JPS6313722A - Manufacture of optical disk base - Google Patents

Manufacture of optical disk base

Info

Publication number
JPS6313722A
JPS6313722A JP15843886A JP15843886A JPS6313722A JP S6313722 A JPS6313722 A JP S6313722A JP 15843886 A JP15843886 A JP 15843886A JP 15843886 A JP15843886 A JP 15843886A JP S6313722 A JPS6313722 A JP S6313722A
Authority
JP
Japan
Prior art keywords
resin
temperature
injection molding
optical disk
aromatic vinyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15843886A
Other languages
Japanese (ja)
Inventor
Shozaburo Imai
今井 正三郎
Yasuyuki Someya
染谷 保行
Yukito Nakamura
中村 之人
Michihisa Isobe
礒部 通久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP15843886A priority Critical patent/JPS6313722A/en
Publication of JPS6313722A publication Critical patent/JPS6313722A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/26Moulds
    • B29C45/263Moulds with mould wall parts provided with fine grooves or impressions, e.g. for record discs

Abstract

PURPOSE:To make birefringence properties of an optical disk base extremely small, by performing molding by keeping a temperature of an injected resin within a specific temperature range. CONSTITUTION:A temperature of resin to be injected is set to be 300 deg.C or higher and 340 deg.C or lower preferably to be 305 deg.C or higher and 335 deg.C or lower, in an injection molding. As for a composition of a polymer part composing mainly of an aromatic vinyl monomer unit and polyphenylene ether part, the former is 50-70wt% preferably 55-65wt%, and the latter is 30-50wt% preferably 35-45wt%.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は射出成形法により複屈折の著しるしく小さい光
ディスク基板を製造する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a method of manufacturing an optical disk substrate with significantly low birefringence by injection molding.

〈従来の技術〉 レーザー光スポットを用いて、ディスク基板上の微細な
凹凸で刻まれた記録情報を検出、画像や音響を再生する
方式、更には基板表面に設けた記録膜の光学的な性質の
変化により、高密度の情報記録再生を行うようにした記
録再生方式が最近注目されている。
<Conventional technology> A method of detecting recorded information etched in minute irregularities on a disk substrate using a laser beam spot and reproducing images and sounds, and furthermore, the optical properties of the recording film provided on the substrate surface. Due to changes in information technology, recording and reproducing systems that perform high-density information recording and reproducing have recently attracted attention.

このような記録再生方式に利用されるディスク基板とし
ては透明であることの他、寸法安定性の良いこと、光学
的に均質で複屈折の小さいこと等の特性が要求される。
In addition to being transparent, a disk substrate used in such a recording/reproducing system is required to have characteristics such as good dimensional stability, optical homogeneity, and low birefringence.

ディスク基板として樹脂材料を用いることにより、安価
に多量の復製基板を成形することが可能となるものの、
多くの場合ディスク基奢反の成形に際し樹脂の流動及び
冷却過程において分子配向を生じ、複屈折を生ずること
は広く知みれており、これが致命的欠陥となっている。
By using a resin material as a disk substrate, it is possible to mold a large number of reproduced substrates at low cost.
It is widely known that in many cases, when molding a disk substrate, molecular orientation occurs during the flow and cooling process of the resin, resulting in birefringence, and this is a fatal defect.

実際に光ディスク基板として使用する際には、546n
mにおけるセルセンコンペンセーター法による複屈折が
+20〜−20nmであることが要望されている。
When actually used as an optical disk substrate, 546n
It is desired that the birefringence measured by the Selsen compensator method at m is +20 to -20 nm.

米国特許4,373,065号公報には、正反対の光学
的異方性を有するが、完全に相溶する2種のポリマーを
、その光学的異方性を丁度打ち消しあう組成で混合し、
実質的に複屈折性がゼロになるような光学的に等方性の
樹脂からなる光学的記録素子について開示されている。
U.S. Pat. No. 4,373,065 discloses that two types of polymers having opposite optical anisotropy but completely compatible are mixed in a composition that exactly cancels out the optical anisotropy,
An optical recording element made of an optically isotropic resin with substantially zero birefringence is disclosed.

更に該公報には、正反対の光学的異方性を有するポリマ
ーとしてポリフェニレンエーテルとポリスチレンを用い
た系について、その光学的異方性が丁度打消される組成
の混合物からつくったフィルムに応力をかけても複屈折
を生じないことが、つまり固体状態のポリマー組成物に
応力をかけた場合に複屈折が生じないことが示されてい
る。
Furthermore, the publication describes a system using polyphenylene ether and polystyrene as polymers having opposite optical anisotropy, and describes how to apply stress to a film made from a mixture with a composition that exactly cancels out the optical anisotropy. It has been shown that no birefringence occurs, that is, no birefringence occurs when stress is applied to a solid state polymer composition.

