JPH0566341B2 - - Google Patents

Info

Publication number
JPH0566341B2
JPH0566341B2 JP60132269A JP13226985A JPH0566341B2 JP H0566341 B2 JPH0566341 B2 JP H0566341B2 JP 60132269 A JP60132269 A JP 60132269A JP 13226985 A JP13226985 A JP 13226985A JP H0566341 B2 JPH0566341 B2 JP H0566341B2
Authority
JP
Japan
Prior art keywords
silica
vacuum
ultrafine
ultrafine particle
molded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60132269A
Other languages
Japanese (ja)
Other versions
JPS61291466A (en
Inventor
Shuzo Tokumitsu
Yoshasu Nobuto
Yukinobu Hoshida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP60132269A priority Critical patent/JPS61291466A/en
Publication of JPS61291466A publication Critical patent/JPS61291466A/en
Publication of JPH0566341B2 publication Critical patent/JPH0566341B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Thermal Insulation (AREA)
  • Laminated Bodies (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 この発明は断熱性能に優れた真空断熱構造体に
関するものである。 従来の技術 一般に冷凍コンテナ、液化ガス貯槽等高性能の
断熱を要する構造体では、断熱性能を向上するた
め断熱壁を真空構造体とすることは良く知られて
いる。 しかるに断熱壁を真空構造体に形成する場合
は、真空構造体を形成する内外壁金属容器に真空
荷重(1Kg/cm2)がかかるため、金属容器に真空
荷重に充分耐え得るように厚肉材料を使用するこ
ととなる。容器の大きさにもよるがステンレス材
で2mm程度の板厚が必要である。しかしながら金
属容器として厚肉材料を使用すると、重量が重く
なると共に、加工に極めて多くの労力を費やすば
かりか、第3図に示す様な厚肉材料で構成された
真空断熱構造体では、真空空間8を伝わる熱は少
ないけれども、面部6aもしくは6bから額部7
aおよび7bを伝わつて、面部6aもしくは6a
に逃げる熱が増大する欠点があつた。 このようなことから、薄肉材料の金属容器を使
用し得る真空断熱構造体が種々開発されている。
この種の真空断熱構造体は、内外壁の間に真空荷
重を受けるため、耐圧縮性の成形断熱材を支持材
として装填するものであるが、耐圧縮性を満足す
るものは一般に嵩比重が大きくなり、熱伝導度が
大きく、断熱性能の点で問題があつた。 上述のような理由から、珪素カルシウムのよう
な連続開気孔構造を有する耐圧縮性、軽量の無機
質成形体を支持材として使用し、10-2Torr以下
の真空断熱構造体が提案された。 この成形体は耐圧縮荷重が2Kg/cm2以上を有
し、しかも嵩比重が0.1g/c.c.程度と軽く、さら
に連続開気孔構造を有していることにより、真空
排気効果も著しいものである。 発明が解決しようとする問題点 ところで、珪素カルシウム成形体は直径数μm
〜数10μmのイガグリ状結晶が成長して絡み合
い、数10μm以下の比較的大きな空気孔を形成し
てなるものである。そのために輻射防止能が小さ
く、さらに結晶間の固体熱伝導および結晶と金属
容器の間の熱伝導が比較的大きく、10-2Torr以
下の真空下での熱伝導は0.01Kcal/m・h・℃
(常圧下では0.03Kcal/m・h・℃)程度である。 そして、珪素カルシウムよりも熱伝導度の小さ
い断熱材としては、パーライト、シラスバルー
ン、ガラスバルーンのように微小粉体(真空下で
の熱伝導度は約0.002Kcal/m・h・℃、常圧下
では0.02Kcal/m・h・℃)や、ガラスウール、
シリカアルミナウール、シリカウール等の繊維状
物質(真空下での熱伝導度は約0.003Kcal/m・
h・℃、常圧下では0.03Kcal/m・h・℃)があ
る。しかし繊維状物質はもちろん真空荷重に耐え
られない。一方、上記のような微小粉体は独立気
泡となつていてガスを内蔵しており、真空荷重を
受けると気泡が破壊して内蔵ガスを放出するた
め、荷重を受けることが不可能である。したがつ
て真空下でこれらの断熱材を使用する場合は、金
属容器として厚肉材料を使用することが必要とな
り、重量が重くなることは確実である。 本発明はこのような真空断熱構造体の欠点を改
良しようとするものであり、安価で断熱性能に優
れ、かつ真空排気操作が容易で軽量の真空断熱構
造体を提供するものである。 問題点を解決するための手段 本発明は上記問題点を解決するため、シラン誘
導体の熱処理または熱分解などの乾式法によつて
得られる一次粒子径がサブミクロン以下の超微粒
子シリカと珪素ソーダを酸で分解する方法、アル
カリ土類金属珪酸塩を酸で分解する方法、あるい
は酸性白土を酸で分解する方法などの湿式法によ
つて得られる一次粒子径がサブミクロン以下の超
微粒子シリカの混合物を主材とし、これを繊維状
物質と絡み合せて成形し、低熱伝導率の断熱材と
したものを支持材として用いるものである。 すなわち、金属容器中に真空状態で充填してい
る支持材を、シラン誘導体の熱処理または熱分解
によつて得られた超微粒子シリカ、湿式法によつ
て得られた超微粒子シリカおよび繊維強化材を混
合分散し、圧縮した成形体により構成するもので
ある。 また、特に真空断熱構造体の内外壁間の温度差
が大きい場合は、上記超微粒子シリカと繊維強化
材に微小な輻射防止剤を分散混合し、圧縮成形
し、支持材として用いるものである。 作 用 シリカの超微粒子を多孔体に単独で成形するこ
とは困難である。またバインダーを用いて成形す
ると固体熱伝導が大きくなる。そこで超微粒子シ
リカと繊維状物質を高速撹拌混合し、圧縮成形す
る。 この方法によると、2Kg/cm2以上の圧縮強度を
持ち、かつサブミクロン以下の気孔を90%近く持
つ微小多孔体の支持材を得ることができる。 ここで超微粒子シリカとして、乾式法から得ら
れるものと、湿式法から得られるものを適宜混合
して用いる。 乾式法の超微粒子シリカは、一次粒子が数百Å
以下の球状の非晶質で、シラノール基の数も非常
に少ないので、成形体の熱伝導率が静止空気の分
子熱伝導率よりも小さく、かつ圧縮強度が優れて
いる。また乾燥減量や強熱減量が少なく、乾燥作
業や真空引き作業が楽である。しかし、無荷重で
の嵩密度が非常に小さくプレス作業がやりにく
い。また非常に高価である。 一方、湿式法の超微粒子シリカは、一次粒子は
乾式法と同程度に小さいものであるが、シラノー
ル基の数は2倍以上であり、粒子間の凝集力が強
い。したがつて、嵩密度は比較的大きいが成形体
の熱伝導率は、乾式法シリカに比べると大きい。
また同じ空隙率に成形した場合の圧縮強度も乾式
法に比べると小さい。そして、乾燥減量や強熱減
量も大きい。しかし、湿式法の超微粒子シリカの
価格は乾式法超微粒子シリカの1/2以下である。 乾式法超微粒子シリカと湿式法超微粒子シリカ
の混合は、上記したそれぞれの長所を生かし、欠
点を補い合うものである。すなわち、断熱性能や
耐圧縮性能に優れた乾式法シリカに湿式法シリカ
を適宜添加混合し、湿式法シリカの凝集力によつ
て混合物の嵩密度を大きくし、プレス作業を容易
にするものである。乾式法超微粒子シリカおよび
湿式法超微粒子シリカは共に一次粒子が数百Å以
下であるため、輻射防止材を添加しなくても、珪
素カルシウム成形体に比べて輻射防止効果が大き
い。しかし内外壁間の温度差が大きい場合は、本
来の支持材の断熱性能、気孔の大きさに影響を及
ぼさない程度の粒径、材質の輻射防止材を混合す
ることによつて、一層輻射防止効果を向上でき
る。 またこの支持材は、粒子と粒子の点接触、粒子
と繊維の点接触で成形されているため、気孔率は
珪素カルシウムの約95%に比べて小さいにもかか
わらず、固体間の熱伝導は小さい。 この支持材は常圧では数%〜10%の水分を吸着
する。特に湿式シリカの含量が多い場合、吸着水
