JPH0192209A - Molded resin article for optical use - Google Patents

Molded resin article for optical use

Info

Publication number
JPH0192209A
JPH0192209A JP62248785A JP24878587A JPH0192209A JP H0192209 A JPH0192209 A JP H0192209A JP 62248785 A JP62248785 A JP 62248785A JP 24878587 A JP24878587 A JP 24878587A JP H0192209 A JPH0192209 A JP H0192209A
Authority
JP
Japan
Prior art keywords
optical
resin
aromatic vinyl
polyphenylene ether
birefringence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62248785A
Other languages
Japanese (ja)
Inventor
Masahiro Niwano
庭野 正廣
Kenji Manabe
真鍋 健二
Kazuaki Sakakura
坂倉 和明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP62248785A priority Critical patent/JPH0192209A/en
Publication of JPH0192209A publication Critical patent/JPH0192209A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a molded resin article for optical use useful as a base for optical card optical disk, etc., by extrusion molding a resin material composed of a polymer component composed mainly of aromatic vinyl monomer and a polyphenylene ether component. CONSTITUTION:A resin material composed of 60-90wt.% of a polymer component composed mainly of an aromatic vinyl monomer (e.g., styrene, alpha- methylstyrene or m-chlorostyrene) and 10-40wt.% of polyphenylene ether component is extrusion molded at a resin temperature of preferably 240-300 deg.C to obtain the objective molded resin article for optical use. The molded article has low birefringence in spite of extrusion molding process, high heat-resistance, balanced mechanical strengths and excellent dimensional stability.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は光学用樹脂成形体に関する。[Detailed description of the invention] <Industrial application field> The present invention relates to an optical resin molded article.

さらに詳しくは、特定の樹脂を押出成形して得られる光
カード基板、光学式ディスク基板、各種レンズ等の光学
用樹脂成形体に関する。
More specifically, the present invention relates to optical resin molded articles such as optical card substrates, optical disc substrates, and various lenses obtained by extrusion molding a specific resin.

〈従来の技術〉 光ディスクや光カードのごとく、レーザー光スポットを
用いて、基板上の微細な凹凸で刻まれた記録情報を検出
、画像や音響を再生する方式、さらには基板表面に設け
た記録膜の光学的な性質の変化により、高密度の情報記
録再生を行うようにした記録再生方式が最近注目されて
いる。
<Conventional technology> A method that uses a laser beam spot to detect recorded information engraved on fine irregularities on a substrate and reproduce images and sound, such as in optical disks and optical cards, and also a method of recording information provided on the surface of the substrate. Recently, a recording/reproducing method that enables high-density information recording/reproducing due to changes in the optical properties of films has been attracting attention.

このような記録再生方式に利用される基板としては透明
であることの他、寸法安定性の良いこと、光学的に均質
で複屈折の小さいこと等の特性が要求される。
In addition to being transparent, substrates used in such recording and reproducing systems are required to have characteristics such as good dimensional stability, optical homogeneity, and low birefringence.

基板として樹脂材料を用いることにより、安価に多量の
複製基板を成形することが可能となるものの、多(の場
合基板の成形に際し樹脂の流動及び冷却過程において分
子配向を生じ、複屈折を生じることは広く知られており
、これが致命的欠陥となっている。
By using a resin material as a substrate, it is possible to mold a large number of replicated substrates at low cost. is widely known, and this is a fatal flaw.

成形時の分子配向は避は難いので、光学的異方性の少な
い樹脂材料としては、メタクリル酸メチルを主成分とす
る重合体しかないのが現状である。
Since molecular orientation during molding is unavoidable, currently the only resin material with low optical anisotropy is a polymer containing methyl methacrylate as a main component.

しかしながら、従来知られているメタクリル酸メチルを
主成分とする重合体を基板に用いた場合、吸湿性が大き
いために、寸法安定性が不良であり、多湿環境下にて反
り、ねじれを生ずるという欠点を有している。
However, when conventionally known polymers containing methyl methacrylate as the main component are used for substrates, they have poor dimensional stability due to their high hygroscopicity, causing warping and twisting in humid environments. It has its drawbacks.

この欠点については例えば、日経エレクトロニクス(1
982年6月7日号、133頁)に詳述されている通り
であって、このため音響用コンパクトディスク材料とし
ては吸湿性の低い芳香族ポリカーボネート樹脂が用いら
れている。
Regarding this drawback, for example, Nikkei Electronics (1
For this reason, aromatic polycarbonate resin with low hygroscopicity is used as a material for acoustic compact discs.

一方、芳香族ポリカーボネート樹脂は異方性の大きい芳
香環をその主鎖に含むことから、成形基板の複屈折を低
減することが困難であり、分子量の低減化の他、成形条
件の検討が試みられているものの、複屈折性が素材その
ものに起因することから一様に複屈折の低い基板を安定
して、製造することが困難で、直径が音響用コンパクト
ディスクよりも大きい基板を射出成形により製造すると
低複屈折性については、さらに改善を要する。
On the other hand, since aromatic polycarbonate resins contain highly anisotropic aromatic rings in their main chains, it is difficult to reduce the birefringence of molded substrates. However, because birefringence is caused by the material itself, it is difficult to stably manufacture a substrate with uniformly low birefringence, and it is difficult to manufacture a substrate with a diameter larger than that of an acoustic compact disc by injection molding. When manufactured, further improvement is required regarding low birefringence.

