JPS63135694A - Heat insulator - Google Patents

Heat insulator

Info

Publication number
JPS63135694A
JPS63135694A JP61281139A JP28113986A JPS63135694A JP S63135694 A JPS63135694 A JP S63135694A JP 61281139 A JP61281139 A JP 61281139A JP 28113986 A JP28113986 A JP 28113986A JP S63135694 A JPS63135694 A JP S63135694A
Authority
JP
Japan
Prior art keywords
heat insulator
thermal conductivity
urethane foam
pressure
foam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61281139A
Other languages
Japanese (ja)
Inventor
紀征 山本
泰芳 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP61281139A priority Critical patent/JPS63135694A/en
Publication of JPS63135694A publication Critical patent/JPS63135694A/en
Pending legal-status Critical Current

Links

Landscapes

  • Thermal Insulation (AREA)
  • Refrigerator Housings (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔竜業上の利用分野〕 本発明は冷蔵庫、ショーケース等に用いられる断熱体に
関するものである。
[Detailed Description of the Invention] [Field of industrial application] The present invention relates to a heat insulator used in refrigerators, showcases, etc.

〔従来技術〕[Prior art]

近年、断熱箱体の断熱性能を向上させるため内部を減圧
した断熱体を用いることが注目されている。
In recent years, attention has been paid to the use of a heat insulating body with a reduced internal pressure in order to improve the heat insulation performance of the heat insulating box.

上記断熱体の芯材としてはパーライト等の粉末ハニカム
発泡体等が用いられ、該芯材を金属−プラスチックスラ
ミネートフィルムからなる容器で被覆し、この容器内を
減圧することで断熱体を構成している。
A powdered honeycomb foam such as perlite is used as the core material of the heat insulator, and the core material is covered with a container made of metal-plastic laminate film, and the inside of this container is depressurized to form the heat insulator. ing.

上記断熱体に用いられるパーライトは平均粒径10μm
程度であり、その圧力と熱伝導率の関係は第3図の8曲
線で示される。
The pearlite used in the above heat insulator has an average particle size of 10 μm.
The relationship between pressure and thermal conductivity is shown by curve 8 in FIG.

その平均粒径を小さくすると圧力−熱伝導率曲線は第3
図の5曲線で示すようになり、内部圧力が1 torr
以上では低熱伝導率を示すが、Itorr以下では逆に
高くなる傾向を示す。
When the average particle size is decreased, the pressure-thermal conductivity curve becomes 3rd.
As shown by curve 5 in the figure, the internal pressure is 1 torr.
Above it shows a low thermal conductivity, but below Itorr it tends to increase.

又、連続気泡をもつ硬質ウレタンフオームを芯材とする
と、第3図のC線のようになり、高真空域ではパーライ
トより低熱伝導率を示すが、低真空域では極端に悪い。
Furthermore, if a hard urethane foam with open cells is used as a core material, the result will be as shown by line C in Figure 3, which shows lower thermal conductivity than pearlite in a high vacuum region, but extremely poor in a low vacuum region.

硬質ウレタンフオームのポリオール、イソシアネートの
主原料及び触媒、整色材等を種々検討しても現状の技術
レベルでは8曲線を上回わることは困難である。
Even if various studies are made on the polyol of the rigid urethane foam, the main raw materials and catalysts for the isocyanate, the coloring agent, etc., it is difficult to exceed the curve 8 at the current technological level.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記の様に連通気泡硬質ウレタンフオームの気泡径の微
細化には限界があり、又無機粉末を微細化すると高真空
域で悪化するのは、1torr以下の真空度で熱伝導率
を決定する因子として芯材のもつ固有熱伝導率と固体間
の伝熱に起因する所が多いことが推測される。
As mentioned above, there is a limit to the miniaturization of the cell diameter in open-cell rigid urethane foam, and the fact that miniaturization of inorganic powder deteriorates in high vacuum is a factor that determines thermal conductivity at a vacuum level of 1 torr or less. It is assumed that this is largely due to the inherent thermal conductivity of the core material and the heat transfer between solids.

又、Itorr以下の低真空域では残存気体の平均自由
工程に起因する所が大きいことが推測される。
Furthermore, in the low vacuum region of Itorr or less, it is presumed that the problem is largely due to the mean free path of the residual gas.

更に、高真空域では固体が少ない即ち充填密度が小さい
程、低真空域では固体が多い即ち充填密度が大きい程良
好な断熱性能を示す矛循性を有している。
Furthermore, there is a paradox that in a high vacuum region, the less solids there are, that is, the packing density is lower, and in the low vacuum region, the more solids there are, that is, the packing density is higher, the better the insulation performance is.

本発明はその矛循性を克服するものである。The present invention overcomes that paradox.

