bzで連
結された形となっているので、上記の力を受けた結果、
第5図(b)に示すように放射たわみ梁44ar、44
at、44b+、44btの剛体部41 a、  4 
l bに連結されている部分は点Oから放射状に延びる
直SsL +、 L z上にあるが、剛体部41cに連
結されている部分は、上記直線L1゜Lよから僅かにず
れた直線(この直線も点Oから放射状に延びる直線であ
る。)L+  ′、Lx  ′上にずれる微小変位を生
じる。このため、剛体部41cは図で時計方向に微小角
度δだけ回動する。
Now, a predetermined voltage is simultaneously applied to the piezoelectric actuators 46a and 46b to generate a force f of the same magnitude in a tangential direction to a circle centered on the central axis O. Then,
The left protrusion of the rigid body part 41c is a piezoelectric actuator 46.
a is pushed upward along the tangent line, and the right protrusion of the rigid body part 41C is pushed upward by the piezoelectric actuator 4.
The force generated at 6b pushes it downward along the tangent line. Since the rigid body part 41c is connected to both open body parts 41a and 41b by radial bending beams 44a+, 44az, 44t)+, and 44bz, as a result of receiving the above force,
As shown in FIG. 5(b), the radial deflection beams 44ar, 44
at, 44b+, 44bt rigid body portion 41 a, 4
The part connected to l b is on the straight line SsL +, L z extending radially from point O, but the part connected to the rigid body part 41c is on a straight line ( This straight line is also a straight line extending radially from point O.) A minute displacement occurs on L+' and Lx'. Therefore, the rigid body portion 41c rotates by a small angle δ clockwise in the figure.

この回転変位δの大きさは、放射たわみ梁44a+。The magnitude of this rotational displacement δ is the radial deflection beam 44a+.

44a*、44b+、44b露の曲げに対する剛性によ
り定まるので、力fを正確に制御すれば、回転変位δも
それと同じ精度で制御できることになる。
Since it is determined by the bending rigidity of the 44a*, 44b+, and 44b dews, if the force f is accurately controlled, the rotational displacement δ can also be controlled with the same precision.

圧電アクチュエータ46 a、  46 bに印加され
ている電圧が除かれると、放射たわみ梁44 a +。
When the voltage applied to the piezoelectric actuators 46a, 46b is removed, the radiating deflection beam 44a+.

44ax、44b1.44btは変形前0)状LQt、
=復3%し、回転変位機構は第5図(a)に示す状態に
戻り、変位δは0となる。なお、上記の動作中、各スト
レンゲージSを用いて実際の変位量を検出し、これに基
づいてフィードバック制御を行うことにより正確な位置
決めを実施することができる。
44ax, 44b1.44bt is 0)-like LQt before deformation,
= 3%, the rotational displacement mechanism returns to the state shown in FIG. 5(a), and the displacement δ becomes 0. Note that during the above operation, accurate positioning can be performed by detecting the actual displacement amount using each strain gauge S and performing feedback control based on this.

次に本実施例の動作を説明する。張出し部17a、17
bと張出し部27a、27bとは連結されており、かつ
、中心剛体部26と微動テーブル20も連結されている
ので、平行たわみ梁変位機構16F−,16F、1m、
17F、−,17F−bにより発生した並進変位はその
まま微動テーブル20を並進変位させる。又、端部27
a、27bは、端部17a、17b、平行たわみ梁変位
機構17Fy、17F、い中心剛体部15、平行たわみ
梁変位機構16 F−、16FXイおよび端部16a。
Next, the operation of this embodiment will be explained. Overhanging parts 17a, 17
b and the overhanging parts 27a and 27b are connected, and the central rigid body part 26 and the fine movement table 20 are also connected, so that the parallel deflection beam displacement mechanisms 16F-, 16F, 1m,
The translational displacement generated by 17F, -, 17F-b directly translates the fine movement table 20. Also, the end portion 27
a, 27b are the ends 17a, 17b, the parallel flexible beam displacement mechanisms 17Fy, 17F, the central rigid body part 15, the parallel flexible beam displacement mechanisms 16F-, 16FXa, and the end 16a.