分が多く、常圧下では熱伝導率はそれ程優れたも
のではないが、吸着水分の影響のない減圧下で
は、珪素カルシウムよりはるかに優れた断熱性能
を示す。 さらに、上記の支持材は径がサブミクロン以下
の連続気孔で構成され、珪素カルシウム成形体よ
りもはるかに小さな気孔であり、真空度は数
Torr以下にすれば空気の対流、空気分子間の熱
伝導は極めて少ないものになる。 実施例 以下本発明について具体的に説明する。 本発明の支持材の主材として用いる超微粒子シ
リカは、四塩化珪素を酸水素炎中(1000℃)で加
水分解する製法などによつて得られる乾式法超微
粒子シリカと、珪素ソーダを酸で分解する製法な
どによつて得られる湿式法超微粒子シリカの混合
物である。乾式法超微粒子シリカとしては日本ア
エロジル製AEROSIL等があり、湿式法超微粒子
シリカとしては徳山曹達製Tokusilや塩野義製薬
製Carplex等がある。 繊維強化材としては、シリカアルミナウール、
シリカウール、グラスウール、アルミナフアイバ
ー等があるが、真空引き温度をなるべく高くで
き、かつ安価で繊維径が細いという理由で、シリ
カアルミナウールが好ましい。 輻射防止材としては、基本的には3種の異なる
タイプの一つであるか、またはその種のタイプの
組み合わせであつてよい。これらの基本的タイプ
は、 (イ) 反射タイプ 例えば金属粉末類 (ロ) 散乱タイプ 例えば酸化チタン、ジルコン、
チタン酸カリウムウイスカー (ハ) 吸収タイプ 例えばカーボンブラツク である。 超微粒子シリカと繊維強化材のみの場合は、超
微粒子93〜98重量部、繊維強化材2〜7重量部を
高速撹拌混合し、成形型中でプレス成形し、嵩密
度0.17〜0.36Kg/m3(気孔率83〜92%)の支持材
とする。 一方輻射防止材を混合する場合は、超微粒子シ
リカ60〜75重量部、繊維強化材2〜7重量部、輻
射防止材25〜40重量部を高速撹拌混合し、成形型
中でプレス成形をし、嵩密度0.24〜0.46Kg/m3
(気孔率83〜92%)の支持材とする。 上記の2種類の超微粒子シリカ成形体は、耐熱
性約850℃、常圧における熱伝導率0.035Kcal/
m・h・℃(50℃)以下、耐圧縮性2Kg/cm2以上
を有しており、また連続開気孔構造である。 さて超微粒子シリカ成形体は、上記の様に撹
拌、混合、プレス成形して製造され、真空引きの
際、放出するガスは大気中から吸湿している水分
のみである。しかして上記のような超微粒子シリ
カ成形体を真空断熱容器の支持材として使用する
場合には、まずこの所定形状の超微粒子シリカ成
形体を加熱炉にて予め乾燥処理する。この超微粒
子シリカ成形体の乾燥条件は、通常約200℃で2
時間程度保持すればほぼ恒量となる。この処理に
よつて、シラノール基は残るが、成形体内の吸着
水分はほとんど確実に除去される。更に高温を採
用すれば加熱時間は格段に短縮される。 次いで第1図に示すような薄肉(ステンレス材
で板厚0.5mm程度)の金属面部1a,1b、金属
額部2a,2bで構成された容器に、予備加熱さ
れた上記支持材3を充填する。上記面部1a,1
bと額部2a,2bは、それぞれの端部において
溶接または巻締めなどにより取り付けることによ
つて密閉される。そして面部1bには封止弁4を
有する排気管5が埋め込み構造で取り付けられて
いる。 この後、外部より100℃以上でなるべく高温に
加熱しながら短時間に真空引きする。この操作に
より、上記支持材3内の水分はほとんど排出さ
れ、更に他の放出ガスも排出され、支持材3内は
高真空度は保持される。さらに上記封止弁4を密
閉することにより、金属容器内に支持材3が充填
され、かつこの支持材3内が真空に保持された真
空断熱構造体が製造される。なおこの場合、保持
真空度は0.1Torrとした。 次に支持材3の特性と原料配合について具体例
をあげて説明する。 第1表に本発明の実施例(No.3、No.6)と比較
例(No.1、No.2、No.4、No.5)の原料配合と支持
材の特性を示す。
INDUSTRIAL APPLICATION FIELD This invention relates to a vacuum insulation structure with excellent insulation performance. BACKGROUND ART Generally, in structures that require high-performance insulation, such as refrigerated containers and liquefied gas storage tanks, it is well known that vacuum structures are used as insulation walls in order to improve insulation performance. However, when forming an insulating wall in a vacuum structure, a vacuum load (1Kg/cm 2 ) is applied to the metal container with the inner and outer walls forming the vacuum structure, so the metal container must be made of thick wall material to be able to withstand the vacuum load. will be used. Depending on the size of the container, a stainless steel plate with a thickness of about 2 mm is required. However, if a thick-walled material is used for the metal container, the weight will be heavy and the processing will require an extremely large amount of labor.In addition, in a vacuum insulation structure made of thick-walled material as shown in Figure 3, the vacuum space Although the heat transmitted through 8 is small, from the face 6a or 6b to the forehead 7
a and 7b, the surface portion 6a or 6a
The disadvantage was that the amount of heat escaping increased. For this reason, various vacuum insulation structures have been developed that can use metal containers made of thin-walled materials.
This type of vacuum insulation structure receives a vacuum load between the inner and outer walls, so it is loaded with compression-resistant molded insulation material as a support material, but those that satisfy compression resistance generally have a bulk specific gravity. It became large, had high thermal conductivity, and had problems in terms of insulation performance. For the above-mentioned reasons, a vacuum insulation structure of 10 -2 Torr or less has been proposed using a compression-resistant, lightweight inorganic molded body having a continuous open pore structure such as calcium silicate as a support material. This molded product has a compressive load resistance of 2 kg/cm 2 or more, has a light bulk specific gravity of about 0.1 g/cc, and has a continuous open pore structure, so it has a remarkable vacuum evacuation effect. . Problems to be solved by the invention By the way, silicon-calcium molded bodies have a diameter of several μm.