また、メタクリル酸メチルを主体とした重合体の欠点で
ある寸法安定性を改良するため、例えば特開昭57−3
3446号公報、特開昭57−162135号公報、特
開昭58−88843号公報ではメタクリル酸メチルと
芳香族ビニル単量体との共重合体が堤案されている。
In addition, in order to improve the dimensional stability, which is a drawback of polymers mainly composed of methyl methacrylate, for example, JP-A-57-3
Copolymers of methyl methacrylate and aromatic vinyl monomers are proposed in JP-A No. 3446, JP-A-57-162135, and JP-A-58-88843.

しかし、芳香環を有するビニル単量体との共重合体は大
きな複屈折を生じやすく、実用に供し得ないのが実状で
ある。
However, copolymers with vinyl monomers having an aromatic ring tend to produce large birefringence and cannot be put to practical use.

情報の再生のみならず、記録をも行い得るディスク基板
においてはさらに一層優れた複屈折性、寸法安定性が要
求されるものの、これらの要求を充分に満足し得る樹脂
材料は未だ見出されていない。
Disc substrates capable of not only reproducing information but also recording information are required to have even better birefringence and dimensional stability, but a resin material that fully satisfies these requirements has not yet been found. do not have.

さらに、レンズ他の光学素子においても、従来メタクリ
ル樹脂等の樹脂材料が用いられているが、さらに複屈折
の低い、耐熱性、機械的強度、寸法安定性の優れた樹脂
材料由来のものが求められている。
Furthermore, although resin materials such as methacrylic resin have traditionally been used in lenses and other optical elements, there is a need for materials derived from resin materials that have even lower birefringence, superior heat resistance, mechanical strength, and dimensional stability. It is being

米国特許4,373,065号公報には、正反対の光学
的異方性を有するが、完全に相溶する2flのポリマー
を、その光学的異方性を丁度打ち消しあう組成で混合し
、実質的に複屈折性がゼロになるような光学的に等方性
の樹脂からなる光学的記録素子について開示されている
U.S. Pat. No. 4,373,065 discloses that 2 fl polymers having opposite optical anisotropy but completely compatible with each other are mixed in a composition that exactly cancels out their optical anisotropy. discloses an optical recording element made of an optically isotropic resin that has zero birefringence.

さらに該公報には、正反対の光学的異方性を有するポリ
マーとしてポリフェニレンエーテルとポリスチレンを用
いた系について、その光学的異方性が丁度打ち消される
組成の混合物からつくったフィルムに応力をかけても複
屈折を生じないことが、つまり固体状態のポリマー組成
物を延伸させた場合に複屈折が生じないことが示されて
いる。
Furthermore, the publication describes a system using polyphenylene ether and polystyrene as polymers with opposite optical anisotropy, even if stress is applied to a film made from a mixture of compositions that exactly cancel out the optical anisotropy. It has been shown that no birefringence occurs, that is, no birefringence occurs when a solid state polymer composition is stretched.

〈発明が解決しようとする問題点) 前述した米国特許4,373.065号公報には、ポリ
マー組成物を原料として射出成形法あるいは押出成形に
より、光デイスク基板や光カード基板のごとき光学材料
を製作した際、該光学材料の複屈折性が著しく小さくな
ることについては示されていない。
(Problems to be Solved by the Invention) The above-mentioned U.S. Pat. There is no indication that the birefringence of the optical material is significantly reduced when fabricated.

発明者らは、固体状態で正反対の光学的異方性を有する
が完全に相溶する2種のポリマーを、その固体状態での
光学的異方性が丁度打ち消されるとみられる混合組成物
でも、基板を押出成形法により成形すると、得られる成
形体の複屈折が必ずしも小さいものではないことを見い
出した。
The inventors have discovered that two types of polymers, which have opposite optical anisotropy in the solid state but are completely compatible, can be mixed in a composition in which the optical anisotropy in the solid state is expected to be exactly canceled out. It has been found that when a substrate is molded by extrusion molding, the birefringence of the resulting molded product is not necessarily small.

つまり、ポリマー組成物を原料に押出成形法により光カ
ード基板のごとき光学材料を作成しようとする場合には
、単に個々のポリマーの固体状態での光学的異方性を考
慮した組成にしただけでは複屈折の少ない光学材料を得
ることができないのである。
In other words, when trying to create an optical material such as an optical card substrate by extrusion molding using a polymer composition as a raw material, it is not enough to simply create a composition that takes into account the optical anisotropy of each individual polymer in the solid state. Therefore, it is not possible to obtain an optical material with low birefringence.

本発明はかかる事情に鑑み、押出成形によっても複屈折
が低く、かつ耐熱性が高く、機械的強度のバランスが良
く、寸法安定性の優れた光学用樹脂成形体を提供するこ
とにある。
In view of the above circumstances, it is an object of the present invention to provide an optical resin molded article which has low birefringence, high heat resistance, well-balanced mechanical strength, and excellent dimensional stability even by extrusion molding.

く問題点を解決するための手段〉 本発明は、芳香族ビニル単量体を主体とする重合体部分
が60〜90重量%とポリフェニレンエーテル部分が1
0〜40重量%とから成る樹脂材料を押出成形により形
成した光学用樹脂成形体に関する。
Means for Solving the Problems> The present invention is characterized in that the polymer portion mainly composed of aromatic vinyl monomer is 60 to 90% by weight and the polyphenylene ether portion is 1% by weight.
The present invention relates to an optical resin molded article formed by extrusion molding of a resin material consisting of 0 to 40% by weight.