16bを介して固定部18a、18bに固定されている
。したがって、放射たわみ梁変位機構27M、、、27
M、、の各圧電アクチュエータに同一電圧を印加すると
、これら放射たわみ梁変位機構27 M−a、27 M
mbは第5図(b)に示すように回転変位し、微動テー
ブル20も2軸まわりに同一量回転変位する。
It is fixed to fixed parts 18a and 18b via 16b. Therefore, the radial deflection beam displacement mechanism 27M, 27
When the same voltage is applied to each piezoelectric actuator of M, , these radial deflection beam displacement mechanisms 27 M-a, 27 M
mb is rotationally displaced as shown in FIG. 5(b), and the fine movement table 20 is also rotationally displaced by the same amount around the two axes.

このように、本実施例では、第1の実施例に、さらに2
軸まわりの回転変位を発生する放射たわみ梁変位機構を
連結したので、横変位を防止できるとともに、簡単かつ
小形の構成で2軸の並進変位およびl軸まわりの回転変
位を得ることができる。
In this way, this embodiment has two additional features in addition to the first embodiment.
Since the radial deflection beam displacement mechanism that generates rotational displacement around the axes is connected, lateral displacement can be prevented, and translational displacement on two axes and rotational displacement around the l-axis can be obtained with a simple and compact configuration.

なお、上記実施例の説明では、y軸方向の張出し部の端
部を固定し、X軸方向の張出し部の端部に微動テーブル
を設けた例について説明したが、これとは逆に、X軸方
向の張出し部の端部を固定し、y軸方向の張出し部の端
部に微動テーブルを設けてもよいのは明らかである。又
、上記各実施例の説明において、微動テーブル30を長
方形として図示したが、これに限ることはなく、機体部
分を長方形等、対象物体を載置固定し易い形状とするこ
とは当然である。
In the above embodiment, an example was explained in which the end of the overhang in the y-axis direction was fixed and a fine movement table was provided at the end of the overhang in the X-axis direction. It is clear that the end of the axial extension may be fixed and a fine movement table may be provided at the end of the y-axis extension. Further, in the description of each of the above embodiments, the fine movement table 30 is illustrated as a rectangle, but the shape is not limited to this, and it is natural that the body portion may have a shape such as a rectangle that makes it easy to place and fix a target object.

〔発明の効果〕〔Effect of the invention〕

以上述べたように、本発明では、直交する2つの方向の
張出し部にそれぞれ並進方向が直交する平行たわみ梁変
位機構を構成したので、横変位を防止することができる
とともに、極めて簡単な構成で2軸方向の並進変位を得
ることができる。
As described above, in the present invention, a parallel deflection beam displacement mechanism is constructed in which the translation directions are perpendicular to the overhanging portions in two orthogonal directions, so that lateral displacement can be prevented and the structure is extremely simple. Translational displacement in two axial directions can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1の実施例に係る微細位置決め装置
の分解斜視図、第2図(a) 、(b)は第1図に示す
平行たわみ梁変位機構の側面図、第3図および第4図は
それぞれ本発明の第2および第3の実施例に係る微細位
置決め装置の分解斜視図、第5図(a)、(b)は第1
図に示す放射たわみ梁変位機構の側面図、第6図および
第7図は従来の微細位置決め装置の側面図および斜視図
である。 15・・・・・・中心剛体部、16a、16b、17a
。 17 b ・・・・・・張出し部、16F、−、16F
−b、  17F、、、  17 Fyb+ ・・・・
・・平行たわみ梁変機構、20・・・・・・微動テーブ
ル。 第1図 1fS中」(剛4不卸 16a、lkb、/りa、/りb;匙し舒/’Fya+
 /6Fxhr 17Fxar17Fwh’ 手オ?A
?フンr’L%イカ:fiFjL20: 独χ動デー7
)し 第2図 (b) 第3図 第4図 第5図
Figure 1 is an exploded perspective view of a fine positioning device according to the first embodiment of the present invention, Figures 2 (a) and (b) are side views of the parallel deflection beam displacement mechanism shown in Figure 1, and Figure 3. and FIG. 4 are exploded perspective views of fine positioning devices according to the second and third embodiments of the present invention, respectively, and FIGS.
6 and 7 are side views and perspective views of a conventional fine positioning device. 15... Central rigid body part, 16a, 16b, 17a
. 17 b... Overhang, 16F, -, 16F
-b, 17F,,, 17 Fyb+...
...Parallel deflection beam change mechanism, 20...Fine movement table. FIG.
/6Fxhr 17Fxar17Fwh' Hand O? A
? Hun r'L% squid: fiFjL20: Dokkido Day 7
) Figure 2 (b) Figure 3 Figure 4 Figure 5