It is made up of burr-like crystals of ~10 μm in size that grow and intertwine to form relatively large air pores of several 10 μm or less in size. Therefore, the radiation prevention ability is small, and the solid heat conduction between the crystals and the heat conduction between the crystal and the metal container are relatively large, and the heat conduction in a vacuum of 10 -2 Torr or less is 0.01 Kcal/m・h・℃
(0.03 Kcal/m・h・℃ under normal pressure). Insulating materials with lower thermal conductivity than calcium silicate include fine powders such as perlite, shirasu balloons, and glass balloons (thermal conductivity under vacuum is approximately 0.002 Kcal/m・h・℃, under normal pressure). 0.02Kcal/m・h・℃), glass wool,
Fibrous materials such as silica alumina wool and silica wool (thermal conductivity under vacuum is approximately 0.003 Kcal/m・
h・℃, 0.03Kcal/m・h・℃ under normal pressure). However, fibrous materials cannot of course withstand vacuum loads. On the other hand, the above-mentioned fine powder has closed cells and contains gas, and when subjected to a vacuum load, the bubbles break and release the contained gas, making it impossible to receive a load. Therefore, if these insulation materials are used under vacuum, it will be necessary to use thick-walled materials for the metal container, which will certainly increase the weight. The present invention aims to improve the drawbacks of such a vacuum insulation structure, and provides a vacuum insulation structure that is inexpensive, has excellent insulation performance, is easy to perform evacuation operation, and is lightweight. Means for Solving the Problems In order to solve the above problems, the present invention uses ultrafine silica with a primary particle size of submicron or less obtained by a dry method such as heat treatment or thermal decomposition of a silane derivative and silicon soda. A mixture of ultrafine silica particles with a primary particle size of submicron or less obtained by a wet method such as a method of decomposing with an acid, a method of decomposing an alkaline earth metal silicate with an acid, or a method of decomposing acid clay with an acid. The main material is intertwined with a fibrous material to form a heat insulating material with low thermal conductivity, which is used as a supporting material. That is, a support material filled in a metal container in a vacuum state is filled with ultrafine silica obtained by heat treatment or thermal decomposition of a silane derivative, ultrafine silica obtained by a wet method, and fiber reinforcement. It is composed of a molded body that is mixed, dispersed, and compressed. In addition, especially when the temperature difference between the inner and outer walls of the vacuum insulation structure is large, the ultrafine particle silica and the fiber reinforcing material are dispersed and mixed with a minute radiation preventive agent, and the mixture is compression molded and used as a support material. Function It is difficult to mold ultrafine silica particles alone into a porous body. Furthermore, when molded using a binder, solid heat conduction increases. Therefore, ultrafine silica particles and a fibrous material are mixed with high speed stirring and compression molded. According to this method, a microporous support material having a compressive strength of 2 Kg/cm 2 or more and nearly 90% of submicron or smaller pores can be obtained. Here, as the ultrafine silica particles, those obtained by a dry method and those obtained by a wet method are appropriately mixed and used. Dry process ultrafine particle silica has primary particles of several hundred Å.