〈発明が解決しようとする問題点〉 前述した米国特許4,373,065号公報には、ポリ
マー組成物を原料として射出成形法により、光ディスク
基板のごとき光学材料を製作した際、該光学材料の複屈
折性が著しく小さくなることについては示されていない
<Problems to be Solved by the Invention> The aforementioned U.S. Pat. There is no indication that the birefringence is significantly reduced.

発明者らは、固体状態で正反対の光学的異方性を有する
が、完全に相溶する2種のポリマーを、その固体状態で
の光学的異方性が丁度打ち消されるとみられる混合組成
物でも、該混合組成物を射出成形法により成形すると、
得られる成形体の複屈折が必ずしも小さいものではない
ことを見い出した。
The inventors were able to combine two polymers that have opposite optical anisotropy in the solid state but are completely compatible, even in a mixed composition in which the optical anisotropy in the solid state is expected to be exactly canceled. , when the mixed composition is molded by an injection molding method,
It has been found that the birefringence of the molded product obtained is not necessarily small.

つまり、ポリマー組成物を原料に射出成形法により光デ
ィスク基板のごとき光学材料を作成しようとする場合に
は、単に個々のポリマーの固体状態での光学的異方性を
考慮した組成にしただけでは複屈折の少い光学材料を得
ることができないのである。
In other words, when trying to create an optical material such as an optical disk substrate by injection molding using a polymer composition as a raw material, it is difficult to create a composition that takes into account the optical anisotropy of each individual polymer in the solid state. Therefore, it is not possible to obtain an optical material with low refraction.

く問題点を解決するための手段〉 本発明は、芳香族ビニル単量体単位を主体とする重合体
部分とポリフェニレンエーテル部分からなる樹脂を射出
成形法により光ディスク基板を製造する方法において、
射出する樹脂温度を300℃以上340℃以下に保って
成形することを特徴とする光ディスク基板の製造方法に
関するものである。
Means for Solving the Problems> The present invention provides a method for manufacturing an optical disk substrate by injection molding a resin consisting of a polymer part mainly composed of aromatic vinyl monomer units and a polyphenylene ether part.
The present invention relates to a method for manufacturing an optical disk substrate, characterized in that the temperature of the injected resin is maintained at 300° C. or higher and 340° C. or lower during molding.

本発明でいう、芳香族ビニル単量体単位を主体とする重
合体とは、芳香族ビニル単量体単独重合体、及び芳香族
ビニル単量体単位を50重量%以上含有する共重合体で
あって、芳香族ビニル単量体としては、例えばスチレン
、α−メチルスチレン、m−メチルスチレン、p−メチ
ルスチレン、O−クロルスチレン、m−クロルスチレン
、p−クロルスチレン、m−ブロモスチレン、p−ブロ
モスチレン等が挙げられ、特にスチレンが好適に用いら
れる。
In the present invention, the polymer mainly composed of aromatic vinyl monomer units refers to aromatic vinyl monomer homopolymers and copolymers containing 50% by weight or more of aromatic vinyl monomer units. Examples of aromatic vinyl monomers include styrene, α-methylstyrene, m-methylstyrene, p-methylstyrene, O-chlorostyrene, m-chlorostyrene, p-chlorostyrene, m-bromostyrene, Examples include p-bromostyrene, and styrene is particularly preferably used.

また芳香族ビニル単量体と共重合する単量体の例として
は、不飽和ニトリル類例えばアクリロニトリル、メタク
リコニトリル;メタクリル酸アルキルエステル類、例え
ばメタクリル酸メチル、メタクリル酸n−プロピル、メ
タクリル酸1so−プロピル、メタクリル酸n−ブチル
、メタクリル酸シロクヘキシル;アクリル酸アルキル類
、例えばアクリル酸メチル、アクリル酸エチル、アクリ
ル酸プロピル、アクリル酸ブチルなどが挙げられ、更に
メタクリル酸、アクリル酸、無水マレイン酸、無水シト
ラコン酸、N−メチルマレイミド、N−フェニルマレイ
ミド等が挙げられる。
Examples of monomers copolymerized with aromatic vinyl monomers include unsaturated nitriles such as acrylonitrile and methacriconitrile; methacrylic acid alkyl esters such as methyl methacrylate, n-propyl methacrylate, and methacrylic acid -propyl, n-butyl methacrylate, siloxyhexyl methacrylate; alkyl acrylates, such as methyl acrylate, ethyl acrylate, propyl acrylate, butyl acrylate, etc., as well as methacrylic acid, acrylic acid, maleic anhydride, Examples include citraconic anhydride, N-methylmaleimide, N-phenylmaleimide, and the like.