Claims (4)

【特許請求の範囲】[Claims] (1)中心剛体部と、この中心剛体部から第1の軸方向
に対称的に突出する第1の組の張出し部と、前記中心剛
体部から前記第1の軸と直交する第2の軸方向に対称的
に突出する第2の組の張出し部と、前記第1の組の張出
し部にそれぞれ対称的に設けられ前記第2の軸方向の並
進変位を発生させる平行たわみ梁変位機構の組と、前記
第2の組の張出し部にそれぞれ対称的に設けられ前記第
1の軸方向の並進変位を発生させる平行たわみ梁変位機
構の組とを備えたことを特徴とする微細位置決め装置。
(1) a central rigid body part, a first set of overhanging parts symmetrically protruding from the central rigid body part in a first axis direction, and a second axis extending from the central rigid body part and perpendicular to the first axis; a second set of overhangs that protrude symmetrically in the direction; and a parallel flexible beam displacement mechanism that is symmetrically provided on the first set of overhangs and generates a translational displacement in the second axial direction. and a set of parallel deflection beam displacement mechanisms that are symmetrically provided on the overhangs of the second set and generate translational displacement in the first axial direction.
(2)特許請求の範囲第(1)項において、前記各平行
たわみ梁変位機構は、それぞれの変位発生方向の力によ
り曲げ変形を生じる互いに平行な複数のたわみ梁と、こ
れらたわみ梁に前記力を作用させるアクチュエータとに
より構成されていることを特徴とする微細位置決め装置
(2) In claim (1), each of the parallel flexible beam displacement mechanisms includes a plurality of mutually parallel flexible beams that undergo bending deformation due to forces in respective displacement generating directions, and A fine positioning device characterized by comprising: an actuator that acts.
(3)特許請求の範囲第(2)項において、前記アクチ
ュエータは圧電アクチュエータであることを特徴とする
微細位置決め装置。
(3) The fine positioning device according to claim (2), wherein the actuator is a piezoelectric actuator.
(4)特許請求の範囲第(1)項において、前記中心剛
体部、および前記各平行たわみ梁変位機構は1つの剛体
ブロックから加工成形されることを特徴とする微細位置
決め装置。(5)特許請求の範囲第(1)項において、
前記第1の組の張出し部および前記第2の組の張り出し
部は、一方の組の張出し部の各端部が固定され、かつ、
他方の組の張出し部の各端部間に微細テーブルが備えら
れていることを特徴とする微細位置決め装置。
(4) The fine positioning device according to claim (1), wherein the central rigid body portion and each of the parallel deflection beam displacement mechanisms are fabricated from one rigid block. (5) In claim (1),
The first set of overhanging parts and the second set of overhanging parts are such that each end of one set of overhanging parts is fixed, and
A micro-positioning device characterized in that a micro-table is provided between each end of the other set of overhangs.
JP61283063A 1986-09-09 1986-11-29 Fine positioning device Expired - Lifetime JPH071450B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP61283063A JPH071450B2 (en) 1986-11-29 1986-11-29 Fine positioning device
DE3788773T DE3788773T2 (en) 1986-09-09 1987-09-08 Device for fine adjustment and device for controlling these adjustments.
EP87201701A EP0264147B1 (en) 1986-09-09 1987-09-08 Fine positioning device and displacement controller therefor
US07/244,101 US4991309A (en) 1986-09-09 1988-09-14 Fine positioning device and displacement controller therefor
US07/244,169 US4920660A (en) 1986-09-09 1988-09-14 Fine positioning device and displacement controller therefor
US07/244,168 US4888878A (en) 1986-09-09 1988-09-14 Fine positioning device
US07/244,102 US5005298A (en) 1986-09-09 1988-09-14 Displacement controller for fine positioning device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61283063A JPH071450B2 (en) 1986-11-29 1986-11-29 Fine positioning device