Since it is a spherical amorphous material with a very small number of silanol groups, the thermal conductivity of the molded product is lower than the molecular thermal conductivity of still air, and it has excellent compressive strength. In addition, there is little loss on drying and loss on ignition, making drying and vacuuming operations easier. However, the bulk density under no load is very small, making it difficult to press. It is also very expensive. On the other hand, in the ultrafine particle silica produced by the wet process, the primary particles are as small as those produced by the dry process, but the number of silanol groups is more than twice as large, and the cohesive force between the particles is strong. Therefore, although the bulk density is relatively high, the thermal conductivity of the molded product is higher than that of dry process silica.
Furthermore, the compressive strength when molded to the same porosity is also lower than that of the dry method. Also, the loss on drying and the loss on ignition are large. However, the price of wet-processed ultrafine silica is less than half that of dry-processed ultrafine silica. The mixture of dry process ultrafine particle silica and wet process ultrafine particle silica takes advantage of the above-mentioned respective advantages and compensates for each other's shortcomings. That is, wet process silica is appropriately added and mixed with dry process silica, which has excellent heat insulation performance and compression resistance performance, and the bulk density of the mixture is increased by the cohesive force of the wet process silica, making pressing work easier. . Since both the dry process ultrafine particle silica and the wet process ultrafine particle silica have primary particles of several hundred angstroms or less, the radiation prevention effect is greater than that of a silicon-calcium molded product even without the addition of a radiation prevention material. However, if the temperature difference between the inner and outer walls is large, it is possible to further prevent radiation by mixing a radiation prevention material with a grain size and material that does not affect the original insulation performance of the supporting material and the size of the pores. The effect can be improved. In addition, because this support material is formed by point contact between particles and point contact between particles and fibers, heat conduction between solids is low, even though the porosity is smaller than approximately 95% of silicon calcium. small. This support material adsorbs several to 10% of water at normal pressure. In particular, when the content of wet silica is high, there is a lot of adsorbed water, and the thermal conductivity is not so good under normal pressure, but under reduced pressure, where there is no effect of adsorbed water, it shows much better heat insulation performance than calcium silica. . Furthermore, the above supporting material is composed of continuous pores with a diameter of submicron or less, which is much smaller than that of the silicon-calcium compact, and the degree of vacuum is several degrees.
If the temperature is below Torr, air convection and heat conduction between air molecules will be extremely small. EXAMPLES The present invention will be specifically described below. The ultrafine particle silica used as the main material of the support material of the present invention is dry ultrafine particle silica obtained by a manufacturing method of hydrolyzing silicon tetrachloride in an oxyhydrogen flame (1000°C), and silicon soda by acid. It is a mixture of wet process ultrafine particle silica obtained by a decomposition process. Examples of dry process ultrafine particle silica include AEROSIL manufactured by Nippon Aerosil, and examples of wet process ultrafine particle silica include Tokusil manufactured by Tokuyama Soda and Carplex manufactured by Shionogi & Co., Ltd. As fiber reinforcement materials, silica alumina wool,