これら共重合する単量体は各々単独もしくは混合して使
用することができるが、芳香族ビニル単量体との共重合
体及びこれとポリフェニレンエーテルとからなる樹脂材
料の透明性を阻害しない範囲で、組合せ及び使用割合を
調節すればよい。
These copolymerizable monomers can be used alone or in combination, but within the range that does not impede the transparency of the copolymer with the aromatic vinyl monomer and the resin material made of this and polyphenylene ether. , the combination and usage ratio may be adjusted.

芳香族ビニル単量体は単量体混合物中50重量%以上で
あることが好ましく、50重量%以下では得られる樹脂
の吸湿性が大きくなることから好ましくない。
The amount of the aromatic vinyl monomer in the monomer mixture is preferably 50% by weight or more, and if it is less than 50% by weight, the hygroscopicity of the resulting resin increases, which is not preferable.

また芳香族ビニル単量体単位を主体とする重合体の溶融
流動性は280℃、8.8kg荷重でのメルトフローレ
ート(MFR)が0.5〜200であることが、好まし
く更に2〜100が好ましい。
Further, the melt flow rate of the polymer mainly composed of aromatic vinyl monomer units is preferably 0.5 to 200, and more preferably 2 to 100. is preferred.

200を越えると機械的強度が低下することから好まし
くなく、また0、5よりも小さいと複屈折を低減するの
が困難になることから好ましくない。
If it exceeds 200, it is not preferred because the mechanical strength decreases, and if it is smaller than 0.5, it becomes difficult to reduce birefringence, which is not preferred.

芳香族ビニル単量体単位を主体とする重合体の製造法と
しては、ラジカル開始剤を用いた塊状重合、懸濁重合、
乳化重合、溶液重合のいずれでもよいが、生産性及び不
純物の混入の少ない重合体を得る目的からは塊状重合ま
たは懸濁重合が好ましい。
Methods for producing polymers mainly composed of aromatic vinyl monomer units include bulk polymerization using a radical initiator, suspension polymerization,
Either emulsion polymerization or solution polymerization may be used, but bulk polymerization or suspension polymerization is preferred from the viewpoint of productivity and obtaining a polymer with less contamination of impurities.

ラジカル開始剤としてはラウロイルパーオキシド、ベン
ゾイルパーオキシド、ジーtart−ブチルバーオキシ
ド、ジクミルパーオキシドなどの過酸化物、2.2” 
−アゾビスイソブチロニトリル、1.1’  −アゾビ
ス(1−シクロヘキサンカルボニトリル)などのアゾ化
合物をあげることができる。
As a radical initiator, peroxides such as lauroyl peroxide, benzoyl peroxide, di-tart-butyl peroxide, dicumyl peroxide, etc.
Examples include azo compounds such as -azobisisobutyronitrile and 1.1'-azobis(1-cyclohexanecarbonitrile).

また分子量を制御するため、必要であれば、連鎖移動剤
としてtert−ブチル、n−ブチル、n−オクチル、
n−ドデシル及びtert−ドデシルメルカプタンなど
を添加すれば良い。
In order to control the molecular weight, if necessary, tert-butyl, n-butyl, n-octyl,
N-dodecyl and tert-dodecyl mercaptan may be added.

重合温度は一般に50〜150℃の範囲で行われる。The polymerization temperature is generally in the range of 50 to 150°C.

本発明でいうポリフェニレンエーテルは、一般式 (但し、R+、 Rz、R3,R4は水素、ハロゲンま
たは炭化水素基を示す、) で表わされる繰返し単位を有する重合体である。
The polyphenylene ether referred to in the present invention is a polymer having a repeating unit represented by the general formula (wherein R+, Rz, R3, and R4 represent hydrogen, halogen, or a hydrocarbon group).

1亥ポリフェニレンエーテルはフェノール頻単量体を酸
化カップリングにより重合した重合体であって、銅系ま
たはマンガン系触媒を用いた公知の方法(例えば特公昭
36−18692号公報、特公昭47−36518号公
報)により容易に製造されるものである。
1.Polyphenylene ether is a polymer obtained by polymerizing phenol monomers by oxidative coupling, and is produced by a known method using a copper-based or manganese-based catalyst (for example, Japanese Patent Publication No. 36-18692, Japanese Patent Publication No. 47-36518). It can be easily manufactured using the method disclosed in Japanese Patent Publication No.