Publications (2)

Publication Number Publication Date
JPS63137308A true JPS63137308A (en) 1988-06-09
JPH071450B2 JPH071450B2 (en) 1995-01-11

Family

ID=17660721

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61283063A Expired - Lifetime JPH071450B2 (en) 1986-09-09 1986-11-29 Fine positioning device

Country Status (1)

Country Link
JP (1) JPH071450B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3786332A (en) * 1969-03-19 1974-01-15 Thomson Houston Comp Francaise Micro positioning apparatus
JPS57107751A (en) * 1980-12-26 1982-07-05 Nippon Seiko Kk Minute position adjusting device
JPS5994103A (en) * 1982-11-19 1984-05-30 Nec Corp Controller of electromechanical transducer
JPS5996880A (en) * 1982-11-19 1984-06-04 Nec Corp Electromechanical transducer
JPS6025284A (en) * 1983-07-22 1985-02-08 Hitachi Ltd Positioning device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3786332A (en) * 1969-03-19 1974-01-15 Thomson Houston Comp Francaise Micro positioning apparatus
JPS57107751A (en) * 1980-12-26 1982-07-05 Nippon Seiko Kk Minute position adjusting device
JPS5994103A (en) * 1982-11-19 1984-05-30 Nec Corp Controller of electromechanical transducer
JPS5996880A (en) * 1982-11-19 1984-06-04 Nec Corp Electromechanical transducer
JPS6025284A (en) * 1983-07-22 1985-02-08 Hitachi Ltd Positioning device

Also Published As

Publication number Publication date
JPH071450B2 (en) 1995-01-11

Similar Documents

Publication Publication Date Title
EP0264147B1 (en) Fine positioning device and displacement controller therefor
Choi et al. Monolithic parallel linear compliant mechanism for two axes ultraprecision linear motion
US20020180312A1 (en) Low-mass and compact stage devices exhibiting six degrees of freedom of fine motion, and microlithography systems comprising same
US6860020B2 (en) Ultra-precision feeding apparatus
JPH07109566B2 (en) Fine positioning device
JPS63137308A (en) Fine positioning device
EP2132600B1 (en) Split axes stage design for semiconductor applications
JPH0555263B2 (en)
JP3255707B2 (en) Fine positioning device
JPS6366613A (en) Fine positioning device
JPS63137306A (en) Fine positioning device
JPS62214413A (en) Fine positioning device
JPS62214412A (en) Fine positioning device
JP2849158B2 (en) Fine movement mechanism
JP2614662B2 (en) Fine movement mechanism
JPS6366615A (en) Fine positioning device
JP2780335B2 (en) XY stage support structure
JPH03115892A (en) Micromotion mechanism
JPS62174811A (en) Finely positioning device
JPH07109567B2 (en) Fine positioning device
JP2760404B2 (en) Fine movement mechanism
EP1549458B1 (en) Two-dimensional displacement apparatus
JPH071451B2 (en) Displacement control device for fine positioning device
JPH071452B2 (en) Fine positioning device
JP2773781B2 (en) Precision fine movement stage device