There are silica wool, glass wool, alumina fiber, etc., but silica alumina wool is preferred because it allows the evacuation temperature to be as high as possible, is inexpensive, and has a small fiber diameter. The anti-radiation material may basically be one of three different types or a combination of such types. These basic types are: (a) Reflective type, such as metal powder (b) Scattering type, such as titanium oxide, zircon, etc.
Potassium titanate whisker (c) Absorption type For example, carbon black. In the case of only ultrafine particle silica and fiber reinforcement, 93 to 98 parts by weight of ultrafine particles and 2 to 7 parts by weight of fiber reinforcement are mixed with high speed stirring and press-molded in a mold to obtain a bulk density of 0.17 to 0.36 Kg/m. 3 (porosity 83-92%) supporting material. On the other hand, when mixing a radiation prevention material, 60 to 75 parts by weight of ultrafine silica, 2 to 7 parts by weight of fiber reinforcing material, and 25 to 40 parts by weight of radiation prevention material are mixed at high speed and then press-molded in a mold. , bulk density 0.24~0.46Kg/ m3
(porosity: 83-92%). The above two types of ultrafine particle silica molded bodies have a heat resistance of approximately 850℃ and a thermal conductivity of 0.035Kcal/at normal pressure.
It has a compression resistance of 2Kg/cm 2 or more, and a continuous open pore structure. Now, the ultrafine silica molded product is produced by stirring, mixing, and press molding as described above, and when vacuuming, the only gas released is moisture absorbed from the atmosphere. When the ultrafine silica molded body as described above is used as a support material for a vacuum insulated container, the ultrafine silica molded body having a predetermined shape is first dried in a heating furnace. The drying conditions for this ultrafine silica molded body are usually about 200℃ and 2
If it is maintained for about an hour, the weight becomes almost constant. Through this treatment, the silanol groups remain, but the moisture adsorbed within the molded article is almost certainly removed. Furthermore, if a high temperature is used, the heating time can be significantly shortened. Next, the preheated support material 3 is filled into a container as shown in FIG. 1, which is composed of thin (stainless steel plate thickness approximately 0.5 mm) metal surface parts 1a, 1b and metal frame parts 2a, 2b. . Said surface portion 1a, 1
b and the frame portions 2a, 2b are sealed by attaching them by welding or seaming at their respective ends. An exhaust pipe 5 having a sealing valve 4 is attached to the surface portion 1b in an embedded structure. After this, the chamber is heated externally to a temperature of 100°C or higher and evacuated for a short period of time. By this operation, most of the moisture in the support material 3 is discharged, and other released gases are also discharged, and a high degree of vacuum is maintained within the support material 3. Furthermore, by sealing the sealing valve 4, a vacuum insulation structure is manufactured in which the metal container is filled with the support material 3 and the inside of the support material 3 is maintained in a vacuum. In this case, the degree of vacuum maintained was 0.1 Torr. Next, the characteristics and raw material composition of the support material 3 will be explained using a specific example. Table 1 shows the raw material formulations and properties of the supporting materials of Examples (No. 3, No. 6) of the present invention and Comparative Examples (No. 1, No. 2, No. 4, No. 5).