このポリフェニレンエーテルの具体例は、ポリ (2,
6−シメチルー1.4−)ユニしン)エーテル、ポリ 
(2−メチル−6−ニチルー1゜4−フェニレン)エー
テル、ポリ (2−メチル−6−ブロビルー1,4−フ
ェニレン)エーテル、ポリ(2,6−ジプロビルー1,
4−フェニレン)エーテル、ポリ (2−メチル−6−
ブロム−1,4−フェニレン)エーテル等カ挙ケられ、
特にポリ (2,6−シメチルー1.4−)ユニしン)
エーテルが好ましい。
A specific example of this polyphenylene ether is poly(2,
6-dimethyl-1.4-)unicine) ether, poly
(2-methyl-6-nityl-1°4-phenylene) ether, poly(2-methyl-6-broby-1,4-phenylene) ether, poly(2,6-diprobyl-1,
4-phenylene)ether, poly(2-methyl-6-
Bromo-1,4-phenylene) ether, etc.
Especially poly (2,6-cymethyl-1,4-)unisine)
Ether is preferred.

またポリフェニレンエーテルの平均分子量は、重合体の
極限粘度(クロロホルム、25℃での測定値)で表わし
て、O,1〜1.0であることが好ましく、更に0.3
〜0.7が好ましい。
The average molecular weight of the polyphenylene ether, expressed as the intrinsic viscosity of the polymer (measured in chloroform at 25°C), is preferably O,1 to 1.0, more preferably 0.3
~0.7 is preferred.

0.1より小さいと本発明の光学樹脂材料の複屈折が充
分小さくならない他、強度が低下する。
If it is smaller than 0.1, the birefringence of the optical resin material of the present invention will not be sufficiently reduced, and the strength will decrease.

また1、0より大きいと本発明の光学樹脂材料の均質性
が低くなり、さらに溶融流動性が低下することから好ま
しくない。
Moreover, if it is larger than 1.0, the homogeneity of the optical resin material of the present invention becomes low, and furthermore, the melt fluidity decreases, which is not preferable.

本発明の樹脂材料を、芳香族ビニル単量体単位を主体と
する重合体と、ポリフェニレンエーテルを混合して得る
には、溶融混合もしくは溶液混合が適している。
Melt mixing or solution mixing is suitable for obtaining the resin material of the present invention by mixing a polymer mainly composed of aromatic vinyl monomer units and polyphenylene ether.

溶融混合は溶剤の不存在下ポリフェニレンエーテルのガ
ラス転移温度以上にて押出機、バンバリーミキサ−、ニ
ーダーブレンダー、加熱ロールなどの混合機械を用いて
高剪断下、行われる。
The melt mixing is carried out in the absence of a solvent at a temperature above the glass transition temperature of the polyphenylene ether under high shear using a mixing machine such as an extruder, Banbury mixer, kneader blender, or heating roll.

混合度合は雨量合体が互いに約1μ以下にまで分散混合
されることが好ましく、更に分子スケールまで混合させ
ることが好ましい。
As for the degree of mixing, it is preferable that the amounts of rain combined are dispersed and mixed to a depth of about 1 μm or less, and further preferably to a molecular scale.

混合状態が分子スケールにまで達したかどうかは混合物
のガラス転移温度が唯一のものとなることで容易に判定
される。
Whether the mixed state has reached the molecular scale can be easily determined based on the unique glass transition temperature of the mixture.

十分満足される混合状態を得るため、混合温度を高める
、混合時間を延長する、更に剪断力を高めるといった方
法が採用される。
In order to obtain a sufficiently satisfactory mixing state, methods such as increasing the mixing temperature, extending the mixing time, and further increasing the shear force are adopted.

さらに溶融混合において両型合体のガラス転移温度を低
下せしめて混合を容易なものとするため可塑剤として有
機溶剤を用いることができる。
Furthermore, an organic solvent can be used as a plasticizer in order to lower the glass transition temperature of the combined two types and facilitate mixing during melt mixing.

有機溶剤としては後述の溶液混合法にて用いられる有機
溶剤を用いることができ、混合終了後、用いた有機溶剤
を藩発除去すれば良い。
As the organic solvent, the organic solvent used in the solution mixing method described below can be used, and after the mixing is completed, the used organic solvent may be removed by a sieve.