本発明の光学用樹脂成形体の樹脂材料は、芳香族ビニル
単量体単位を主体とする重合体とポリフェニレンエーテ
ルとの混合物、両者の重合体部分からなるブロック共重
合体もしくはグラフト共重合体、またはこれらの混合物
からなる。
The resin material of the optical resin molded article of the present invention is a mixture of a polymer mainly composed of aromatic vinyl monomer units and polyphenylene ether, a block copolymer or a graft copolymer consisting of polymer portions of both, or a mixture thereof.

本発明でいう、芳香族ビニル単量体単位を主体とする重
合体とは、芳香族ビニル単量体単独重合体、及び芳香族
ビニル単量体単位を50重量%以上含有する共重合体で
あって、芳香族ビニル単量体としては、例えばスチレン
、α−メチルスチレン、m−メチルスチレン、ρ−メチ
ルスチレン、0−クロルスチレン、m−クロルスチレン
、ρ−クロルスチレン、m−ブロモスチレン、ρ−ブロ
モスチレン等が挙げられ、特にスチレンが好適に用いら
れる。
In the present invention, the polymer mainly composed of aromatic vinyl monomer units refers to aromatic vinyl monomer homopolymers and copolymers containing 50% by weight or more of aromatic vinyl monomer units. Examples of aromatic vinyl monomers include styrene, α-methylstyrene, m-methylstyrene, ρ-methylstyrene, 0-chlorostyrene, m-chlorostyrene, ρ-chlorostyrene, m-bromostyrene, Examples include ρ-bromostyrene, and styrene is particularly preferably used.

また芳香族ビニル単量体と共重合する単量体の例として
は、不飽和ニトリル類例えばアクリロニトリル、メタク
リロニトリル;メタクリル酸アルキルエステル類、例え
ばメタクリル酸メチル、メタクリル酸n−プロピル、メ
タクリル酸1so−プロピル、メタクリル酸n−ブチル
メタクリル酸シクロへキシル;アクリル酸アルキル類、
例えばアクリル酸メチル、アクリル酸エチル、アクリル
酸プロピル、アクリル酸ブチル等が挙げられ、さらにメ
タクリル酸、アクリル酸、無水マレイン酸、無水シトラ
コン酸、N−メチルマレイミド、N−フェニルマレイミ
ド等が挙げられる。
Examples of monomers copolymerized with aromatic vinyl monomers include unsaturated nitriles such as acrylonitrile and methacrylonitrile; methacrylic acid alkyl esters such as methyl methacrylate, n-propyl methacrylate, and methacrylic acid -propyl, n-butyl methacrylate cyclohexyl methacrylate; alkyl acrylates,
Examples include methyl acrylate, ethyl acrylate, propyl acrylate, butyl acrylate, and further include methacrylic acid, acrylic acid, maleic anhydride, citraconic anhydride, N-methylmaleimide, N-phenylmaleimide, and the like.

これら共重合する単量体は各々単独もしくは混合して使
用することができるが、芳香族ビニル単量体との共重合
体及びこれとポリフェニレンエーテルとからなる樹脂材
料の透明性を阻害しない範囲で、組合せ及び使用割合を
調節すればよい。
These copolymerizable monomers can be used alone or in combination, but within the range that does not impede the transparency of the copolymer with the aromatic vinyl monomer and the resin material made of this and polyphenylene ether. , the combination and usage ratio may be adjusted.

芳香族ビニル単量体は単量体混合物中50重量%以上で
あることが好ましく、50重量%以下では得られる樹脂
の吸湿性が大きくなることから好ましくない。
The amount of the aromatic vinyl monomer in the monomer mixture is preferably 50% by weight or more, and if it is less than 50% by weight, the hygroscopicity of the resulting resin increases, which is not preferable.

また芳香族ビニル単量体単位を主体とする重合体の溶融
流動性(MFR)□は、ASTM 01238に準拠し
、230℃、3.8 k+r荷重でのメルトフローレー
トを5710分として嶌わす。
Further, the melt fluidity (MFR) □ of the polymer mainly composed of aromatic vinyl monomer units is based on ASTM 01238, with a melt flow rate of 5710 minutes at 230° C. and a load of 3.8 k+r.

そしてこの値は、0.5〜200程度である。This value is approximately 0.5 to 200.

好ましくは、2〜100である。Preferably, it is 2-100.

200を越えると機械的強度が低下することから好まし
くなく、また0、5よりも小さいと複屈折を低減するの
が困難になることから好ましくない。
If it exceeds 200, it is not preferred because the mechanical strength decreases, and if it is smaller than 0.5, it becomes difficult to reduce birefringence, which is not preferred.

芳香族ビニル単量体単位を主体とする重合体の製造法と
しては、ラジカル開始剤を用いた塊状重合、懸濁重合、
乳化重合、溶液重合のいずれでもよいが、生産性及び不
純物の混入の少ない重合体を得る目的からは塊状重合ま
たは懸濁重合が好ましい。
Methods for producing polymers mainly composed of aromatic vinyl monomer units include bulk polymerization using a radical initiator, suspension polymerization,
Either emulsion polymerization or solution polymerization may be used, but bulk polymerization or suspension polymerization is preferred from the viewpoint of productivity and obtaining a polymer with less contamination of impurities.