【表】 第1表において、耐圧縮性とは5%へこみの時
の圧縮強度であり、真空中とは0.1Torrである。 原料の乾式法超微粒子シリカとしては、日本ア
エロジル製AEROSIL200、湿式法超微粒子シリ
カとしては徳山曹達製Tokusil P、酸化チタン
としてはデグサ製Titanium Oxide P25、シリカ
アルキナウールとしてはイビデン製イビウールバ
ルクを使用した。 各々の配合の原料は日本アイリツヒ製逆流式高
速混合機を用い、5000r.p.mで混合した。次にこ
の混合物を成形型に入れプレス成形し、幅1000
mm、長さ2000mm、厚さ50mmの支持材とした。 No.1、No.2、No.3の配合は輻射防止材として酸
化チタンを含有するものであり、No.4、No.5、No.
6は輻射防止材は含有しない。 第1表に基づいた配合の支持材を嵩密度を変え
てプレス成形すると、嵩密度と耐圧縮性の関係は
第2図の様になる。第2図のA,B,C,D,
E,Fは第1表のNo.1、No.2、No.3、No.4、No.
5、No.6の配号に対応する。 第2図から明らかな様に、湿式法超微粒子シリ
カだけを主材とする支持材B(No.2)、E(No.5)
よりも乾式法超微粒子シリカだけを主材とする支
持材A(No.1)、D(No.4)の方が耐圧縮性は優れ
ている。そこで耐圧縮性および断熱性に優れた乾
式法超微粒子シリカと粉体の嵩密度が大きくプレ
ス成形しやすい湿式法超微粒子シリカを混合した
支持材C(No.3)、F(No.6)はAとB、DとEの
中間位と耐圧縮性を得ることができる。 第1表には代表的な嵩密度の支持材の特性を示
すが、乾式法超微粒子シリカと湿式法超微粒子シ
リカを混合したNo.3、No.6の吸湿率、耐圧縮性、
熱伝導率は各々単独の場合のほぼ中間の値である
が、珪酸カルシウム成形体を支持材とする真空断
熱構造体よりも優れた断熱性能のものを容易に得
ることができる。 原料の配合は、真空断熱構造体の用途によつて
選択できる。性能(耐圧縮性、熱伝導率、重量)
を優先する場合は、乾式法超微粒子シリカの割合
を多くし、価格を優先する場合は湿式法超微粒子
シリカの割合を多くする。 発明の効果 上述した様に本発明によれば、低熱伝導率で耐
圧縮性に優れた超微粒子シリカ成形体を支持材と
することによつて、薄肉の金属容器が使えるた
め、軽量で断熱性能に優れた真空断熱構造体を得
る。さらに本発明においては、超微粒子シリカと
して、特に低熱伝導率、高耐圧縮性、低吸湿性の
乾式法シリカと粉体の嵩密度の大きい湿式法シリ
カを混合して用いることによつて、原料混合物の
嵩を小さくでき、プレス成形が容易になる。 一方、従来の珪酸カルシウム成形体を支持材と
して使つた場合よりも減圧度が少なく、一層真空
引き作業が容易である。 また、真空度が小さいため金属容器からのガス
の放出が少なく、さらに超微粒子シリカのゲツタ
ー作用もあるので、極めて断熱性能の経年変化が
少ない。
[Table] In Table 1, compression resistance is the compressive strength when dented by 5%, and in vacuum is 0.1 Torr. The dry process ultrafine particle silica used as raw materials is AEROSIL200 manufactured by Nippon Aerosil, the wet process ultrafine particle silica is Tokuyama Soda Co., Ltd. Tokusil P, the titanium oxide is Titanium Oxide P25 manufactured by Degussa, and the silica alkina wool is Ibiden Ibiwool Bulk. used. The raw materials for each formulation were mixed at 5000 rpm using a reverse flow type high speed mixer manufactured by Nippon Eiritzhi. Next, this mixture was put into a mold and press-molded to a width of 1000 mm.
The supporting material was 2000 mm long and 50 mm thick. The formulations No. 1, No. 2, and No. 3 contain titanium oxide as a radiation prevention material, and the formulations No. 4, No. 5, and No. 3 contain titanium oxide as a radiation prevention material.
No. 6 contains no anti-radiation material. When support materials having the formulations shown in Table 1 are press-molded with varying bulk densities, the relationship between bulk density and compression resistance is as shown in FIG. 2. A, B, C, D in Figure 2,
E and F are No. 1, No. 2, No. 3, No. 4, and No. in Table 1.
5, corresponds to the arrangement of No.6. As is clear from Figure 2, supporting materials B (No. 2) and E (No. 5) whose main material is only wet-processed ultrafine particle silica
Supporting materials A (No. 1) and D (No. 4), which are mainly composed of dry process ultrafine particle silica, have better compression resistance. Therefore, supporting materials C (No. 3) and F (No. 6) are made by mixing dry process ultrafine particle silica with excellent compression resistance and heat insulation properties and wet process ultrafine particle silica which has a large powder bulk density and is easy to press mold. It is possible to obtain compression resistance between A and B, D and E. Table 1 shows the characteristics of support materials with typical bulk densities, including the moisture absorption rate, compression resistance, and
Although the thermal conductivity is approximately an intermediate value between the values when each is used alone, it is possible to easily obtain a vacuum insulation structure with better insulation performance than a vacuum insulation structure using a calcium silicate molded body as a supporting material. The mixture of raw materials can be selected depending on the use of the vacuum insulation structure. Performance (compression resistance, thermal conductivity, weight)
If priority is given to price, increase the proportion of dry process ultrafine particle silica, and if price is a priority, increase the proportion of wet process ultrafine particle silica. Effects of the Invention As described above, according to the present invention, by using an ultrafine silica molded body with low thermal conductivity and excellent compression resistance as a support material, a thin metal container can be used, which is lightweight and has good heat insulation performance. Obtain an excellent vacuum insulation structure. Furthermore, in the present invention, by using a mixture of dry process silica, which has low thermal conductivity, high compression resistance, and low hygroscopicity, and wet process silica, which has a high powder bulk density, as ultrafine particle silica, The volume of the mixture can be reduced, making press molding easier. On the other hand, the degree of pressure reduction is smaller than when a conventional calcium silicate molded body is used as a support material, and the evacuation operation is easier. In addition, because the degree of vacuum is low, there is little gas released from the metal container, and because the ultrafine silica particles have a getter effect, there is extremely little change in thermal insulation performance over time.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す真空断熱構造
体の断面図、第2図は本発明に用いる支持材の嵩
密度と耐圧縮性の関係を示す特性図、第3図は従
来の真空断熱構造体の断面図である。 1a,1b……金属容器の面部、2a,2b…
…金属容器の額部、3……支持材。
Fig. 1 is a sectional view of a vacuum insulation structure showing an embodiment of the present invention, Fig. 2 is a characteristic diagram showing the relationship between the bulk density and compression resistance of the supporting material used in the present invention, and Fig. 3 is a conventional It is a sectional view of a vacuum insulation structure. 1a, 1b... Surface portion of metal container, 2a, 2b...
...Forehead of metal container, 3...Support material.