溶液混合は両型合体を有機溶剤に溶解して少なくとも1
重量%の溶液とし、撹拌混合により均一混合物とした後
背機溶剤を蒸発除去するかまたは均一混合物に再重合体
の貧溶剤を入れて、混合された再重合体を析出させるこ
とができる。
Solution mixing involves dissolving both types of coalescence in an organic solvent and adding at least 1
After making a homogeneous mixture by stirring and mixing, the mixed repolymer can be precipitated by evaporating the solvent or adding a poor solvent for the repolymer to the homogeneous mixture.

好適な有m溶剤としては、クロロホルム、塩化メチレン
、塩化エチレン、トルエン、ベンゼン、クロロベンゼン
などを挙げることができ、また貧?容剤としては、メタ
ノール、エタノール、プロピルアルコール、n−ヘキサ
ン、n−ペンタンなどを挙げることができる。
Suitable organic solvents include chloroform, methylene chloride, ethylene chloride, toluene, benzene, chlorobenzene, etc. Examples of containers include methanol, ethanol, propyl alcohol, n-hexane, and n-pentane.

芳香族ビニル単量体単位を主体とする重合体部分とポリ
フェニレンエーテル部分とからなるブロック共重合体あ
るいはグラフト共重合体は、一方の重合体の存在下に他
方の単量体を重合して得られる。
A block copolymer or graft copolymer consisting of a polymer portion mainly composed of aromatic vinyl monomer units and a polyphenylene ether portion can be obtained by polymerizing one monomer in the presence of the other. It will be done.

具体的には、特公昭42−22069号、同47−12
10号、同47−47862号、同52−38596号
公報などに記載された方法などにより、ポリフェニレン
エーテルの存在下、芳香族ビニル単量体を主体とする単
量体を重合する、または芳香族ビニル単量体単位を主体
とする重合体の存在下、フェノール類単量体を酸化カン
プリング重合してグラフト重合体あるいはブロック共重
合体を製造することができる。
Specifically, Special Publication No. 42-22069, No. 47-12
10, No. 47-47862, No. 52-38596, etc., in the presence of polyphenylene ether, monomers mainly consisting of aromatic vinyl monomers are polymerized, or aromatic Graft polymers or block copolymers can be produced by oxidative camping polymerization of phenolic monomers in the presence of a polymer mainly composed of vinyl monomer units.

芳香族ビニル単量体単位を主体とする重合体部分とポリ
フェニレンエーテル部分との割合は、本発明の目的を容
易に達成するため、前者が50〜70重量%好ましくは
55〜65重量%、後者が30〜50重量%好ましくは
35〜45重景%である。
In order to easily achieve the object of the present invention, the ratio of the polymer part mainly composed of aromatic vinyl monomer units and the polyphenylene ether part is 50 to 70% by weight, preferably 55 to 65% by weight, for the former, and preferably 55 to 65% by weight for the latter. is 30 to 50% by weight, preferably 35 to 45% by weight.

本発明でいう射出成形法とは、閉鎖している金型キャビ
ティに加熱して流動状態になった樹脂を圧入し、冷却固
化させ、成形品を製造する方法である。
The injection molding method referred to in the present invention is a method of manufacturing a molded article by press-fitting heated resin into a fluidized state into a closed mold cavity, cooling and solidifying the resin.

また金型内真空吸引法や、射出成形中に金型キャビティ
容量を縮小させる射出圧縮法を併用してもよい。
Further, an in-mold vacuum suction method and an injection compression method for reducing the mold cavity capacity during injection molding may be used in combination.

本発明の射出成形において、射出する樹脂温度は300
℃以上340℃以下である。
In the injection molding of the present invention, the temperature of the injected resin is 300
℃ or higher and 340℃ or lower.

好ましくは305℃以上335℃以下である。Preferably it is 305°C or more and 335°C or less.

ここでいう樹脂温度とは射出成形機の射出シリンダー内
で可塑化熔融した樹脂の温度である。
The resin temperature here refers to the temperature of the resin plasticized and melted within the injection cylinder of the injection molding machine.

樹脂温度が300℃未満では得られる光ディスク基讐反
の546nmにおけるセナルモンコンペンセーター法に
よる複屈折が20nm以上となり光ディスク基板として
不適当であり、樹脂温度が340℃を超すと、樹脂が分
解し、ヤケ、シルバー等の不良現象が発生し、得られる
光ディスク基板のビットエラーが著しるしく増加するの
で不適当である。
If the resin temperature is less than 300°C, the birefringence of the optical disc substrate obtained by the Senarmont compensator method at 546 nm will be 20 nm or more, making it unsuitable for use as an optical disc substrate. If the resin temperature exceeds 340°C, the resin will decompose, This is unsuitable because defective phenomena such as discoloration and silvering occur, and bit errors in the resulting optical disk substrate increase significantly.