ラジカル開始剤としては、ラウロイルパーオキシド、ベ
ンゾイルパーオキシド、ジーtert −ブチルパーオ
キシド、ジクミルパーオキシド等の過酸化物、2,2゛
 −アゾビスイソブチロニトリル、1.1“ −アゾビ
ス(1−シクロヘキサンカルボニルニトリル)等のアゾ
化合物を挙げることができる。
Examples of the radical initiator include peroxides such as lauroyl peroxide, benzoyl peroxide, di-tert-butyl peroxide, dicumyl peroxide, 2,2'-azobisisobutyronitrile, 1,1'-azobis( Examples include azo compounds such as 1-cyclohexanecarbonylnitrile).

また分子量を制御するため、必要であれば、連鎖移動剤
としてtert−ブチル、n−ブチル、n−オクチル、
n−ドデシル及びtert−ドデシルメルカプタン等を
添加すれば良い。
In order to control the molecular weight, if necessary, tert-butyl, n-butyl, n-octyl,
N-dodecyl, tert-dodecyl mercaptan, etc. may be added.

重合温度は一般に50〜150℃の範囲で行われる。The polymerization temperature is generally in the range of 50 to 150°C.

本発明でいうポリフェニレンエーテルは、−最大、 R+   Rt Rz   Ra (但し、R,、Rffi 、Rff、R,は水素、ハロ
ゲンまたは炭化水素基を示す。)で表わされる繰返し単
位を有する重合体である。
The polyphenylene ether referred to in the present invention is a polymer having repeating units represented by -maximum, R+ Rt Rz Ra (where R, Rffi, Rff, and R represent hydrogen, halogen, or hydrocarbon group). .

該ポリフェニレンエーテルはフェノール類単量体を酸化
カップリングにより重合した重合体であって、銅系また
はマンガン系触媒を用いた公知の方法(例えば特公昭3
6−18692号公報、特公昭47−36518号公報
)により容易に製造されるものである。
The polyphenylene ether is a polymer obtained by polymerizing phenolic monomers by oxidative coupling, and is produced by a known method using a copper-based or manganese-based catalyst (for example,
6-18692, Japanese Patent Publication No. 47-36518).

このポリフェニレンエーテルの具体例は、ポリ (2,
6−シメチルー1.4−フェニレン)エーテル、ポリ(
2−メチル−6−ニチルー1゜4−フェニレン)エーテ
ル、ポリ(2−メチル−6−ブロビルー1.4−フェニ
レン)エーテル、ポリ(2,6−ジプロビルー1. 4
−フェニレン)エーテル、ポリ(2−メチル−6−プロ
ムー1.4−フェニレン)エーテル等が挙ケられ、特に
ポリ (2,6−シメチルー1,4−フェニレン)エー
テルが好ましい。
A specific example of this polyphenylene ether is poly(2,
6-dimethyl-1,4-phenylene)ether, poly(
2-methyl-6-nityl-1゜4-phenylene) ether, poly(2-methyl-6-broby-1,4-phenylene) ether, poly(2,6-diprobyl-1.4)
-phenylene) ether, poly(2-methyl-6-promo-1,4-phenylene) ether, and poly(2,6-dimethyl-1,4-phenylene) ether is particularly preferred.

このポリフェニレンエーテルは、エンジニアリングプラ
スチックとして一般に用いられているものも使用可能で
あるが、より低分子量のものが適している。
Although polyphenylene ethers commonly used as engineering plastics can be used, polyphenylene ethers with lower molecular weights are suitable.

つまりポリフェニレンエーテルの平均分子Iは、重合体
の極限粘度(η)P□ (クロロホルム溶液中、25℃
での測定、算出)で表わして、0.1〜1.0でも用い
ることができるが、0.3〜0.5が好ましい。
In other words, the average molecule I of polyphenylene ether is the intrinsic viscosity of the polymer (η)P
0.1 to 1.0 can be used, but 0.3 to 0.5 is preferable.

0.3より小さいと光学用の樹脂成形体の機械的強度が
小さくなる。
If it is less than 0.3, the mechanical strength of the optical resin molded body will be low.

また複屈折及び特に斜め入射光に対しての複屈折を小さ
くするためには0.5以下が好ましい。
Further, in order to reduce birefringence, especially birefringence for obliquely incident light, it is preferably 0.5 or less.

これは押出成形法により、光学素子を製造するに際し、
芳香族ビニル単量体を主体とする重合体部分とポリフェ
ニレンエーテルのそれぞれの配向性及び/または重合体
の配向の緩和速度が異なるためと考えられる。
When manufacturing optical elements using the extrusion method,
This is thought to be due to the difference in the orientation and/or relaxation rate of the orientation of the polymer between the aromatic vinyl monomer-based polymer portion and the polyphenylene ether.

芳香族ビニル単量体を主体とする重合体部分とポリフェ
ニレンエーテル部分との割合は前者が60〜90重量%
、好ましくは65〜85重量%であり後者が40〜10
重量%、好ましくは35〜15重量%である。
The ratio of the polymer part mainly composed of aromatic vinyl monomer and the polyphenylene ether part is 60 to 90% by weight of the former.
, preferably 65 to 85% by weight, and the latter is 40 to 10% by weight.
% by weight, preferably 35-15% by weight.

ポリフェニレンエーテル部分が10重量%未満または4
0重量%を越えると押出成形して得られる光学用樹脂成
形体の複屈折が充分低くならない。
Polyphenylene ether moiety is less than 10% by weight or 4
If it exceeds 0% by weight, the birefringence of the optical resin molded product obtained by extrusion will not be sufficiently low.