〔問題点を解決するだめの手段〕[Failure to solve the problem]

本発明は、ポリオール、イソシアネート、触媒、整泡剤
、気泡連通化剤の混合物に、固有熱伝導率の比較的少な
い10μ以下の微粉末を混合して連続気泡構造の硬質ウ
レタンフオームを形成し、この硬質ウレタンフオームを
芯材として金属−プラスチックラミネートフィルムから
なる容器で被い内部を減圧して密閉するものである。
The present invention forms a rigid urethane foam with an open cell structure by mixing a fine powder of 10μ or less with relatively low intrinsic thermal conductivity with a mixture of polyol, isocyanate, catalyst, foam stabilizer, and cell communication agent. This hard urethane foam is used as a core material, and the container is covered with a metal-plastic laminate film, and the inside is sealed by reducing the pressure.

〔作 用〕[For production]

本発明によれば、連続気泡構造を有する硬質ウレタンフ
オーム生成にあたって固有熱伝導率の小さい10μ以下
の微粉末が混入されるので気泡壁中に微粉末が埋め込ま
れることとなり、機械的強度が向上されると共に、低密
度フオームでも大気圧に抗し得、高真空域での固体伝熱
が押さえられる。
According to the present invention, when producing a hard urethane foam having an open-cell structure, fine powder of 10 μm or less with low intrinsic thermal conductivity is mixed, so the fine powder is embedded in the cell walls, improving mechanical strength. In addition, even low-density foam can withstand atmospheric pressure, suppressing solid-state heat transfer in high vacuum regions.

又、上記微粉末粒子が連続気泡内にも突出することとな
るので残存気体の動きを規制する作用があり、低真空域
での高断熱性能が向上する。
Furthermore, since the fine powder particles protrude into the open cells, they have the effect of regulating the movement of residual gas, improving high heat insulation performance in a low vacuum region.

〔実施例〕〔Example〕

断熱体1は、第1図に示す如く連続気泡構造の硬質ウレ
タンフオーム2を金属−プラスチックラミネートフィル
ムからなる容器3で被い、その内部を減圧して密閉して
居り、上記硬質ウレタンフオーム2は水酸基価300〜
500m7KOH/りのポリオール、ポリイソシアネー
ト、触媒、整泡剤、発泡剤及び気泡連通化剤と、固有熱
伝導率が比較的小さい二酸化シリコン、ケイ酸カルシウ
ムを主成分とする平均粒径10μ以下の微粉末粒子を混
合して生成したものが用いられる。
As shown in FIG. 1, the heat insulating body 1 has a hard urethane foam 2 with an open cell structure covered with a container 3 made of a metal-plastic laminate film, and the inside of the container 3 is sealed by reducing the pressure. Hydroxyl value 300~
500m7 KOH/litre of polyol, polyisocyanate, catalyst, foam stabilizer, blowing agent, and cell communication agent, and a microorganism with an average particle size of 10μ or less whose main components are silicon dioxide and calcium silicate, which have relatively low intrinsic thermal conductivity. A mixture of powder particles is used.

前記連続気泡構造の硬質ウレタンフオーム生成にあたっ
て実際に用いた品種と重量パーセントは次のようなもの
である。
The types and weight percentages actually used in producing the open-cell structure rigid urethane foam are as follows.

ポリオールE     100(武田薬品工業製)整泡
剤L 5340    1.5 (日本ユニカー製)フ
レオンR−1130(旭硝子製) 触媒THHDA      2.0(花王製)気泡連通
剤      1.0(製鉄化学展)SiO230(平
均粒径5μm) ポリイソシアネー)CR−200140(三井東圧製)
而して、上記原料をウレタン用高圧発泡機で発泡し、硬
化させた硬質ウレタンフオーム2を所定の大きさに切断
し上記断熱体1の芯材とする。
Polyol E 100 (manufactured by Takeda Chemical Industries) Foam stabilizer L 5340 1.5 (manufactured by Nippon Unicar) Freon R-1130 (manufactured by Asahi Glass) Catalyst THHDA 2.0 (manufactured by Kao) Cell opening agent 1.0 (manufactured by Steel Chemical Exhibition) SiO230 (average particle size 5 μm) polyisocyanate) CR-200140 (manufactured by Mitsui Toatsu)
Then, the raw material is foamed using a high-pressure foaming machine for urethane, and the cured hard urethane foam 2 is cut into a predetermined size and used as the core material of the heat insulator 1.

上記のようにして作成された断熱体1の圧力−熱伝導率
曲線は第3図d曲線となり、全般にわたって8曲線を上
回っている。
The pressure-thermal conductivity curve of the heat insulator 1 created as described above is curve d in FIG. 3, which exceeds curve 8 throughout.

前記硬質ウレタンフオーム2の気泡構造模型図は第2図
で示すようになって居り、気泡壁A中に微粉末粒子Bが
埋め込まれることにより機械的強度が向上する。父上記
微粉末粒子Bは気泡内にも突出することとなるので気泡
中の残存気体の動きが抑制され、低真空域での断熱性能
が向上する。
The cell structure model of the hard urethane foam 2 is shown in FIG. 2, and the mechanical strength is improved by embedding the fine powder particles B in the cell walls A. Since the fine powder particles B also protrude into the bubbles, the movement of residual gas in the bubbles is suppressed, and the heat insulation performance in a low vacuum region is improved.