本発明の射出成形において金型温度は80℃以上120
℃以下に保つことが好ましく、更に好ましくは85℃以
上115℃以下である。
In the injection molding of the present invention, the mold temperature is 80°C or higher and 120°C.
The temperature is preferably kept at 85°C or higher and 115°C or lower, more preferably 85°C or higher and 115°C or lower.

ここでいう金型温度とは射出直前の金型キャビティーの
表面温度をいう。
The mold temperature here refers to the surface temperature of the mold cavity immediately before injection.

金型温度が80℃未満では金型表面に刻み込まれた微細
な案内溝(グループ)の転写性が悪くなり、120℃を
超えると金型から成形体の離型が悪(なるので好ましく
ない。
If the mold temperature is less than 80°C, the transferability of the fine guide grooves (groups) carved into the mold surface will be poor, and if it exceeds 120°C, the molded product will not be easily released from the mold, which is not preferable.

本発明の射出成形においてショツト時間はO82秒以上
3秒以下の範囲で成形することが好ましく、更に好まし
くは0. 3秒以上2秒以下の範囲で成形することであ
る。
In the injection molding of the present invention, the shot time is preferably 0.82 seconds or more and 3 seconds or less, more preferably 0.82 seconds or more and 3 seconds or less. The molding time is 3 seconds or more and 2 seconds or less.

ここでいうショツト時間とは金型キャビティー内に樹脂
を充填する時間である。
The shot time here is the time required to fill the resin into the mold cavity.

ショツト時間が0.2秒未満ではシルバーストリークが
発生し、光ディスクとして用いた場合ビットエラーが著
しく増加し、3秒を超えると得られる光ディスク基板の
複屈折が5460mにおけるセナルモンコンペンセータ
ー法による20nm以上となるので好ましくない。
If the shot time is less than 0.2 seconds, silver streaks will occur and bit errors will increase significantly when used as an optical disk, and if the shot time exceeds 3 seconds, the birefringence of the optical disk substrate obtained will be 20 nm or more by the Senarmont compensator method at 5460 m. This is not desirable.

該ショツト時間においては、時間当たりのショット樹脂
量は約5g/秒〜約75g/秒程度である。
During the shot time, the amount of shot resin per hour is about 5 g/sec to about 75 g/sec.

以上説明したように、正反対の光学的異方性を存する樹
脂部分からなる、ちょうど光学的異方性をうち消しあっ
た組成の樹脂であっても射出成形の方法及びその条件に
よっては光学的異方性が発現し、光ディスクとして使用
するに際し不都合な複屈折を生じるのである。
As explained above, even if the resin is composed of resin parts with opposite optical anisotropy, and whose composition exactly cancels out the optical anisotropy, the optical anisotropy may vary depending on the injection molding method and conditions. This results in the development of birefringence, which is inconvenient when used as an optical disc.

これは正反対の光学的異方性を有する樹脂成分のそれぞ
れが射出成形時の金型内において異なった配向挙動また
は異なった緩和時間を有しているためと思われる。
This is believed to be because each resin component having opposite optical anisotropy has a different orientation behavior or a different relaxation time in the mold during injection molding.

すなわち、かかる光学的異方性を打ち消しあった組成の
樹脂であっても、本発明による射出成形法によらなけれ
ば光学的異方性の小さい光ディスク基板をつくることは
できないのである。
That is, even if the resin has a composition that cancels out such optical anisotropy, it is not possible to produce an optical disk substrate with small optical anisotropy unless the injection molding method of the present invention is used.

〈実施例〉 実施例において用いた射出成形機は住友重機械工業株式
会社製ネオマット150/75型であり、金型は成形体
直径120mm厚さ1.2mmのコンパクトディスク用
金型(スタンパ−内蔵)を使用した。
<Example> The injection molding machine used in the example was a Neomat 150/75 model manufactured by Sumitomo Heavy Industries, Ltd., and the mold was a compact disc mold (with a built-in stamper) with a molded body diameter of 120 mm and a thickness of 1.2 mm. )It was used.