その上、10%未満では耐熱性が充分でない。Moreover, if it is less than 10%, heat resistance is insufficient.

本発明の光学用の樹脂成形体に用いる樹脂材料を、芳香
族ビニル単量体単位を主体とする重合体と、ポリフェニ
レンエーテルを混合して得るには、溶融混合、または溶
液混合が適している。
Melt mixing or solution mixing is suitable for obtaining the resin material used in the optical resin molding of the present invention by mixing a polymer mainly composed of aromatic vinyl monomer units and polyphenylene ether. .

溶融混合は、ポリフェニレンエーテルの溶融温度以上に
て押出機、バンバリーミキサ−1二一ダーブレンダー、
加熱ロール等の混合機械を用いて高剪断下行われる。
Melt mixing is carried out using an extruder, a Banbury mixer, a Banbury mixer, a blender, and a blender at a temperature higher than the melting temperature of polyphenylene ether.
This is done under high shear using a mixing machine such as a heated roll.

混合度合は、再重合体が互いに約1μ以下にまで分散混
合されることが好ましく、さらに分子スケールまで混合
されることが好ましい。
Regarding the mixing degree, it is preferable that the repolymers are dispersed and mixed to a depth of about 1 μm or less, and further preferably to a molecular scale.

混合状態が分子スケールにまで達したかどうかは混合物
のガラス転移温度が唯一のものとなることで容易に判定
される。
Whether the mixed state has reached the molecular scale can be easily determined based on the unique glass transition temperature of the mixture.

充分満足される混合状態を得るため、混合温度を高める
、混合時間を延長する、さらに剪断力を高めるといった
方法が採用される。
In order to obtain a sufficiently satisfactory mixing state, methods such as increasing the mixing temperature, extending the mixing time, and further increasing the shear force are adopted.

さらに溶融混合において再重合体の溶融温度を低下せし
めて混合を容易なものとするため、可塑剤としてを機溶
剤を少量用いることもできる。
Furthermore, in order to lower the melting temperature of the repolymer during melt mixing to facilitate mixing, a small amount of a mechanical solvent may be used as a plasticizer.

有機溶剤としては後述の溶液混合法にて用いられる有機
溶剤を用いることができ、混合終了後、用いたを機溶剤
を蒸発除去すれば良い。
As the organic solvent, the organic solvent used in the solution mixing method described below can be used, and after the mixing is completed, the used organic solvent may be removed by evaporation.

溶液混合は再重合体を有機溶剤に溶解して少なくとも1
重量%の溶液とし、撹拌混合により均一混合物とした後
、有機溶剤も蒸発除去するかまたは均一混合物に再重合
体の貧溶剤を入れて、混合された再重合体を析出させる
ことができる。
Solution mixing involves dissolving the repolymer in an organic solvent and adding at least one
After making a solution of % by weight and making a homogeneous mixture by stirring and mixing, the organic solvent is also evaporated off, or a poor solvent for the repolymer is added to the homogeneous mixture, and the mixed repolymer can be precipitated.

好適な有機溶剤としては、クロロホルム、塩化メチレン
、塩化エチレン、トルエン、ベンゼン、クロロベンゼン
等を挙げることができ、また貧溶剤としては、メタノー
ル、エタノール、プロピルアルコール、n−へキサン、
n−ペンタン等を挙げることができる。
Suitable organic solvents include chloroform, methylene chloride, ethylene chloride, toluene, benzene, chlorobenzene, etc., and poor solvents include methanol, ethanol, propyl alcohol, n-hexane,
Examples include n-pentane.

芳香族ビニル単量体単位を主体とする重合体部分とポリ
フェニレンエーテル部分とからなるブロック共重合体あ
るいはグラフト共重合体は、一方の重合体の存在下に他
方の単量体を重合して得られる。
A block copolymer or graft copolymer consisting of a polymer portion mainly composed of aromatic vinyl monomer units and a polyphenylene ether portion can be obtained by polymerizing one monomer in the presence of the other. It will be done.

具体的には、特公昭42−22069号、同47−12
10号、同47−47862号、同52−38596号
公報等に記載された方法等により、ポリフェニレンエー
テルの存在下、芳香族ビニル単量体を主体とする単量体
を重合する、または芳香族ビニル単量体単位を主体とす
る重合体の存在下に、フェノール類単量体を酸化カップ
リング重合してグラフト重合体あるいはブロック共重合
体を製造することができる。
Specifically, Special Publication No. 42-22069, No. 47-12
10, No. 47-47862, No. 52-38596, etc., in the presence of polyphenylene ether, monomers mainly consisting of aromatic vinyl monomers are polymerized, or aromatic A graft polymer or a block copolymer can be produced by oxidative coupling polymerization of a phenol monomer in the presence of a polymer mainly composed of vinyl monomer units.

このグラフト重合体あるいはブロック共重合体に、先に
示した芳香族ビニル単量体単位を主体とする重合体また
は、ポリフェニレンエーテルを混合してもよい。
This graft polymer or block copolymer may be mixed with the above-mentioned polymer mainly composed of aromatic vinyl monomer units or polyphenylene ether.

本発明でいう押出成形とは、熱可塑性樹脂のシートを製
造する周知の方法の1種でシート押出成形装置を用いた
成形方法である。
Extrusion molding in the present invention is one of the well-known methods for manufacturing thermoplastic resin sheets, and is a molding method using a sheet extrusion molding apparatus.