〔効果〕〔effect〕

本発明は、以上の如く構成されたものであるから機能的
強度が向上するのみならず、広範囲の真空度にわたって
低い熱伝導率を示し、真空断熱体の生産性も向上するこ
とから大巾コストダウンを計ることができるという顕著
な効果を奏し得るものである。
Since the present invention is constructed as described above, it not only improves functional strength, but also exhibits low thermal conductivity over a wide range of degrees of vacuum, and improves the productivity of the vacuum insulator, thereby reducing costs. This has the remarkable effect of being able to measure down.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明断熱体の縦断面図、第2図は同上断熱体
の気泡構造模型図、第3図は本発明断熱体及び従来断熱
体の圧力−熱伝導率の関係を示す特性線図である。 1:断熱体、2:硬質ウレタンフオーム、3:容器、A
:気泡壁、B:微粉末粒子。
Fig. 1 is a longitudinal cross-sectional view of the heat insulator of the present invention, Fig. 2 is a model diagram of the cell structure of the same heat insulator, and Fig. 3 is a characteristic line showing the relationship between pressure and thermal conductivity of the heat insulator of the present invention and the conventional heat insulator. It is a diagram. 1: Heat insulator, 2: Hard urethane foam, 3: Container, A
: Cell wall, B: Fine powder particles.

Claims (1)

【特許請求の範囲】[Claims] 1、ポリオール、イソシアネート、触媒、整泡剤、気泡
連通化剤の混合物に固有熱伝導率の比較的少ない10μ
以下の微粉末を混合して得られる連続気泡構造の硬質ウ
レタンフォームを、金属−プラスチックスラミネートフ
ィルムからなる容器で被い内部を減圧して密閉した事を
特徴としてなる断熱体。
1. The mixture of polyol, isocyanate, catalyst, foam stabilizer, and cell communication agent has a relatively low inherent thermal conductivity of 10μ
A heat insulator characterized in that a rigid urethane foam with an open cell structure obtained by mixing the following fine powders is covered with a container made of a metal-plastic laminate film, and the inside is sealed by reducing the pressure.
JP61281139A 1986-11-25 1986-11-25 Heat insulator Pending JPS63135694A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61281139A JPS63135694A (en) 1986-11-25 1986-11-25 Heat insulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61281139A JPS63135694A (en) 1986-11-25 1986-11-25 Heat insulator

Publications (1)

Publication Number Publication Date
JPS63135694A true JPS63135694A (en) 1988-06-08

Family

ID=17634907

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61281139A Pending JPS63135694A (en) 1986-11-25 1986-11-25 Heat insulator

Country Status (1)

Country Link
JP (1) JPS63135694A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996032605A1 (en) * 1995-04-13 1996-10-17 Imperial Chemical Industries Plc Non-planar evacuated insulation panels and a method for making same
CN102261136A (en) * 2011-07-11 2011-11-30 潍坊三强集团有限公司 Method for producing vacuum heat-insulating wall heat-preserving board by using leftovers of rock wool and mineral wool

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61103089A (en) * 1984-10-23 1986-05-21 シャープ株式会社 Vacuum heat-insulating structure

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61103089A (en) * 1984-10-23 1986-05-21 シャープ株式会社 Vacuum heat-insulating structure

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996032605A1 (en) * 1995-04-13 1996-10-17 Imperial Chemical Industries Plc Non-planar evacuated insulation panels and a method for making same
US5843353A (en) * 1995-04-13 1998-12-01 Imperial Chemical Industries Plc Non-planar evacuated insulation panels and a method for making same
CN1076460C (en) * 1995-04-13 2001-12-19 亨茨曼Ici化学品有限公司 Non-planar evacuated insulation panels and method for making same
CN102261136A (en) * 2011-07-11 2011-11-30 潍坊三强集团有限公司 Method for producing vacuum heat-insulating wall heat-preserving board by using leftovers of rock wool and mineral wool

Similar Documents

Publication Publication Date Title
US5084320A (en) Evacuated thermal insulation
US4159359A (en) Insulating material with low thermal conductivity, formed of a compacted granular structure
US20030043541A1 (en) Portable information appliance
US4594279A (en) Heat insulator
JPS63135694A (en) Heat insulator
JPH06213561A (en) Insulating material and refrigerator using the same
JPH0753769A (en) Foamed thermal insulator and its production
JPS63238140A (en) Fine porous body
WO2002041126A1 (en) Portable information equipment
JPS6361588B2 (en)
JP2001350546A (en) Notebook type computer
JP2548323B2 (en) Insulation
JPH02120598A (en) Insulating body
JPH08303940A (en) Insulating box and refrigerator using the box
JPS61153478A (en) Heat insulator
JPH0816035B2 (en) Micro porous body
JP2004250596A (en) Communicated foam, production process therefor, and heat insulated structure using the foam and production process therefor
JPS62147275A (en) Manufacture of heat insulator
JPH11199347A (en) Thin-wall hollow body and heat insulating material using the same
JPS61192993A (en) Decompression heat-insulating plate
JPH0272294A (en) Heat insulating structure
JPS62251593A (en) Manufacture of heat insulator
JPS6259375A (en) Heat insulator
JPH05200760A (en) Production of heat insulating material
JPS61153477A (en) Heat-insulating box body