またディスク基板の複屈折は、偏光顕微鏡を利用して、
波長546nmのレーザー光を用いてセナルモンコンペ
ンセーター法にて測定した。
In addition, the birefringence of the disk substrate can be determined using a polarizing microscope.
It was measured by the Senarmont compensator method using a laser beam with a wavelength of 546 nm.

測定位置はディスク基板の中心から半径方向に25mm
、40mm、55mmの距離。
The measurement position is 25mm in the radial direction from the center of the disk substrate.
, 40mm, 55mm distance.

成形の転写性は、スタンパ−グループ深さに対する成形
品グループ深さが80%以上のものを合格(○印)と評
価した。
Regarding the transferability of molding, those in which the depth of the molded product group relative to the stamper group depth was 80% or more were evaluated as passing (marked with ◯).

成形品の離型性については、偏光板を用いて目視で離型
ラインの有無を確認して評価した。
The mold releasability of the molded product was evaluated by visually checking the presence or absence of a mold release line using a polarizing plate.

実施例1〜2、比較例1〜2 クロロホルム溶媒25℃で測定した極限粘度が0,52
のポリ (2,6−シメチルー1. 4−フェニレン)
エーテル41.5重量部とポリスチレン(日本ポリスチ
レン工業株式会社ニスブライト”8−62A)58.5
重量部を二軸押出機(日本製鋼所株式会社製、TEX3
C1−3QBW−2V型)により混練、ペレット化した
Examples 1-2, Comparative Examples 1-2 Chloroform solvent The intrinsic viscosity measured at 25°C is 0.52
Poly(2,6-cymethyl-1.4-phenylene)
41.5 parts by weight of ether and 58.5 parts of polystyrene (Nippon Polystyrene Industries Co., Ltd. Nisbrite "8-62A")
The weight part was extracted using a twin-screw extruder (manufactured by Japan Steel Works, Ltd., TEX3).
C1-3QBW-2V type) was used to knead and pelletize.

このペレットを射出成形機により第1表に示した樹脂温
度、金型温度100℃、射出成形時間1秒の条件で光デ
ィスク基板を成形した。
The pellets were molded into optical disk substrates using an injection molding machine under the conditions shown in Table 1: resin temperature, mold temperature 100° C., and injection molding time 1 second.

得られた光ディスク基板の複屈折、外観を第1表に示し
た。
Table 1 shows the birefringence and appearance of the obtained optical disc substrate.

第1表 実施例3〜G、比較例3〜4 実施例1のペレットを用いて、射出成形機により樹脂温
度320℃射出時間1秒及び第2表に示した金型温度で
成形を行なった。
Table 1 Examples 3 to G, Comparative Examples 3 to 4 The pellets of Example 1 were molded using an injection molding machine at a resin temperature of 320°C for an injection time of 1 second and a mold temperature shown in Table 2. .

得られた光ディスク基板の転写性、離型性について第2
表に示した。
Regarding the transferability and mold releasability of the obtained optical disc substrate, the second
Shown in the table.

第2表 実施例7〜11、比較例5〜6 実施例1のベレットを用いて、射出成形機により樹脂温
度320℃、金型1孟度100℃、及び第3表に示した
射出時間により射出成形した。
Table 2 Examples 7 to 11, Comparative Examples 5 to 6 Using the pellets of Example 1, an injection molding machine was used at a resin temperature of 320°C, a mold temperature of 100°C, and an injection time shown in Table 3. Injection molded.

得られた光ディスク基板の複屈折、外観を第3表に示し
た。
Table 3 shows the birefringence and appearance of the obtained optical disc substrate.

第3表 (発明の効果〉 以上詳細に述べたように、たとえ固体状態で正反対の光
学的異方性を持ち、かつそれぞれが打ち消しあう組成の
芳香族ビニル$M体単位を主体とする重合体部分とポリ
フェニレンエーテル部分からなる樹脂を用いて単に射出
成形法により光ディスク基板を製造しても、容易に複屈
折の著しく小さい光ディスク基板の製造することはでき
ない。
Table 3 (Effects of the Invention) As described in detail above, even if a polymer mainly consists of aromatic vinyl $M units, which have opposite optical anisotropy in the solid state and whose compositions cancel each other out, Even if an optical disk substrate is manufactured simply by injection molding using a resin consisting of a polyphenylene ether portion and a polyphenylene ether portion, it is not possible to easily manufacture an optical disk substrate with extremely low birefringence.

本発明の射出成形法によって成形することによりはじめ
て複屈折の著しく小さい光ディスク基板が得られるので
ある。
Only by molding using the injection molding method of the present invention can an optical disk substrate with extremely low birefringence be obtained.