該押出成形装置は、通常押出機とシートグイ、冷却ロー
ル、引取装置及びこれらの付帯設置から構成されている
The extrusion molding apparatus usually consists of an extruder, a sheet guide, a cooling roll, a take-off device, and their ancillary equipment.

一般的には0.1 n程度の薄いシートから1゜n近い
厚物シートまで成形することができる。
Generally, it is possible to form sheets ranging from a thin sheet of about 0.1 nm to a thick sheet of nearly 1°.

成形時の樹脂温度は230℃以上350℃以下が好まし
く、さらに好ましくは240℃以上300℃以下である
The resin temperature during molding is preferably 230°C or more and 350°C or less, more preferably 240°C or more and 300°C or less.

ここでいう樹脂温度とはグイ出口における溶融樹脂の温
度である。
The resin temperature here refers to the temperature of the molten resin at the goo outlet.

樹脂温度が230℃より低いと得られる光カード基板の
複屈折が20nm以上となり光カード基板あるいは光デ
イスク基板として不適当であり、樹脂温度が350℃を
起すと樹脂が分解し、着色、フィンシュアイ、厚み、ム
ラ、グイライン等の不良現象が発生し易くなり、得られ
る光カード基板のビットエラーが著しく増加するので好
ましくない。
If the resin temperature is lower than 230°C, the resulting optical card substrate will have a birefringence of 20 nm or more, making it unsuitable for use as an optical card board or optical disk substrate. If the resin temperature reaches 350°C, the resin will decompose, causing coloration and fins. This is undesirable because defective phenomena such as eyes, thickness, unevenness, and gray lines tend to occur, and the bit errors of the resulting optical card substrate increase significantly.

冷却ロールの表面温度は50℃〜200℃程度であり、
好ましくは80℃〜150℃程度である。
The surface temperature of the cooling roll is about 50°C to 200°C,
Preferably it is about 80°C to 150°C.

表面温度が低過ぎると押出シートの冷却ロールの密着性
が低下し、表面粗度、平面性が悪くなり、高過ぎるとロ
ール離れが悪くなって押出シートにリリース模様が発生
するので好ましくない。
If the surface temperature is too low, the adhesion of the extruded sheet to the cooling roll will decrease, resulting in poor surface roughness and flatness. If the surface temperature is too high, the roll separation will be poor and a release pattern will occur on the extruded sheet, which is not preferable.

また、冷却ロールの表面状態は密着した押出シートの表
面に転写されるので、0.3S以下の鏡面仕上が好まし
い。
Furthermore, since the surface condition of the cooling roll is transferred to the surface of the extruded sheet in close contact with it, a mirror finish of 0.3S or less is preferable.

押出成形により得られたシートから熱溶断、機械的切断
による、所定の形状に加工される。
A sheet obtained by extrusion molding is processed into a predetermined shape by thermal cutting and mechanical cutting.

さらに、光カード基板、光デイスク基板あるいはレンズ
のなかでもフレネルレンズのように表面に微細な凹凸を
設ける加工法としては、押出シートの表面をガラス転移
温度以上とし、スタンプする方法が挙げられる。
Furthermore, among optical card substrates, optical disk substrates, and lenses, a method of forming fine irregularities on the surface of a Fresnel lens includes a method of heating the surface of an extruded sheet to a glass transition temperature or higher and stamping.

該樹脂成形体のなかでも光学式ディスク基板あるいは光
カード基板とした場合は、半導体レーザー光等が通過す
る。
Among the resin molded articles, when an optical disk substrate or an optical card substrate is used, semiconductor laser light and the like pass through the resin molded article.

従って波長800nmにおける光線透過率が厚さ1.2
鶴の材料において75%以上、厚さ0゜4鶴の材料にお
いて85%以上であることが好ましい。
Therefore, the light transmittance at a wavelength of 800 nm is 1.2
It is preferably 75% or more in the crane material and 85% or more in the 0°4 crane material.

〈実施例〉 以下実施例をもって詳細に説明するが、下記はもとより
、本発明を限“定するものではない。
<Examples> The present invention will be explained in detail below using examples, but the present invention is not limited to the following.

なお実施例中の部または%はいずれも重量基準である。Note that all parts and percentages in the examples are based on weight.

また実施例に示す物性は以下の方法により測定した。Further, the physical properties shown in the examples were measured by the following method.

・複屈折:偏光I!J微鏡を利用して、546nmにて
セナルモンコンペンセーター法にてリターデーションを
測定した。
・Birefringence: Polarization I! Retardation was measured by the Senarmont compensator method at 546 nm using a J microscope.

・吸水率: ASTM D−570に基づいて60℃蒸
留水中での平衡吸水率を測定した。
-Water absorption rate: Equilibrium water absorption rate in distilled water at 60°C was measured based on ASTM D-570.

・光線透過率:自記分光光度計(日立製作所製330型
)にて800nmでの試料厚み1.2龍の透過率を測定
した。
- Light transmittance: The transmittance of a sample with a thickness of 1.2 mm was measured at 800 nm using a self-recording spectrophotometer (Model 330, manufactured by Hitachi, Ltd.).

・重合体の極限粘度:ウベローデ粘度計を用い、クロロ
ホルム溶媒で、25℃にて測定した。
- Intrinsic viscosity of polymer: Measured using an Ubbelohde viscometer in chloroform solvent at 25°C.

・メルトフローレート: AST!’l [1−123
8に準拠し、230℃、3.8 kg荷重で測定した。
・Melt flow rate: AST! 'l [1-123
8, and was measured at 230° C. and a load of 3.8 kg.