Claims (1)

【特許請求の範囲】 1 金属容器と、その中に真空状態で充填してい
る支持材とよりなり、前記支持材はシラン誘導体
の熱処理または熱分解によつて得られた超微粒子
シリカ、湿式法によつて得られた超微粒子シリカ
および繊維強化材を混合分散し圧縮した成形体に
より構成した真空断熱構造体。 2 支持材は輻射防止剤を含有する成形体により
構成した特許請求の範囲第1項記載の真空断熱構
造体。
[Scope of Claims] 1. Consists of a metal container and a supporting material filled therein in a vacuum state, the supporting material being ultrafine silica obtained by heat treatment or thermal decomposition of a silane derivative, or ultrafine particle silica obtained by a wet process. A vacuum insulation structure made of a molded product obtained by mixing and dispersing ultrafine silica particles and fiber reinforcing material obtained by and compressing the mixture. 2. The vacuum heat insulating structure according to claim 1, wherein the supporting material is a molded body containing a radiation inhibitor.
JP60132269A 1985-06-18 1985-06-18 Vacuum heat-insulative structure Granted JPS61291466A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60132269A JPS61291466A (en) 1985-06-18 1985-06-18 Vacuum heat-insulative structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60132269A JPS61291466A (en) 1985-06-18 1985-06-18 Vacuum heat-insulative structure