Claims (1)

【特許請求の範囲】[Claims] (1)芳香族ビニル単量体単位を主体とする重合体部分
とポリフェニレンエーテル部分からなる樹脂を射出成形
法により光ディスク基板を製造する方法において、射出
する樹脂温度を300℃以上340℃以下で成形するこ
とを特徴とする光ディスク基板の製造方法。
(1) In a method of manufacturing an optical disk substrate by injection molding a resin consisting of a polymer part mainly composed of aromatic vinyl monomer units and a polyphenylene ether part, the temperature of the injected resin is 300°C or more and 340°C or less. A method of manufacturing an optical disc substrate, characterized by:
JP15843886A 1986-07-04 1986-07-04 Manufacture of optical disk base Pending JPS6313722A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15843886A JPS6313722A (en) 1986-07-04 1986-07-04 Manufacture of optical disk base

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15843886A JPS6313722A (en) 1986-07-04 1986-07-04 Manufacture of optical disk base

Publications (1)

Publication Number Publication Date
JPS6313722A true JPS6313722A (en) 1988-01-21

Family

ID=15671769

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15843886A Pending JPS6313722A (en) 1986-07-04 1986-07-04 Manufacture of optical disk base

Country Status (1)

Country Link
JP (1) JPS6313722A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02133421U (en) * 1989-04-12 1990-11-06
US5130356A (en) * 1989-02-01 1992-07-14 Basf Aktiengesellschaft Molding for optical purposes
US7041780B2 (en) 2003-08-26 2006-05-09 General Electric Methods of preparing a polymeric material composite
US7244813B2 (en) 2003-08-26 2007-07-17 General Electric Company Methods of purifying polymeric material
US7256225B2 (en) 2003-08-26 2007-08-14 General Electric Company Methods of preparing a polymeric material
US7309518B2 (en) 2001-03-29 2007-12-18 General Electric Company Radial tilt reduced media
US7314658B2 (en) 2001-08-31 2008-01-01 General Electric Company Storage medium for data
US7354990B2 (en) 2003-08-26 2008-04-08 General Electric Company Purified polymeric materials and methods of purifying polymeric materials

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5130356A (en) * 1989-02-01 1992-07-14 Basf Aktiengesellschaft Molding for optical purposes
JPH02133421U (en) * 1989-04-12 1990-11-06
US7309518B2 (en) 2001-03-29 2007-12-18 General Electric Company Radial tilt reduced media
US7314658B2 (en) 2001-08-31 2008-01-01 General Electric Company Storage medium for data
US7041780B2 (en) 2003-08-26 2006-05-09 General Electric Methods of preparing a polymeric material composite
US7244813B2 (en) 2003-08-26 2007-07-17 General Electric Company Methods of purifying polymeric material
US7256225B2 (en) 2003-08-26 2007-08-14 General Electric Company Methods of preparing a polymeric material
US7314907B2 (en) 2003-08-26 2008-01-01 General Electric Company Purified polymeric materials and methods of purifying polymeric materials
US7354990B2 (en) 2003-08-26 2008-04-08 General Electric Company Purified polymeric materials and methods of purifying polymeric materials

Similar Documents

Publication Publication Date Title
US5135791A (en) Optical device
US4845142A (en) Magneto optical disk substrate comprising an aromatic vinyl monomer and a polyphenylene ether
JPS6313722A (en) Manufacture of optical disk base
EP0225801B1 (en) Optical devices
KR20050042036A (en) Thermoplastic polymer material for audio and/or optical data recording media
JPS63309547A (en) Optical resin molding
JPS6391231A (en) Optical element and its manufacture
JPH0192209A (en) Molded resin article for optical use
JPS62240901A (en) Optical element
EP0241900B1 (en) Optical disk substrate
JPS6173705A (en) Optical resin material
JPH02208342A (en) Optical disc base
JPS63256427A (en) Manufacture of optical element
JPS63210111A (en) Optical resin material
JPS63301247A (en) Optical resin molding
JPS6183213A (en) Disk base and its production
JPS59227909A (en) Lowly hygroscopic methacrylate resin
JPS624711A (en) Production of acrylic graft copolymer
JP3022207B2 (en) Styrene resin composition and injection molded product
JPS62246914A (en) Methacrylic resin
JP3321312B2 (en) Optical information recording medium
JP4890961B2 (en) Optical resin
JPH04254928A (en) Methacrylic resin for optical information recording medium
JPH0561285B2 (en)
JPH0896408A (en) Optical information recording medium