・混練、ペレット化は二軸押出し機(日本製鋼株式会社
製、TEX30−30BW−2V型)より行なった。
- Kneading and pelletizing were performed using a twin screw extruder (manufactured by Nippon Steel Corporation, model TEX30-30BW-2V).

・押出成形機は田辺プラスチック機械■製30龍φシー
ト押出装置(押出機口径:30鰭φ、ダイ:400fi
幅、リップギャップ0.5鶴、冷却ロール:口径250
1mφ、表面粗度0.3S)を使用した。
・The extrusion molding machine is a 30 dragon φ sheet extrusion device made by Tanabe Plastic Machinery (extruder diameter: 30 fin φ, die: 400 fi
Width, lip gap 0.5, cooling roll: diameter 250
1 mφ, surface roughness 0.3S) was used.

・射出成形機は東芝機械fil製、射出成形機l5−2
5 (型締力25tOn)、間隙Q、 ’l asのフ
ィルムゲート、0.4nX54w重×85.5鶴のキャ
ビィティを有する金型を用いた。
・The injection molding machine is manufactured by Toshiba Machine fil, injection molding machine 15-2.
5 (mold clamping force 25 tOn), a gap Q, a film gate of 'las, and a mold having a cavity of 0.4n x 54w weight x 85.5mm was used.

実施例1〜3、比較例1〜3 特公昭47−36518号公報実施例2、隘9に記載の
方法に従い、塩化マンガン、エタノールアミンを触媒と
して2.6−キシレノールを重合して極限粘度が0.4
0(クロロホルム中、25℃)のポリ (2,6−シメ
チルー1,4−フェニレン)エーテルを調製した。
Examples 1 to 3, Comparative Examples 1 to 3 According to the method described in Example 2, No. 9 of Japanese Patent Publication No. 47-36518, 2,6-xylenol was polymerized using manganese chloride and ethanolamine as catalysts, and the intrinsic viscosity 0.4
Poly(2,6-dimethyl-1,4-phenylene)ether of 0.0 (in chloroform, 25°C) was prepared.

このポリフェニレンエーテルとポリスチレン樹脂(住友
化学工業製ニスブライト■4−62゜MFR24)と表
1に示した割合にて混合配合し、二軸押出機にて混練・
造粒し、ペレット化した。
This polyphenylene ether and polystyrene resin (Nisbrite ■4-62°MFR24, manufactured by Sumitomo Chemical Industries) were mixed and blended in the proportions shown in Table 1, and kneaded in a twin-screw extruder.
It was granulated and pelletized.

該ベレットをシリンダー温度270℃、グイ温度260
℃、冷却ロール温度120℃の押出装置に供給し、厚み
0.4龍、幅380nのシートを得た。
The pellet was heated to a cylinder temperature of 270°C and a Gui temperature of 260°C.
The mixture was supplied to an extrusion device with a cooling roll temperature of 120°C to obtain a sheet having a thickness of 0.4 mm and a width of 380 nm.

得られたシートの物性評価結果を表1に示す。Table 1 shows the results of physical property evaluation of the obtained sheet.

比較例4 実施例1で用いたポリ (2,6−シメチルー1.4=
フエニレン)エーテルを単独に用いて押出成形を行なっ
た。
Comparative Example 4 Poly(2,6-cymethyl-1.4=
Extrusion was carried out using (phenylene) ether alone.

実施例1と同一条件では成形できず、シリンダー温度と
グイ温度を300℃に上昇したが良好なシートを押出す
ことができなかった。
Molding could not be carried out under the same conditions as in Example 1, and although the cylinder temperature and the Goo temperature were raised to 300°C, a good sheet could not be extruded.

比較例5 実施例1で用いたポリスチレン樹脂を単独で実施例1と
同一の条件で成形を行なった。
Comparative Example 5 Molding was performed using the polystyrene resin used in Example 1 alone under the same conditions as in Example 1.

複屈折の絶対値は50nm以上であり、分布むらも大き
いものであった。
The absolute value of birefringence was 50 nm or more, and the distribution was highly uneven.

比較例6 ビスフエノール八を原料とし、常法に従い、塩化メチレ
ンを溶剤としてホスゲンを吹込み、界面重縮合を行ない
、平均分子量が約25,000のポリカーボネート樹脂
を得た。
Comparative Example 6 Using bisphenol 8 as a raw material, interfacial polycondensation was carried out by blowing phosgene into the resin using methylene chloride as a solvent according to a conventional method to obtain a polycarbonate resin having an average molecular weight of about 25,000.

なお分子量の調節にはt−ブチルフェノールを用いた。Note that t-butylphenol was used to adjust the molecular weight.

得られた粉末樹脂を押出機にて造粒し、実施例1と同じ
条件で押出成形を行なった。
The obtained powdered resin was granulated using an extruder, and extrusion molding was performed under the same conditions as in Example 1.

しかし、得られたシートの複屈折は平均16Qnmと大
きく振れも±30nmと大きかった。
However, the average birefringence of the obtained sheet was 16 Q nm, and the fluctuation was large, ±30 nm.

比較例7〜9 実施例1で用いたポリフェニレンエーテルとポリスチレ
ンを表2に示した割合にて混合配合し、・二軸押出機に
て混線・造粒しペレット化した。
Comparative Examples 7 to 9 The polyphenylene ether and polystyrene used in Example 1 were mixed and blended in the proportions shown in Table 2, and mixed and granulated using a twin-screw extruder to form pellets.