Publications (2)

Publication Number Publication Date
JPS61291466A JPS61291466A (en) 1986-12-22
JPH0566341B2 true JPH0566341B2 (en) 1993-09-21

Family

ID=15077332

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60132269A Granted JPS61291466A (en) 1985-06-18 1985-06-18 Vacuum heat-insulative structure

Country Status (1)

Country Link
JP (1) JPS61291466A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015182768A1 (en) * 2014-05-30 2015-12-03 旭硝子株式会社 Vacuum heat-insulating material

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5316816A (en) * 1989-05-10 1994-05-31 Degussa Aktiengesellschaft Form body for heat insulation and vacuum insulation panel with asymmetric design
WO2020009226A1 (en) * 2018-07-06 2020-01-09 デンカ株式会社 Thermal insulation filler, thermal insulation material and thermal insulation structure

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015182768A1 (en) * 2014-05-30 2015-12-03 旭硝子株式会社 Vacuum heat-insulating material
JPWO2015182768A1 (en) * 2014-05-30 2017-05-25 旭硝子株式会社 Vacuum insulation

Also Published As

Publication number Publication date
JPS61291466A (en) 1986-12-22

Similar Documents

Publication Publication Date Title
US5084320A (en) Evacuated thermal insulation
US3702279A (en) Fibrous thermal insulation and method for preparing same
JPS6340779A (en) Heat insulator comprising sedimented silica and fly ash
KR20000048699A (en) Compositions and insulation bodies having low thermal conductivity
JPS63103875A (en) Asbestos-free filler in hardened one-body structure
JP2000161049A (en) Micro-porous molded body, manufacture thereof, catalyst and use of molded body
US9903109B2 (en) Thermal and/or acoustic insulation materials shaped from silica
WO1988007503A1 (en) Method for manufacturing fine porous member
US4647499A (en) Shaped body of calcium silicate and process for producing same
JP2619970B2 (en) Insulating molded article and method for producing the same
US5362541A (en) Shaped articles for heat insulation
JPH0566341B2 (en)
US3810773A (en) Strong light weight,bonded,porous aggregate
CA2128047A1 (en) Process for producing shaped bodies having thermally insulating properties
JPS61241595A (en) Vacuum heat-insulating structure body
JPS5849654A (en) Heat insulating molded body made from calcium silicate as main component
JPH0446348B2 (en)
US3652310A (en) Method of producing lightweight, heat-insulating construction elements from lime and silicate and products thereof
JPH0569063B2 (en)
US4123285A (en) Foamed ceramic element
JPH05118492A (en) Manufacture of heat insulating material
JPS6287350A (en) Manufacture of vacuum structure
JPH01157473A (en) Fine porous body
JPH0544889A (en) Vacuum heat insulator
JPH03247576A (en) Production of fine porous body

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term