該ペレットを射出成形によりシリンダー温度310℃、
金型温度105℃にて、間隙0.2鶴のフィルムゲート
を厚み0.4龍、幅54籠、長さ85.5 mの光カー
ド基板を得た。
The pellets were injection molded at a cylinder temperature of 310°C.
At a mold temperature of 105° C., an optical card substrate having a film gate with a gap of 0.2 mm, a thickness of 0.4 mm, a width of 54 mm, and a length of 85.5 m was obtained.

得られたカード基板の物性を表2に示す。Table 2 shows the physical properties of the obtained card substrate.

ここで複屈折はカード基板の中心で測定した値である。Here, the birefringence is a value measured at the center of the card substrate.

表2 〈発明の効果) また、本発明の光学用の樹脂成形体は、シート状物の成
形としては最も生産性が高いが、複屈折を生じやすいと
される押出成形法によっても低複屈折にすることができ
る。
Table 2 (Effects of the Invention) The optical resin molded article of the present invention has the highest productivity when molding sheet-like products, but it also has low birefringence even when used by extrusion molding, which is said to easily cause birefringence. It can be done.

もとより耐熱性、機械的強度が優れているものなので光
カード基板、光学式ディスクの基板、レンズ等なかでも
特定された波長を持つ光を使用する場合に適しているこ
とから光カード基板、光デイスク基板に適している。
Since it has excellent heat resistance and mechanical strength, it is suitable for optical card substrates, optical disk substrates, lenses, etc.Because it is suitable for cases where light with a specified wavelength is used, optical card substrates and optical disks are used. Suitable for substrates.

Claims (2)

【特許請求の範囲】[Claims] (1)芳香族ビニル単量体を主体とする重合体部分が6
0〜90重量%とポリフェニレンエーテル部分が10〜
40重量%とから成る樹脂材料を押出成形により形成し
た光学用樹脂成形体。
(1) The polymer portion mainly composed of aromatic vinyl monomer is 6
0-90% by weight and polyphenylene ether part is 10-90% by weight
An optical resin molded article formed by extrusion molding of a resin material consisting of 40% by weight.
(2)光学用樹脂成形体が光カード基板である特許請求
の範囲第(1)項記載の光学用樹脂成形体。
(2) The optical resin molded article according to claim (1), wherein the optical resin molded article is an optical card substrate.
JP62248785A 1987-10-01 1987-10-01 Molded resin article for optical use Pending JPH0192209A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62248785A JPH0192209A (en) 1987-10-01 1987-10-01 Molded resin article for optical use

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62248785A JPH0192209A (en) 1987-10-01 1987-10-01 Molded resin article for optical use

Publications (1)

Publication Number Publication Date
JPH0192209A true JPH0192209A (en) 1989-04-11

Family

ID=17183359

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62248785A Pending JPH0192209A (en) 1987-10-01 1987-10-01 Molded resin article for optical use

Country Status (1)

Country Link
JP (1) JPH0192209A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7041780B2 (en) 2003-08-26 2006-05-09 General Electric Methods of preparing a polymeric material composite
US7244813B2 (en) 2003-08-26 2007-07-17 General Electric Company Methods of purifying polymeric material
US7256225B2 (en) 2003-08-26 2007-08-14 General Electric Company Methods of preparing a polymeric material
US7354990B2 (en) 2003-08-26 2008-04-08 General Electric Company Purified polymeric materials and methods of purifying polymeric materials

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7041780B2 (en) 2003-08-26 2006-05-09 General Electric Methods of preparing a polymeric material composite
US7244813B2 (en) 2003-08-26 2007-07-17 General Electric Company Methods of purifying polymeric material
US7256225B2 (en) 2003-08-26 2007-08-14 General Electric Company Methods of preparing a polymeric material
US7314907B2 (en) 2003-08-26 2008-01-01 General Electric Company Purified polymeric materials and methods of purifying polymeric materials
US7354990B2 (en) 2003-08-26 2008-04-08 General Electric Company Purified polymeric materials and methods of purifying polymeric materials

Similar Documents

Publication Publication Date Title
JP5666751B1 (en) Optical resin material and optical film
JPS61108617A (en) Optical resin material
US5135791A (en) Optical device
US4845142A (en) Magneto optical disk substrate comprising an aromatic vinyl monomer and a polyphenylene ether
KR100629666B1 (en) Thermoplastic polymer material for audio and/or optical data recording media
EP0225801B1 (en) Optical devices
JPH0192209A (en) Molded resin article for optical use
JPS6313722A (en) Manufacture of optical disk base
JPS63309547A (en) Optical resin molding
JP2010078892A (en) Retardation film and method for manufacturing the same
JPS62112612A (en) Acrylic resin
JPS6391231A (en) Optical element and its manufacture
JPS62240901A (en) Optical element
JPS63301247A (en) Optical resin molding
US4812345A (en) Optical disk substrate
JPH02208342A (en) Optical disc base
JPS63256427A (en) Manufacture of optical element
JP4890961B2 (en) Optical resin
JP2007177230A (en) Thermoplastic resin composition, its production process, and molded article
JPS62246914A (en) Methacrylic resin
JPH04254928A (en) Methacrylic resin for optical information recording medium
JPS62275155A (en) Polycarbonate resin composition
JPS63234009A (en) Methacrylic resin composition
JP2008239742A (en) Thermoplastic resin film and production method thereof
JP3321312B2 (en) Optical information recording medium

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees